1
|
Janse van Rensburg HD, Terre'Blanche G, Van der Walt MM. On the basis of sex: male vs. female rat adenosine A 1/A 2A receptor affinity. BMC Res Notes 2023; 16:165. [PMID: 37563689 PMCID: PMC10413537 DOI: 10.1186/s13104-023-06346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To ensure reproducibility in biomedical research, the biological variable sex must be reported; yet a reason for using male (instead of female) rodents is seldom given. In our search for novel adenosine receptor ligands, our research group routinely determines a test compound's binding affinities at male Sprague-Dawley rat (r) adenosine A1 and A2A receptors via in vitro radioligand binding studies. This pilot study compared the binding affinities of four adenosine receptor ligands (frequently used as reference standards) at male and female adenosine rA1 and rA2A receptors. RESULTS The inhibition constant (Ki) values determined using female rats correspond well to the values obtained using male rats and no markable difference could be observed in affinity and selectivity of reference standards. For example, DPCPX the selective adenosine A1 receptor antagonist: male rA1Ki: 0.5 ± 0.1 nM versus female rA1Ki: 0.5 ± 0.03 nM; male rA2AKi: 149 ± 23 nM versus female rA2AKi: 135 ± 29 nM. From the limited data at hand, we conclude that even when using female rats for in vitro studies without regard for the oestrous cycle, the obtained data did not vary much from their male counterparts.
Collapse
Affiliation(s)
- Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
2
|
Matthee C, Terre'Blanche G, Janse van Rensburg HD, Aucamp J, Legoabe LJ. Chalcone-inspired rA 1 /A 2A adenosine receptor ligands: Ring closure as an alternative to a reactive substructure. Chem Biol Drug Des 2021; 99:416-437. [PMID: 34878728 DOI: 10.1111/cbdd.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Over the past few years, great progress has been made in the development of high-affinity adenosine A1 and/or A2A receptor antagonists-promising agents for the potential treatment of Parkinson's disease. Unfortunately, many of these compounds raise structure-related concerns. The present study investigated the effect of ring closures on the rA1 /A2A affinity of compounds containing a highly reactive α,β-unsaturated carbonyl system, hence providing insight into the potential of heterocycles to address these concerns. A total of 12 heterocyclic compounds were synthesised and evaluated in silico and in vitro. The test compounds performed well upon qualitative assessment of drug-likeness and were generally found to be free from potentially problematic fragments. Most also showed low/weak cytotoxicity. Results from radioligand binding experiments confirm that heterocycles (particularly 2-substituted 3-cyanopyridines) can replace the promiscuous α,β-unsaturated ketone functional group without compromising A1 /A2A affinity. Structure-activity relationships highlighted the importance of hydrogen bonds in binding to the receptors of interest. Compounds 3c (rA1 Ki = 16 nM; rA2A Ki = 65 nM) and 8a (rA1 Ki = 102 nM; rA2A Ki = 37 nM), which both act as A1 antagonists, showed significant dual A1 /A2A affinity and may, therefore, inspire further investigation into heterocycles as potentially safe and potent adenosine receptor antagonists.
Collapse
Affiliation(s)
- Chrisna Matthee
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | | | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
van Vuuren NJ, van Rensburg HDJ, Terre'Blanche G, Legoabe LJ. New fused pyrroles with rA1/A2A antagonistic activity as potential therapeutics for neurodegenerative disorders. Mol Divers 2021; 26:2211-2220. [PMID: 34741275 DOI: 10.1007/s11030-021-10327-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
In a pilot study, eleven pyrrolopyridine and pyrrolopyrimidine derivatives (specifically, 7-azaindole and 7-deazapurine derivatives) were synthesised by Suzuki cross-coupling reactions and evaluated via radioligand binding assays as potential adenosine receptor (AR) antagonists in order to further investigate the structure-activity relationships of these compounds. 6-Chloro-4-phenyl-1H-pyrrolo[2,3-b]pyridine, with a 7-azaindole scaffold, was identified as a selective A1 AR antagonist with a rA1Ki value of 0.16 µM, and interestingly, the addition of a N-atom to the aforementioned fused heterocyclic ring system, creating corresponding 7-deazapurines, led to a dual A1/A2A AR ligand (2-chloro-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine: rA1Ki: 0.19 ± 0.02 µM; rA2AKi: 0.43 ± 0.01 µM). Introducing an additional N-atom into the heterocyclic ring system was tolerable for rA1 AR affinity and also led to rA2A AR affinity. This pilot study concluded that new 7-azaindole and 7-deazapurine derivatives represent interesting scaffolds for design of A1 and/or A2A AR antagonists.
