1
|
Kalu WO, Okafor PN, Ijeh II, Eleazu C. Effect of kolaviron, a biflavanoid complex from Garcinia kola on some biochemical parameters in experimentally induced benign prostatic hyperplasic rats. Biomed Pharmacother 2016; 83:1436-1443. [PMID: 27599375 DOI: 10.1016/j.biopha.2016.08.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/07/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To determine the effect of kolaviron on some biochemical parameters in benign prostatic hyperplasia (BPH) rats. METHODS BPH was induced in rats using a mixture of dihydrotestosterone and estradiol valerate (10:1). RESULTS The lethal dose of kolaviron was 3050mg/kg body weight. Body weights, relative heart weight (RHW), relative liver weight (RLW), serum levels of prostate specific antigen, prolactin, estradiol, testosterone, testosterone/estradiol ratio, aspartate transaminase (AST), alanine transaminase (ALT), urea, creatinine and prostatic levels of total proteins in the normal rats administered finasteride (standard drug) or kolaviron were not different (P>0.05) from normal control whereas most of these parameters were altered in the disease control except RHW, RLW, AST and ALT. Finasteride (5mg/70kg) or kolaviron (100 and 200mg/kg) ameliorated most of these parameters compared with disease control except RHW, RLW, prolactin, AST, ALT, urea and creatinine (for kolaviron at 100mg/kg). The normal rats administered finasteride or kolaviron had decreased prostate weights (P<0.05) compared with the normal control which results were corroborated by histological assay that also showed that treatment with kolaviron (200mg/kg) or finasteride reversed the histoarchitecture of the prostates of the BPH rats. CONCLUSION Kolaviron could be useful in the management of BPH.
Collapse
Affiliation(s)
- W O Kalu
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.
| | - P N Okafor
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - I I Ijeh
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - C Eleazu
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
2
|
Trendel JA. The hurdle of antiandrogen drug resistance: drug design strategies. Expert Opin Drug Discov 2013; 8:1491-501. [PMID: 24206221 DOI: 10.1517/17460441.2013.855194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Prostate cancer is the second most common cancer death in men after lung cancer, due to distant metastases. While distant prostate cancer is typically castrate resistant, it is not necessarily androgen independent. For this reason, a review of the literature regarding the pathways involved in androgen signaling and therapeutic regimens to treat distant metastases is beneficial to increasing the survival rate of prostate cancer patients. AREAS COVERED In this article, the author reviews the literature from the past decade covering metastatic hormone refractory prostate cancer with the aim to examine and identify pathways, therapeutic targets and current therapies for treating castrate-resistant disease. As this area is lacking, the author aims to provide the reader with knowledge of the molecular consequences of castrate resistant prostate cancer, the current treatment paradigms and future directions. EXPERT OPINION While there have been advances in the treatment of castrate resistant prostate cancer, only minimal advances have been made in overall survival rate. Due to aberrant mutations and activation in the androgen receptor gene, and the complexity of cell signaling within prostate cancer, the androgen receptor should remain a main target for drug discovery efforts. This author believes that designing compounds that will reduce the activation of the androgen receptor may hold the key to a cure in the future.
Collapse
Affiliation(s)
- Jill A Trendel
- University of Toledo, Center for Drug Design and Development , 3000 Arlington Ave MS 1015 Toledo, OH 43614 , USA +1 419 383 1536 ;
| |
Collapse
|
3
|
Zakharov MN, Bhasin S, Szafran AT, Mancini MA, Jasuja R. Numerical framework to model temporally resolved multi-stage dynamic systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:750-759. [PMID: 22727632 DOI: 10.1016/j.cmpb.2012.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/05/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
Numerical modeling of steroid hormone signaling presents an exciting challenge involving spatiotemporal coordination of multiple events. Ligand binding in cytoplasm triggers dissociation and/or association of coregulators which subsequently regulate DNA binding and transcriptional activity in nucleus. In order to develop a comprehensive multi-stage model, it is imperative to follow not only the transcriptional outcomes but also the intermediate protein complexes. Accordingly, we developed a software toolkit for simulating complex biochemical pathways as a set of non-linear differential equations in LabVIEW (Laboratory Virtual Instrumentation and Engineering Workbench, National Instruments, Austin, TX) environment. The toolkit is visual, highly modular, loosely coupled with the rest of LabVIEW, scalable and extensible. The toolkit can be used to develop and validate biochemical models and estimate model parameters from existing experimental data. We illustrate the application of the toolkit for simulation of steroid hormone response in cells, and demonstrate how the toolkit can be employed for other biological and chemical systems as well. The software module presented here can be used stand-alone as well as built into data collection and analysis applications.
