1
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2025; 67:369-392. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
2
|
Naddafi F, Davami F, Tabarzad M, Barkhordari F, Shirazi FH. Construction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2117-2123. [PMID: 32184875 PMCID: PMC7059065 DOI: 10.22037/ijpr.2019.14387.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Blinatumomab, the bispecific T cell engager antibody (BsAb), has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression vectors based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effective to produce populations of stably transfected cells in the selection medium. Moreover, the phiC31 integrase system is considered as an attractive and safe protein expression system in mammalian cells and it could integrate a donor plasmid of any size, as a single copy, in to the host genome with no cofactors. In this study, phiC31 integrase technology in combination with DHFR amplification system was used to have an expression vector for future expression of blinatumomab in CHO cells. The gene of interest (BsAb gene) could be joined to DHFR selection marker with the insertion of an internal ribosome entry site (IRES). By positioning the DHFR downstream of BsAb gene and IRES, the transcription of the selection marker can depend on the successful transcription of the BsAb gene, which was located upstream in the expression construct. In this study, FC550A-1 vector was used as the backbone and DHFR selection marker was successfully combined with phiC31 integrase technology to generate a high-expressing construct for BsAb expression in CHO-DG44 cells in future studies.
Collapse
Affiliation(s)
- Fatemeh Naddafi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Toxicology, Shadid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Schenke-Layland K, Liebscher S, Layland SL. Use of Extracellular Matrix Proteins and Natural Materials in Bioengineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HR. Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog 2018; 34:635-649. [DOI: 10.1002/btpr.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Neha A. Patel
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | | | | - Ray C. Davis
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | - Laura D. Pack
- Dept. of CMC Statistics; Seattle Genetics; Bothell WA 98021
| | - Swapnil Bhargava
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | |
Collapse
|
5
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
6
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Shukurov RR, Kazachenko KY, Kozlov DG, Nurbakov AA, Sautkina EN, Khamitov RA, Seryogin YA. Optimization of genetic constructs for high-level expression of the darbepoetin gene in mammalian cells. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814090051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wu SC. RNA interference technology to improve recombinant protein production in Chinese hamster ovary cells. Biotechnol Adv 2009; 27:417-22. [DOI: 10.1016/j.biotechadv.2009.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 03/07/2009] [Accepted: 03/08/2009] [Indexed: 12/28/2022]
|
9
|
Wu SC, Hong WW, Liu JH. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells. Vaccine 2008; 26:4969-74. [DOI: 10.1016/j.vaccine.2008.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
10
|
|
11
|
Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H. Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 2008; 100:317-24. [DOI: 10.1002/bit.21758] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Hong WWL, Wu SC. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine 2007; 25:4103-11. [PMID: 17428585 DOI: 10.1016/j.vaccine.2007.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 02/03/2007] [Indexed: 11/30/2022]
Abstract
Chinese hamster ovary (CHO) cells and dihydrofolate reductase (dhfr)/methotrexate (MTX) gene amplification system are routinely used to generate stable producer CHO cell clones in biopharmaceutical industries. The present study proposes a novel method by the co-amplification of the silencing vector targeted to dhfr gene for improvements of selecting high-producing clones in dhfr-deficient and wild-type CHO cells. Using the silencing vector also resulted in improving the stability of the recombinant protein expression in the absence of MTX in the CHO/dhFr(-) and wild-type CHO cells. This new method is proposed to generate highly expressed stable cell clones of both dhfr-deficient and wild-type CHO cells for recombinant antigen production. Utilization of the silencing vector designed in this study can improve antigen expression through dhfr-directed gene amplification in other dhfr-competent cell lines for vaccine development.
Collapse
Affiliation(s)
- Willy W L Hong
- Institute of Biotechnology, Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|
13
|
Omasa T. Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 2005; 94:600-5. [PMID: 16233356 DOI: 10.1016/s1389-1723(02)80201-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 09/24/2002] [Indexed: 11/19/2022]
Abstract
Gene amplification means the repeated replication of a certain gene without a proportional increase in the copy number of other genes and is a widespread phenomenon in eukaryotes. It is an important developmental and evolutionary process in many organisms. This article focuses on mammalian gene amplification and its application in cell and tissue engineering. The dhfr gene amplification in Chinese hamster ovary (CHO) cells, the gene amplification mechanism, the selection protocol and the application of gene amplification were reviewed.
Collapse
Affiliation(s)
- Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C, Wahl GM. Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res 2005; 33:e147. [PMID: 16204450 PMCID: PMC1243804 DOI: 10.1093/nar/gni145] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative analysis of mutants using transfection is complicated by clones exhibiting variable levels of gene expression due to copy number differences and genomic position effects. Recombinase-mediated cassette exchange (RMCE) can overcome these problems by introducing the target gene into pre-determined chromosomal loci, but recombination between the available recombinase targeting sites can reduce the efficiency of targeted integration. We developed a new LoxP site (designated L3), which when used with the original LoxP site (designated L2), allows highly efficient and directional replacement of chromosomal DNA with incoming DNA. A total of six independent LoxP integration sites introduced either by homologous recombination or retroviral delivery were analyzed; 70-80% of the clones analyzed in hamster and human cells were correct recombinants. We combined the RMCE strategy with a new, tightly regulated tetracycline induction system to produce a robust, highly reliable system for inducible transgene expression. We observed stable inducible expression for over 1 month, with uniform expression in the cell population and between clones derived from the same integration site. This system described should find significant applications for studies requiring high level and regulated transgene expression and for determining the effects of various stresses or oncogenic conditions in vivo and in vitro.