Collapse
Affiliation(s)
- Nadia Janse van Vuuren
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
4
|
Janse van Rensburg HD, Legoabe LJ, Terre’Blanche G. C3 amino-substituted chalcone derivative with selective adenosine rA 1 receptor affinity in the micromolar range. CHEMICKE ZVESTI 2020; 75:1581-1605. [PMID: 33223599 PMCID: PMC7670844 DOI: 10.1007/s11696-020-01414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT To identify novel adenosine receptor (AR) ligands based on the chalcone scaffold, herein the synthesis, characterization and in vitro and in silico evaluation of 33 chalcones (15-36 and 37-41) and structurally related compounds (42-47) are reported. These compounds were characterized by radioligand binding and GTP shift assays to determine the degree and type of binding affinity, respectively, against rat (r) A1 and A2A ARs. The chalcone derivatives 24, 29, 37 and 38 possessed selective A1 affinity below 10 µM, and thus, are the most active compounds of the present series; compound 38 was the most potent selective A1 AR antagonist (K i (r) = 1.6 µM). The structure-affinity relationships (SAR) revealed that the NH2-group at position C3 of ring A of the chalcone scaffold played a key role in affinity, and also, the Br-atom at position C3' on benzylidene ring B. Upon in vitro and in silico evaluation, the novel C3 amino-substituted chalcone derivative 38-that contains an α,ß-unsaturated carbonyl system and easily allows structural modification-may possibly be a synthon in future drug discovery. GRAPHIC ABSTRACT C3 amino-substituted chalcone derivative (38) with C3' Br substitution on benzylidene ring B possesses selective adenosine rA1 receptor affinity in micromolar range.
Collapse
Affiliation(s)
- Helena D. Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| | - Gisella Terre’Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| |
Collapse
|
5
|
Pieterse L, van der Walt MM, Terre'Blanche G. C2-substituted quinazolinone derivatives exhibit A 1 and/or A 2A adenosine receptor affinities in the low micromolar range. Bioorg Med Chem Lett 2020; 30:127274. [PMID: 32631506 DOI: 10.1016/j.bmcl.2020.127274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A subtypes) are widely researched as potential drug candidates for their role in Parkinson's disease-related cognitive deficits (A1 subtype), motor dysfunction (A2A subtype) and to exhibit neuroprotective properties (A2A subtype). Previously the benzo-α-pyrone based derivative, 3-phenyl-1H-2-benzopyran-1-one, was found to display both A1 and A2A adenosine receptor affinity in the low micromolar range. Prompted by this, the α-pyrone core was structurally modified to explore related benzoxazinone and quinazolinone homologues previously unknown as adenosine receptor antagonists. Overall, the C2-substituted quinazolinone analogues displayed superior A1 and A2A adenosine receptor affinity over their C2-substituted benzoxazinone homologues. The benzoxazinones were devoid of A2A adenosine receptor binding, with only two compounds displaying A1 adenosine receptor affinity. In turn, the quinazolinones displayed varying degrees of affinity (low micromolar range) towards the A1 and A2A adenosine receptor subtypes. The highest A1 adenosine receptor affinity and selectivity were favoured by methyl para-substitution of phenyl ring B (A1Ki = 2.50 μM). On the other hand, 3,4-dimethoxy substitution of phenyl ring B afforded the best A2A adenosine receptor binding (A2AKi = 2.81 μM) among the quinazolinones investigated. In conclusion, the quinazolinones are ideal lead compounds for further structural optimization to gain improved adenosine receptor affinity, which may find therapeutic relevance in Parkinson's disease-associated cognitive deficits and motor dysfunctions as well as exerting neuroprotective properties.