Collapse
Affiliation(s)
- M N Zakharov
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
4
|
Zakharov MN, Pillai BK, Bhasin S, Ulloor J, Istomin AY, Guo C, Godzik A, Kumar R, Jasuja R. Dynamics of coregulator-induced conformational perturbations in androgen receptor ligand binding domain. Mol Cell Endocrinol 2011; 341:1-8. [PMID: 21605623 DOI: 10.1016/j.mce.2011.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) coregulators modulate ligand-induced gene expression in a tissue specific manner. The molecular events that follow coactivator binding to AR and the mechanisms that govern the sequence-specific effects of AR coregulators are poorly understood. Using consensus coactivator sequence D11-FxxLF and biophysical techniques, we show that coactivator association is followed by conformational rearrangement in AR ligand binding domain (AR-LBD) that is enthalpically and entropically favorable with activation energy of 29.8±4.2 kJ/mol. Further characterization of ARA70 and SRC3-1 based consensus sequences reveal that each coactivator induces a distinct conformational state in the dihydrotestosterone:AR-LBD:coactivator complex. Complementary computational modeling revealed that coactivator induced specific alterations in the backbone flexibility of AR-LBD distant from the site of coactivator binding and that the intramolecular rearrangements in AR-LBD backbone induced by the two coactivator peptides were different. These data suggest that coactivators may impart specificity in the transcriptional machinery by changing the steady-state conformation of AR-LBD. These data provide direct evidence that even in the presence of same ligand, AR-LBD can occupy distinct conformational states depending on its interactions with specific coactivators in the tissues. We posit that this coactivator-specific conformational gating may then dictate subsequent binding partners and interaction/affinity for the DNA-response elements.
Collapse
Affiliation(s)
- Mikhail N Zakharov
- Section of Endocrinology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Koivisto P, Visakorpi T, Kallioniemi OP. Androgen receptor gene amplification: A novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scandinavian Journal of Clinical and Laboratory Investigation 2010. [DOI: 10.1080/00365519609168299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Combined analysis of multiple mRNA markers by RT-PCR assay for prostate cancer diagnosis. Clin Biochem 2008; 41:1191-8. [DOI: 10.1016/j.clinbiochem.2008.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/21/2022]
|
7
|
Asim M, Siddiqui IA, Hafeez BB, Baniahmad A, Mukhtar H. Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene 2008; 27:3596-604. [PMID: 18223692 DOI: 10.1038/sj.onc.1211016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is one of the most prominent malignancies of elderly men in many Western countries including Europe and the United States with increasing trend worldwide. The growth of normal prostate as well as of prostate carcinoma cells depends on functional androgen receptor (AR) signaling. AR manifests the biological actions of androgens and its transcriptional activity is known to be influenced by signal transduction pathways. Here we show that Src, a nonreceptor tyrosine kinase, is overexpressed in androgen-independent prostate carcinoma C4-2 cells. Interestingly, the expression of Src was found to progressively increase (up to threefold) in transgenic adenocarcinoma of mouse prostate mice as a function of age and cancer progression. Blocking Src kinase function by a specific inhibitor, PP2, resulted in decreased AR transactivation function on two different reporters, mouse mammary tumor virus (MMTV) and prostate-specific antigen (PSA). Consistent with this, overexpression of a functional Src mutant also led to a dramatic decrease in AR transactivation potential in a hormone-dependent manner. Interference with Src function in C4-2 cells led to decreased recruitment of AR on the target gene PSA enhancer and also resulted in the abrogation of hormone-dependent PSA transcript induction. Src inhibition also led to a dramatic decrease in the cell invasion in addition to decreasing the cellular growth. We suggest that targeting Src kinase could be an effective strategy to inhibit prostate cancer growth and metastasis.
Collapse
Affiliation(s)
- M Asim
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Prostate cancer is common, biologically heterogeneous, and protean in its clinical manifestations. Through the use and analysis of isogenic cell lines, xeno-grafts, transgenic mice, and human tumors, one begins to deconvolute the precise biologic mechanisms that combine to create the native complexity and heterogeneity of this disease. In this article, the authors have underscored compelling recent discoveries in prostate cancer so as to provide the reader with molecular paradigms with which to interpret future insights into its biology. Although it was inevitably necessary to omit a significant amount of important research in prostate cancer, the work discussed here is exemplary of current prostate cancer research. Looking forward, it is hoped that the collective work of mapping genetic and biologic interactions among key regulators of prostate epithelial cells, epithelial-stromal interactions, host immune system, and host genetics will eventually result in a comprehensive understanding of prostate cancer. Although it is likely that the molecular characteristics of an individual's prostate cancer will be analyzed using limited molecular tools in the near future, eventual application of genomic technologies and nanotechnology offers the promise of robust future characterization. Such a characterization is likely to be required to maximize our ability to optimize and individualize preventive and treatment strategies.