Collapse
Affiliation(s)
- Ee Tsin Wong
- Division of Biological Sciences, University of California at San DiegoLa Jolla, CA, USA
- The Salk Institute for Biological StudiesLa Jolla, CA, USA
| | - John L Kolman
- The Salk Institute for Biological StudiesLa Jolla, CA, USA
| | - Yao-Cheng Li
- The Salk Institute for Biological StudiesLa Jolla, CA, USA
| | - Larry D Mesner
- Department of Biochemistry and Molecular Genetics, University of VirginiaCharlottesville, Virginia, USA
| | - Wolfgang Hillen
- Department of Microbiology, University of Erlangen-NurembergErlangen, Germany
| | - Christian Berens
- Department of Microbiology, University of Erlangen-NurembergErlangen, Germany
| | - Geoffrey M Wahl
- The Salk Institute for Biological StudiesLa Jolla, CA, USA
- To whom correspondence should be addressed. Tel: +858 453 4100; Fax: +858 457 2762;
| |
Collapse
|
15
|
Schröder M, Matischak K, Friedl P. Serum- and protein-free media formulations for the Chinese hamster ovary cell line DUKXB11. J Biotechnol 2004; 108:279-92. [PMID: 15006429 DOI: 10.1016/j.jbiotec.2003.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 12/01/2003] [Accepted: 12/08/2003] [Indexed: 11/25/2022]
Abstract
The production of therapeutic proteins in mammalian cell lines is of outstanding importance. The maintenance of most mammalian cell lines in culture requires the addition of serum to the culture medium. The elimination of serum from mammalian cell culture is desirable since serum is expensive and a source of contaminants, e.g. viruses, mycoplasma or prions. Here we describe the composition of serum- and protein-free media for the Chinese hamster ovary (CHO) cell line DUKXB11. The serum-free formulation supports excellent growth of CHO DUKXB11 cells at low (23cells/cm2) and high (2 x 10(4) cells/cm2) seeding densities characterized by a generation time of 10-12h, and, after addition of 0.2% pluronic F-68, the growth of a recombinant suspension cell line derived from DUKXB11. In addition, this formulation also allowed us to adapt recombinant cell lines expressing various amounts of human antithrombin ATIII (ATIII) to serum-free conditions. Secretion of ATIII was readily observed in the serum-free medium. Minor changes to the serum-free formulation resulted in a protein free formulation that supported growth of CHO DUKXB11 cells, growth of recombinant CHO cells expressing ATIII, and production of ATIII.
Collapse
Affiliation(s)
- Martin Schröder
- Institut für Biochemie, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany.
| | | | | |
Collapse
|
16
|
Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 2000; 69:204-12. [PMID: 10861399 DOI: 10.1002/(sici)1097-0290(20000720)69:2<204::aid-bit9>3.0.co;2-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chinese hamster ovary cell production of recombinant tissue-type plasminogen activator (t-PA) was increased by amplification of cotransfected dihydrofolate reductase cDNA using stepwise adaptation to increasing methotrexate (MTX) concentrations. The highest producing clones were isolated at 5 microM MTX and yielded 26,000 U/10(6) cells/day t-PA (43 microgram/10(6) cells/day). Above 25 microM MTX, cell specific t-PA production rates became increasingly variable and the cDNA copynumbers decreased. No apparent correlation between the cell specific t-PA production rate and the growth rate was observed upon subcloning of the amplified cells. When MTX selection was removed, the t-PA production rate decreased up to tenfold within 40 days; this was accompanied by an up to 60% drop in cDNA copynumber. Subclones isolated after 108 days of culture in the absence of MTX were, on average, sixfold more stable than their parental cells. In culture without MTX, the maximum stable t-PA production rate obtained (over 250 days) was 7000 +/- 750 U/10(6) cells/day (approximately 12 microgram/10(6) cells/day), approximately threefold lower than the maximum unstable levels of production reached under selective pressure. Taken together, these results define a wide range of the highest t-PA expression rates obtained under MTX selection, for which stable expression without selection has not been reported.