Collapse
Affiliation(s)
- Lianie Pieterse
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mietha M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Human Metabolomics, Faculty of Natural and Agricultural Science, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
6
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Aucamp J. Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorg Chem 2020; 94:103459. [DOI: 10.1016/j.bioorg.2019.103459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
7
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Van der Walt MM. Methoxy substituted 2-benzylidene-1-indanone derivatives as A 1 and/or A 2A AR antagonists for the potential treatment of neurological conditions. MEDCHEMCOMM 2019; 10:300-309. [PMID: 30881617 PMCID: PMC6390816 DOI: 10.1039/c8md00540k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
A prior study reported on hydroxy substituted 2-benzylidene-1-indanone derivatives as A1 and/or A2A antagonists for the potential treatment of neurological conditions. A lead compound (1a) was identified with both A1 and A2A affinity in the micromolar range. The current study explored the structurally related methoxy substituted 2-benzylidene-1-indanone derivatives with various substitutions on ring A and B of the benzylidene indanone scaffold in order to enhance A1 and A2A affinity. This led to compounds with both A1 and A2A affinity in the nanomolar range, namely 2c (A1 K i (rat) = 41 nM; A2A K i (rat) = 97 nM) with C4-OCH3 substitution on ring A together with meta (3') hydroxy substitution on ring B and 2e (A1 K i (rat) = 42 nM; A2A K i (rat) = 78 nM) with C4-OCH3 substitution on ring A together with meta (3') and para (4') dihydroxy substitution on ring B. Additionally, 2c is an A1 antagonist. Consequently, the methoxy substituted 2-benzylidene-1-indanone scaffold is highly promising for the design of novel A1 and A2A antagonists.
Collapse
Affiliation(s)
- Helena D Janse van Rensburg
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| |
Collapse
|
8
|
Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorg Chem 2018; 77:136-143. [DOI: 10.1016/j.bioorg.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
|
9
|
Legoabe LJ, Van der Walt MM, Terre'Blanche G. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A 1 and A 2A adenosine receptors. Chem Biol Drug Des 2017; 91:234-244. [PMID: 28734058 DOI: 10.1111/cbdd.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/11/2017] [Accepted: 07/08/2017] [Indexed: 11/29/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A ) are thought to be beneficial in neurological disorders, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore 2-benzylidene-1-tetralone derivatives as antagonists of A1 and/or A2A adenosine receptors. In general, the test compounds were found to be selective for the A1 adenosine receptor, with only three test compounds possessing affinity for both the A1 and A2A adenosine receptor. The 2-benzylidene-1-tetralones bearing a hydroxyl substituent at either position C5, C6 or C7 of ring A displayed favourable adenosine A1 receptor binding, while C5 hydroxy substitution led to favourable A2A adenosine receptor affinity. Interestingly, para-hydroxy substitution on ring B in combination with ring A bearing a hydroxy at position C6 or C7 provided the 2-benzylidene-1-tetralones with both A1 and A2A adenosine receptor affinity. Compounds 4 and 8 displayed the highest A1 and A2A adenosine receptor affinity with values below 7 μm. Both these compounds behaved as A1 adenosine receptor antagonists in the performed GTP shift assays. In conclusion, the 2-benzylidene-1-tetralone derivatives can be considered as lead compounds to design a new class of dual acting adenosine A1 /A2A receptor antagonists that may have potential in treating both dementia and locomotor deficits in Parkinson's disease.
Collapse
Affiliation(s)
- Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Theophylline-7β-d-Ribofuranoside (Theonosine), a New Theophylline Metabolite Generated in Human and Animal Lung Tissue. Pharmaceutics 2017; 9:pharmaceutics9030028. [PMID: 28805720 PMCID: PMC5620569 DOI: 10.3390/pharmaceutics9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/26/2017] [Accepted: 08/06/2017] [Indexed: 11/17/2022] Open
Abstract
While assessing the ability of mammalian lung tissue to metabolize theophylline, a new metabolite was isolated and characterized. The metabolite was produced by the microsomal fraction of lungs from several species, including rat, rabbit, dog, pig, sheep and human tissue. Metabolite production was blocked by boiling the microsomal tissue. This new metabolite, theophylline-7β-d-ribofuranoside (theonosine), was confirmed by several spectral methods and by comparison to an authentic synthetic compound. Tissue studies from rats, rabbits, dogs, and humans for cofactor involvement demonstrated an absolute requirement for NADP and enhanced metabolite production in the presence of magnesium ion. It remains to be demonstrated whether theonosine may contribute to the known pharmacological effects of theophylline.