Collapse
Affiliation(s)
- Bala S Balakumaran
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
9
|
Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 2005; 26:898-915. [PMID: 16126938 DOI: 10.1210/er.2003-0034] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cross-regulation of Wnt/beta-catenin/Tcf ligands, kinases, and transcription factors with members of the nuclear receptor (NR) family has emerged as a clinically and developmentally important area of endocrine cell biology. Interactions between these signaling pathways result in a diverse array of cellular effects including altered cellular adhesion, tissue morphogenesis, and oncogenesis. Analyses of NR interactions with canonical Wnt signaling reveal two broad themes: Wnt/beta-catenin modulation of NRs (theme I), and ligand-dependent NR inhibition of the Wnt/beta-catenin/Tcf cascade (theme II). Beta-catenin, a promiscuous Wnt signaling member, has been studied intensively in relation to the androgen receptor (AR). Beta-catenin acts as a coactivator of AR transcription and is also involved in co-trafficking, increasing cell proliferation, and prostate pathogenesis. T cell factor, a transcriptional mediator of beta-catenin and AR, engages in a dynamic reciprocity of nuclear beta-catenin, p300/CREB binding protein, and transcriptional initiation factor 2/GC receptor-interaction protein, thereby facilitating hormone-dependent coactivation and transrepression. Beta-catenin responds in an equally dynamic manner with other NRs, including the retinoic acid (RA) receptor (RAR), vitamin D receptor (VDR), glucocorticoid receptor (GR), progesterone receptor, thyroid receptor (TR), estrogen receptor (ER), and peroxisome proliferator-activated receptor (PPAR). The NR ligands, vitamin D(3), trans/cis RA, glucocorticoids, and thiazolidines, induce dramatic changes in the physiology of cells harboring high Wnt/beta-catenin/Tcf activity. Wnt signaling regulates, directly or indirectly, developmental processes such as ductal branching and adipogenesis, two processes dependent on NR function. Beta-catenin has been intensively studied in colorectal cancer; however, it is now evident that beta-catenin may be important in cancers of the breast, prostate, and thyroid. This review will focus on the cross-regulation of AR and Wnt/beta-catenin/Tcf but will also consider the dynamic manner in which RAR/RXR, GR, TR, VDR, ER, and PPAR modulate canonical Wnt signaling. Although many commonalities exist by which NRs interact with the Wnt/beta-catenin signaling pathway, striking cell line and tissue-specific differences require deciphering and application to endocrine pathology.
Collapse
Affiliation(s)
- David J Mulholland
- Department of Molecular and Medical Pharmacology, 650 Charles E. Young Drive, Center for Health Sciences 23-234, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
10
|
Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, Timms B. Human prostate cancer risk factors. Cancer 2004; 101:2371-490. [PMID: 15495199 DOI: 10.1002/cncr.20408] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer has the highest prevalence of any nonskin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating androgens will develop microscopic prostate cancer if they live long enough. This review is a contemporary and comprehensive, literature-based analysis of the putative risk factors for human prostate cancer, and the results were presented at a multidisciplinary consensus conference held in Crystal City, Virginia, in the fall of 2002. The objectives were to evaluate known environmental factors and mechanisms of prostatic carcinogenesis and to identify existing data gaps and future research needs. The review is divided into four sections, including 1) epidemiology (endogenous factors [family history, hormones, race, aging and oxidative stress] and exogenous factors [diet, environmental agents, occupation and other factors, including lifestyle factors]); 2) animal and cell culture models for prediction of human risk (rodent models, transgenic models, mouse reconstitution models, severe combined immunodeficiency syndrome mouse models, canine models, xenograft models, and cell culture models); 3) biomarkers in prostate cancer, most of which have been tested only as predictive factors for patient outcome after treatment rather than as risk factors; and 4) genotoxic and nongenotoxic mechanisms of carcinogenesis. The authors conclude that most of the data regarding risk relies, of necessity, on epidemiologic studies, but animal and cell culture models offer promise in confirming some important findings. The current understanding of biomarkers of disease and risk factors is limited. An understanding of the risk factors for prostate cancer has practical importance for public health research and policy, genetic and nutritional education and chemoprevention, and prevention strategies.