Collapse
Affiliation(s)
- C H Fann
- Biotechnology Laboratory, University of British Columbia, 237-6174 University Boulevard, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- S Geisse
- Novartis Pharma Inc., Basel, Switzerland
| | | |
Collapse
|
18
|
Fann CH, Guarna MM, Kilburn DG, Piret JM. Relationship between recombinant activated protein C secretion rates and mRNA levels in baby hamster kidney cells. Biotechnol Bioeng 1999; 63:464-72. [PMID: 10099627 DOI: 10.1002/(sici)1097-0290(19990520)63:4<464::aid-bit10>3.0.co;2-h] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analysis of 12 baby hamster kidney (BHK) clones in exponential growth revealed a linear relationship between cell-specific recombinant activated protein C (APC) production rates and APC mRNA levels. This correlation indicated that mRNA levels limited APC productivity. Two strategies were employed to increase APC mRNA levels and APC productivity. First, sodium butyrate was added to increase mRNA levels by two- to sixfold in five APC-producing clones to obtain up to 2.7-fold increase in APC production rate. The second strategy was to retransfect an APC-producing BHK cell line with a vector containing additional APC cDNA and a mutant DHFR. This mutant DHFR gene allowed the selection of retransfected clones in higher MTX concentrations. Over two-fold higher mRNA levels were obtained in these retransfected clones and the cell-specific APC production rate increased twofold. At the highest level of APC secretion, increases in mRNA levels did not result in higher rates of APC production. Analysis of the intracellular APC content revealed a possible saturation in the secretory pathway at high mRNA levels. The relation between mRNA level and APC secretion rate was also investigated in batch culture. The levels of total cellular RNA, APC mRNA, and beta-actin mRNA were relatively stable while cells were in the exponential growth phase, but rapidly decreased when cells reached the stationary phase. The decline of cell-specific APC mRNA levels correlated with a decline in APC secretion rates, which indicated that the mRNA levels continued to limit the rates beyond the exponential phase and into the declining growth and stationary phases of batch APC production.
Collapse
Affiliation(s)
- C H Fann
- Biotechnology Laboratory and Department of Chemical & Bio-Resource Engineering 237-6174 University Boulevard, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
19
|
Schröder M, Körner C, Friedl P. Quantitative analysis of transcription and translation in gene amplified Chinese hamster ovary cells on the basis of a kinetic model. Cytotechnology 1999; 29:93-102. [PMID: 22359058 PMCID: PMC3449912 DOI: 10.1023/a:1008077603328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elevation of expression levels for secreted glycoproteins by gene amplification in mammalian cells shows a saturation behavior at high levels of gene amplification. At high expression levels a drop in the secretion efficiency for the recombinant protein occurs (Schröder and Friedl, 1997), coinciding with the appearance of misfolded protein in the cell. In this communication we investigated whether additional limitations exist at the levels of transcription and translation. Four Chinese hamster ovary (CHO) cell lines expressing different amounts of human antithrombin III (ATIII) were used as a model system. A tenfold increase in the ATIII cDNA copy number from the lowest to the highest producing cell line coincided with a 38-fold increase in ATIII mRNA levels, and an 80-fold increase in the amount of intracellular ATIII levels. The data was analyzed using a simple kinetic model. The following conclusions were derived: I. The transcriptional activity for the recombinant protein is not saturated. II. Translation itself is not saturated either, but may be downregulated as secretion efficiency drops. III. Two explanations for the previously reported drop in secretion efficiency for the recombinant protein with increasing expression level are possible: A. Protein degradation is an alternative fate for translated ATIII and the fraction of ATIII degraded after translation increases as expression level is increased. B. Translation is downregulated as the secretory apparatus becomes exhausted to maintain cell viability.
Collapse
Affiliation(s)
- M Schröder
- Institut für Biochemie, Technische Hochschule Darmstadt, Petersenstraße 22, D-64287, Darmstadt, Germany E-mail,
| | | | | |
Collapse
|
20
|
Schröder M, Friedl P. Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of recombinant protein. Biotechnol Bioeng 1997; 53:547-59. [DOI: 10.1002/(sici)1097-0290(19970320)53:6<547::aid-bit2>3.0.co;2-m] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Zang M, Trautmann H, Gandor C, Messi F, Asselbergs F, Leist C, Fiechter A, Reiser J. Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:389-92. [PMID: 9634782 DOI: 10.1038/nbt0495-389] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growth-factor prototrophic Chinese hamster ovary (CHO) SSF3 cell line was previously adapted for growth in serum-free media. Here we present a newly designed medium which allows these cells to grow in the absence of any exogenously added growth factors. To investigate the capacity of CHO SSF3 cells for the efficient production of recombinant proteins in protein-free media, expression plasmids containing either a human single chain urokinase-type plasminogen activator (uPA)-encoding cDNA or a humanized immunoglobulin G (IgG) kappa light chain cDNA were introduced by transfection. The tryptophan synthase (trpB) gene of Escherichia coli was used as a dominantly acting selection marker allowing the cells to survive in a medium containing indole in place of tryptophan. Some of the clones obtained exhibited a stable uPA expression over a period of several months under selective conditions and the yields were up to 74 mg of uPA/l in a bioreactor and the productivity was around 40 mg/day per 10(9) cells. The yields of IgG light chains were up to 118 mg/l and the productivity was in the order of 56 mg/day per 10(9) cells in a bioreactor. These results demonstrate the potential of CHO SSF3 cells for the efficient production of recombinant proteins under protein-free conditions.
Collapse
Affiliation(s)
- M Zang
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|