Collapse
|
11
|
Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. Eur J Med Chem 2017; 125:652-656. [DOI: 10.1016/j.ejmech.2016.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/07/2023]
|
12
|
Harmse R, van der Walt MM, Petzer JP, Terre’Blanche G. Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A 1 and A 2A receptor antagonists. Bioorg Med Chem Lett 2016; 26:5951-5955. [DOI: 10.1016/j.bmcl.2016.10.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
|
13
|
Van der Walt MM, Terre’Blanche G. 1,3,7-Triethyl-substituted xanthines—possess nanomolar affinity for the adenosine A1 receptor. Bioorg Med Chem 2015; 23:6641-9. [DOI: 10.1016/j.bmc.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 01/01/2023]
|
14
|
Bott-Flügel L, Bernshausen A, Schneider H, Luppa P, Zimmermann K, Albrecht-Küpper B, Kast R, Laugwitz KL, Ehmke H, Knorr A, Seyfarth M. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PLoS One 2011; 6:e18048. [PMID: 21464936 PMCID: PMC3065468 DOI: 10.1371/journal.pone.0018048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/23/2011] [Indexed: 11/24/2022] Open
Abstract
The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10(-8) M (30 µg/l), 6 · 10(-7) M (300 µg/l) or 2-chloro-N(6)-cyclopentyladenosine (CCPA) 10(-6) M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1 = 0.90 ± 0.08 with capadenoson 6 · 10(-8) M, 0.54 ± 0.02 with 6 · 10(-7) M), but not in Wistar hearts (S2/S1 = 1.05 ± 0.12 with 6 · 10(-8) M, 1.03 ± 0.09 with 6 · 10(-7) M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35)S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1)-receptor stimulation). These results suggest that partial adenosine A(1)-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.
Collapse
Affiliation(s)
- Lorenz Bott-Flügel
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Alexandra Bernshausen
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heike Schneider
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Peter Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Katja Zimmermann
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | | | - Raimund Kast
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Karl-Ludwig Laugwitz
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heimo Ehmke
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Knorr
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Melchior Seyfarth
- Medizinische Klinik 3, HELIOS Klinikum Wuppertal and Lehrstuhl für Kardiologie, Universität Witten/Herdecke, Witten, Germany
| |
Collapse
|
15
|
Yates L, Clark JH, Martin TJ, James S, Broadley KJ, Kidd EJ. Radioligand binding and functional responses of ligands for human recombinant adenosine A(3) receptors. ACTA ACUST UNITED AC 2006; 26:191-200. [PMID: 16553647 DOI: 10.1111/j.1474-8673.2006.00372.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding and functional properties of adenosine receptor ligands were compared in Chinese hamster ovary cells transfected with human adenosine A(3) receptors. Inhibition of [(125)I]-aminobenzyl-5'-N-methylcarboamidoadenosine ([(125)I]-AB-MECA) binding by adenosine receptor ligands was examined in membrane preparations. Inhibition of forskolin-induced cAMP accumulation by agonists was measured using a cAMP enzyme immunoassay. The rank order of agonist potency for both assays was N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) > 5'-N-ethylcarboxamidoadenosine (NECA) > (-)-N(6)-[(R)-phenylisopropyl] adenosine (R-PIA) > 4-aminobenzyl-5'-N-methylcarboxamidoadenosine (AB-MECA) > N(6)-cyclopentyl adenosine (CPA) > adenosine. The radioligand binding rank order of antagonist potency was N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-benzeneacetamide (MRS1220) > 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) > 8-phenyltheophylline (8-PT) > 8-(p-sulfophenyl)-theophylline (8-SPT). MRS1220 competitively inhibited the effect of IB-MECA on cAMP production, with a K(B) value of 0.35 nm. These data are characteristic of adenosine A(3) receptors. The absence of Mg(2+) and presence of guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) significantly reduced agonist binding inhibition potency, indicating binding to high- and low-affinity states. The IB-MECA, NECA and R-PIA IC(50) values were greater for the cAMP assay than for radioligand binding, suggesting an efficient stimulus-response transduction pathway.