Collapse
|
11
|
Hirawat S, Budman DR, Kreis W. The androgen receptor: structure, mutations, and antiandrogens. Cancer Invest 2003; 21:400-17. [PMID: 12901287 DOI: 10.1081/cnv-120018232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens play a critical role not only in the physiological development of the prostate but also in the genesis of prostate cancer. The effects of androgen on the prostate gland and on the other tissues of the body are mediated by activation of the androgen receptor. The androgen receptor is a member of the superfamily of hormone receptors with a DNA-binding site, two zinc finger domains, and a hormone-binding site. Mutations in this receptor can be associated with loss of function or chronic endogeneous activation, depending upon the site of change. Androgens effect a conformal change in the structure of the androgen receptor associated with a change in protein phosphorylation. The androgen receptor can be activated by additional ligands affecting the hormone-binding site besides androgens. Activators and repressors of the androgen receptor modify this protein's function and are very delicately balanced such that disruptions of either function are associated with a disease state. Antiandrogens, which bind to the receptor and thus down-regulate the effects of endogeneous circulating androgens, remain the first line treatment for palliation of advanced prostate cancer. Mutations in the receptor are associated with a change in function of such compounds from antagonist to agonist in vitro. Newer evidence suggests there may be a role of intermittent androgen suppression rather than continuous suppression, perhaps by preventing overgrowth of hormone independent tumor cells. Future research focuses on the development of drugs directed at suppressing the androgen drive of the androgen sensitive clone of the tumor and making the nonsensitive subset more susceptible to cytotoxics.
Collapse
Affiliation(s)
- Samit Hirawat
- Don Monti Division of Medical Oncology/Division of Hematology, Department of Medicine, North Shore University Hospital-NYU School of Medicine, Manhasset, New York, USA
| | | | | |
Collapse
|
12
|
Gaughan L, Logan IR, Cook S, Neal DE, Robson CN. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 2002; 277:25904-13. [PMID: 11994312 DOI: 10.1074/jbc.m203423200] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, is thought to play an important role in the development of prostate cancer. The AR is a hormone-dependent transcription factor that activates expression of numerous androgen-responsive genes. Histone acetyltransferase-containing proteins have been shown to increase activity of several transcription factors, including nuclear hormone receptors, by eliciting histone acetylation, which facilitates promoter access to the transcriptional machinery. Conversely, histone deacetylases (HDACs) have been identified which reduce levels of histone acetylation and are associated with transcriptional repression by various transcription factors. We have previously shown that Tip60 (Tat-interactive protein, 60 kDa) is a bona fide co-activator protein for the AR. Here we show that Tip60 directly acetylates the AR, which we demonstrate is a requisite for Tip60-mediated transcription. To define a mechanism for repression of AR function, we demonstrate that AR activity is specifically down-regulated by the histone deacetylase activity of HDAC1. Furthermore, using both mammalian two-hybrid and immunoprecipitation experiments, we show that AR and HDAC1 interact, suggestive of a direct role for down-regulation of AR activity by HDAC1. In chromatin immunoprecipitation assays, we provide evidence that AR, Tip60, and HDAC1 form a trimeric complex upon the endogenous AR-responsive PSA promoter, suggesting that acetylation and deacetylation of the AR is an important mechanism for regulating transcriptional activity.
Collapse
Affiliation(s)
- Luke Gaughan
- Prostate Research Group, School of Surgical Sciences, University of Newcastle Upon Tyne, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ. Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 2002; 13:670-82. [PMID: 11854421 PMCID: PMC65658 DOI: 10.1091/mbc.01-10-0513] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 10/19/2001] [Accepted: 11/08/2001] [Indexed: 11/11/2022] Open
Abstract
The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Microbiology, The Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- S E Prinsloo
- Department of Urology, University of Pretoria, South Africa
| | | |
Collapse
|
15
|
|
16
|
Wiener JS, Teague JL, Roth DR, Gonzales ET, Lamb DJ. Molecular Biology and Function of the Androgen Receptor in Genital Development. J Urol 1997. [DOI: 10.1016/s0022-5347(01)64995-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John S. Wiener
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - J. Lynn Teague
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - David R. Roth
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Edmond T. Gonzales
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Dolores J. Lamb
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
17
|
Bevan CL, Brown BB, Davies HR, Evans BA, Hughes IA, Patterson MN. Functional analysis of six androgen receptor mutations identified in patients with partial androgen insensitivity syndrome. Hum Mol Genet 1996; 5:265-73. [PMID: 8824883 DOI: 10.1093/hmg/5.2.265] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Partial androgen insensitivity syndrome (PAIS) is caused by defects in the androgen receptor gene and presents with a wide range of undervirilization phenotypes. We studied the consequences of six androgen receptor ligand-binding domain mutations on receptor function in transfected cells. The mutations, Met742Ile, Met780Ile, Gln798Glu, Arg840Cys, Arg855His and Ile869Met, were identified in PAIS patients with phenotypes representing the full spectrum seen in this condition. In all cases the androgen receptor was found to be defective, suggesting that the mutation is the cause of the clinical phenotype. The Gln798Glu mutation is exceptional in that it did not cause an androgen-binding defect in our system, although the mutant receptor was defective in transactivation assays. This mutation may affect an aspect of binding not tested, or may be part of a functional subdomain of the ligand-binding domain involved in transactivation. Overall we found milder mutations to be associated with milder clinical phenotypes. There is also clear evidence that phenotype is not solely dependent on androgen receptor function. Some of the mutant receptors were able to respond to high doses of androgen in vitro, suggesting that patients carrying these mutations may be the best candidates for androgen therapy. One such mutation is Ile869Met. A patient carrying this mutation has virilized spontaneously at puberty, so in vivo evidence agrees with the experimental result. Thus a more complete understanding of the functional consequences of androgen receptor mutations may provide a more rational basis for gender assignment in PAIS.