Collapse
Affiliation(s)
- L Yates
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | | | |
Collapse
|
16
|
Wittendorp MC, von Frijtag Drabbe Künzel J, Ijzerman AP, Boddeke HWGM, Biber K. The mouse brain adenosine A1 receptor: functional expression and pharmacology. Eur J Pharmacol 2004; 487:73-9. [PMID: 15033378 DOI: 10.1016/j.ejphar.2004.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/15/2004] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
The adenosinergic system is involved in many important physiological functions. Adenosine exerts its extracellular effects through four types of G-protein-coupled receptors: A(1), A(2A), A(2B) and A(3). Adenosine acts as an important regulator of metabolic processes. In the brain adenosine mediates prominent neuroprotective functions via the adenosine A(1) receptor. Whereas the pharmacological characteristics of the rat and human adenosine A(1) receptor have been intensively studied, the mouse adenosine A(1) receptor has not yet been characterised. Accordingly, we have cloned the mouse brain adenosine A(1) receptor and present here a pharmacological characterisation of the mouse adenosine A(1) receptor using functional studies and radioligand binding assays. The results show that the binding affinities of several ligands for the mouse adenosine A(1) receptor are similar to the affinities for the rat and human adenosine A(1) receptor with some exceptions.
Collapse
Affiliation(s)
- Maria C Wittendorp
- Department of Medical Physiology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
van Tilburg EW, Gremmen M, von Frijtag Drabbe Künzel J, de Groote M, IJzerman AP. 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorg Med Chem 2003; 11:2183-92. [PMID: 12713828 DOI: 10.1016/s0968-0896(03)00123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel 2,8-disubstituted adenosine derivatives were synthesized in good overall yields starting from 2-iodoadenosine. Binding affinities were determined for rat adenosine A(1) and A(2A) receptors and human A(3) receptors. Some compounds displayed good adenosine A(2A) receptor affinities, with most of the 2-(1-hexynyl)- and 2-[(E)-1-hexenyl]-substituted derivatives having K(i) values in the nanomolar range. Although the introduction of an 8-alkylamino substituents decreased the affinity for the adenosine A(2A) receptor somewhat, the selectivity for this receptor compared to A(3) was improved significantly. The 8-methylamino (12) and 8-propylamino (14) derivatives of 2-(1-hexynyl)adenosine (3), showed reasonable A(2A) receptor affinities with K(i) values of 115 and 82nM, respectively, and were 49- and 26-fold selective for the adenosine A(2A) receptor compared to the A(3) receptor. The compounds were also evaluated for their ability to stimulate the cAMP production in CHO cells expressing the human adenosine A(2A) receptor. 2-(1-Hexynyl)adenosine (3) and 2-[(E)-1-hexenyl]adenosine (4) both showed submaximal levels of produced cAMP, compared to the reference full agonist CGS 21680, and thus behaved as partial agonists. Most 8-alkylamino-substituted derivatives of 3, displayed similar cAMP production as 3, and behaved as partial agonists as well. Introduction of alkylamino groups at the 8-position of 4, showed a slight reduction of the efficacy compared to 4, and these compounds were partial agonists also.
Collapse
Affiliation(s)
- Erica W van Tilburg
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Volpini R, Costanzi S, Lambertucci C, Vittori S, Klotz K, Lorenzen A, Cristalli G. Introduction of alkynyl chains on C-8 of adenosine led to very selective antagonists of the A(3) adenosine receptor. Bioorg Med Chem Lett 2001; 11:1931-4. [PMID: 11459663 DOI: 10.1016/s0960-894x(01)00347-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Some 8-alkynyladenosines were synthesized and evaluated for their adenosine receptor activity, utilizing radioligand binding studies (A(1), A(2A), A(3)) or adenylyl cyclase activity assays (A(2B)). Furthermore, the maximal induction of guanosine 5'-(gamma-thio)triphosphate ([35S]GTPgammaS) binding to G proteins and the inhibition of NECA-stimulated binding, in membranes of CHO cells which express the human A(3) receptor, were used to determine the intrinsic activity of these nucleosides at the A(3) adenosine receptor. The results showed that these new adenosine derivatives are very selective ligands for the A(3) receptor subtype and behave as adenosine antagonists, since they do not stimulate basal [35S]GTPgammaS binding, but inhibit NECA-stimulated binding. This is the first report that adenosine derivatives, with unmodified ribose moiety, are adenosine receptor antagonists.
Collapse
Affiliation(s)
- R Volpini
- Dipartimento di Scienze Chimiche, Università di Camerino, 62032, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Müller CE, Maurinsh J, Sauer R. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors. Eur J Pharm Sci 2000; 10:259-65. [PMID: 10838015 DOI: 10.1016/s0928-0987(00)00064-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.
Collapse
Affiliation(s)
- C E Müller
- Pharmaceutical Institute, Universität Bonn, Germany.
| | | | | |
Collapse
|
20
|
Jacobson KA, IJzerman AP, Linden J. 1,3-Dialkylxanthine Derivatives Having High Potency as Antagonists at Human A 2B Adenosine Receptors. Drug Dev Res 1999; 47:45-53. [PMID: 38239816 PMCID: PMC10795772 DOI: 10.1002/(sici)1098-2299(199905)47:1<45::aid-ddr6>3.0.co;2-u] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-activity relationships (SAR) of alkylxanthine derivatives as antagonists at the recombinant human adenosine receptors were explored in order to identify selective antagonists of A2B receptors. The effects of lengthening alkyl substituents from methyl to butyl at 1- and 3-positions and additional substitution at the 7- and 8-positions were probed. Ki values, determined in competition binding in membranes of HEK-293 cells expressing A2B receptors using 125I-ABOPX (125I-3-(4-amino-3-iodobenzyl)-8-(phenyl-4-oxyacetate)-1-propylxanthine), were approximately 10 to 100 nM for 8-phenylxanthine functionalized congeners. Xanthines containing 8-aryl, 8-alkyl, and 8-cycloalkyl substituents, derivatives of XCC (8-[4-[[[carboxy]methyl]oxy]phenyl]-1,3-dipropylxanthine) and XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]-oxy]phenyl]-1,3-dipropylxanthine), containing various ester and amide groups, including L- and D-amino acid conjugates, were included. Enprofylline was 2-fold more potent than theophylline in A2B receptor binding, and the 2-thio modification was not tolerated. Among the most potent derivatives examined were XCC, its hydrazide and aminoethyl and fluoroethyl amide derivatives, XAC, N-hydroxyethyl-XAC, and the L-citrulline and D-p-aminophenylalanine conjugates of XAC. An N-hydroxysuccinimide ester of XCC (XCC-NHS, MRS 1204) bound to A2B receptors with a Ki of 9.75 nM and was the most selective (at least 20-fold) in this series. In a functional assay of recombinant human A2B receptors, four of these potent xanthines were shown to fully antagonize the effects of NECA-induced stimulation of cyclic AMP accumulation.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ad P. IJzerman
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Leiden, The Netherlands
| | - Joel Linden
- Department of Internal Medicine and Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
21
|
Dalpiaz A, Townsend-Nicholson A, Beukers MW, Schofield PR, IJzerman AP. Thermodynamics of full agonist, partial agonist, and antagonist binding to wild-type and mutant adenosine A1 receptors. Biochem Pharmacol 1998; 56:1437-45. [PMID: 9827575 DOI: 10.1016/s0006-2952(98)00202-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A thermodynamic analysis of the binding of a full agonist (N6-cyclopentyladenosine), a partial agonist (8-butylamino-N6-cyclopentyladenosine) and an antagonist (8-cyclopentyltheophylline) to human wild-type and mutant (mutation of a threonine (Thr) to an alanine (Ala) residue at position 277) adenosine A1 receptors expressed on Chinese hamster ovary (CHO) cells, and to rat brain adenosine A1 receptors was undertaken. The thermodynamic parameters deltaGo (standard free energy), deltaHo (standard enthalpy) and deltaSo (standard entropy) of the binding equilibrium to rat brain receptors were determined by means of affinity measurements carried out at four different temperatures (0, 10, 20 and 25 degrees) and van't Hoff plots. Two temperatures (0 and 25 degrees) were considered for human receptors. Affinity constants were obtained from inhibition assays on membrane preparations of rat brain and CHO cells by use of the antagonist [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) as selective adenosine A1 receptor radioligand. As for rat brain receptors, full agonist binding was totally entropy driven, whereas antagonist binding was essentially enthalpy driven. Partial agonist binding appeared both enthalpy and entropy driven. As for human receptors, full agonist affinity was highly dependent on the presence of Thr277. Moreover, affinity to both wild-type and mutant receptors was enhanced by temperature increase, suggesting a totally entropy-driven binding. Antagonist binding did not depend on the presence of Thr277. Antagonist affinity decreased with an increase in temperature, suggesting a mainly enthalpy-driven binding. Partial agonist binding was significantly dependent on the presence of Thr277 at 25 degrees, whereas such a dependence was not evident at 0 degrees. It is concluded that Thr277 contributes only to the binding of adenosine derivatives and that its role changes drastically with the receptor conformation and with the type of agonist (full or partial) interacting with the adenosine A1 receptors.
Collapse
Affiliation(s)
- A Dalpiaz
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
de Zwart M, Link R, von Frijtag Drabbe Künzel JK, Cristalli G, Jacobson KA, Townsend-Nicholson A, IJzerman AP. A functional screening of adenosine analogues at the adenosine A2B receptor: a search for potent agonists. NUCLEOSIDES & NUCLEOTIDES 1998; 17:969-85. [PMID: 9708319 PMCID: PMC3459057 DOI: 10.1080/07328319808004215] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various adenosine analogues were tested at the adenosine A2B receptor. Agonist potencies were determined by measuring the cyclic AMP production in Chinese Hamster Ovary cells expressing human A2B receptors. 5'-N-Substituted carboxamidoadenosines were most potent. 5'-N-Ethylcarboxamidoadenosine (NECA) was most active with an EC50 value of 3.1 microM. Other ribose modified derivatives displayed low to negligible activity. Potency was reduced by substitution on the exocyclic amino function (N6) of the purine ring system. The most active N6-substituted derivative N6-methyl-NECA was 5 fold less potent than NECA. C8- and most C2-substituted analogues were virtually inactive. 1-Deaza-analogues had a reduced potency, 3- and 7-deazaanalogues were not active.
Collapse
Affiliation(s)
- M de Zwart
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Lorenzen A, Sebastião AM, Sellink A, Vogt H, Schwabe U, Ribeiro JA, IJzerman AP. Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. Eur J Pharmacol 1997; 334:299-307. [PMID: 9369361 DOI: 10.1016/s0014-2999(97)01193-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C8-substituted derivatives of the adenosine A1 receptor-selective agonist N6-cyclopentyladenosine (CPA) were evaluated as potential partial adenosine A1 receptor agonists in rat brain. Potencies and efficacies of 8-alkylamino-CPA derivatives were determined in G protein activation assays by their ability to stimulate binding of [35S]guanosine-5'-(gamma-thio)triphosphate ([35S]GTPgammaS) to rat forebrain membranes, by their ability to inhibit forskolin-stimulated adenylate cyclase, and by inhibition of evoked field excitatory postsynaptic potentials (field EPSPs) in hippocampal slices. EC50 values around 1 microM were determined for all C8-substituted CPA derivatives. Increase in chain length of the substituent gradually reduced agonist efficacy in [35S]GTPgammaS binding studies. Only C8-methylamino-, C8-ethylamino- and C8-propylamino-CPA inhibited forskolin-stimulated adenylate cyclase. In contrast, 8-methylamino- and 8-butylamino-CPA were the compounds of highest intrinsic activity in inhibition of field EPSPs in the hippocampus, followed by 8-ethylamino-CPA. 8-Cyclopentylamino-CPA was without effect in this tissue, and the propylamino derivative, when applied cumulatively, caused an inhibition which was smaller the higher the concentration used and the longer the application, which is suggestive of drug-induced desensitization. These data indicate that 8-aminoalkyl-substituted CPA derivatives act as partial agonists on the brain and may serve as valuable tools to dissect adenosine A1 receptor mediated signal trafficking in various organs.
Collapse
Affiliation(s)
- A Lorenzen
- Institute of Pharmacology, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|