Collapse
Affiliation(s)
- C L Bevan
- University Department of Paediatrics, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
18
|
Scher HI, Zhang ZF, Nanus D, Kelly WK. Hormone and antihormone withdrawal: implications for the management of androgen-independent prostate cancer. Urology 1996; 47:61-9. [PMID: 8560680 DOI: 10.1016/s0090-4295(96)80011-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To analyze reported clinical outcomes for patients in whom an agent that acts via a steroid hormone receptor was "withdrawn." METHODS Published reports where agent(s) known to act via steroid hormone receptors were discontinued in patients with relapsing prostatic cancer were retrieved from MEDLINE listings. The trials included patients who progressed on steroidal and nonsteroidal antiandrogens, progestational agents, and estrogens. Included were the specifics of all treatments administered prior to discontinuation of the drugs, concomitant therapies, and factors that might predict a favorable response to "withdrawal." RESULTS Withdrawal responses were observed following the discontinuation of the antiandrogens flutamide and bicalutamide, flutamide plus aminoglutethimide, estrogens, and progestational agents. In most responding cases, responses were seen in patients with long exposure to the drug. No specific factors were predictive for response. CONCLUSIONS Withdrawal responses to agents that act via steroid hormone receptors represent a generalized phenomenon that can result in palliation for patients with hormonally relapsed prostate cancer. A trial of "withdrawal therapy" is warranted in patients with relapsing disease prior to the initiation of more toxic therapies. Failure to control for this phenomenon in clinical trials may lead to false attribution of response to a study agent. The data provide support for the concept that androgen independence does not necessarily mean that a tumor is resistant to further hormonal manipulations.
Collapse
Affiliation(s)
- H I Scher
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
19
|
Chapter 2. Gonadal Steroid Receptors: Possible Roles in the Etiology and Therapy of Cognitive and Neurological Disorders. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
20
|
Murono K, Mendonca BB, Arnhold IJ, Rigon AC, Migeon CJ, Brown TR. Human androgen insensitivity due to point mutations encoding amino acid substitutions in the androgen receptor steroid-binding domain. Hum Mutat 1995; 6:152-62. [PMID: 7581399 DOI: 10.1002/humu.1380060208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations of the human androgen receptor gene were identified in five subjects from four families with androgen insensitivity syndrome. Individual exons of the androgen receptor gene were amplified by the polymerase chain reaction from genomic DNA and screened for sequence-dependent differences in their melting characteristics by denaturing gradient gel electrophoresis. DNA fragments from exons with altered mobility were sequenced. Four different single nucleotide base substitutions were found within exons 5, 6, and 7 encoding the steroid-binding domain of the androgen receptor. In one subject with ambiguous genitalia, amino acid residue 763 was changed from tyrosine to cysteine (TAC-->TGC; Y763C). Four subjects, including two siblings, had complete androgen insensitivity. In one subject, residue 779 was changed from arginine to tryptophan (CGC-->TGG; R779W), another subject (M807V) had a substitution of valine (GTG) for methionine (ATG) residue at position 807, and the two siblings (R855C) had a mutation in residue 855 changing arginine (CGC) to cysteine (TGC). Binding of the synthetic androgen ligand, methyltrienolone (R1881), by the mutant receptor Y763C was decreased by 54% compared to the normal receptor. Transcriptional activation of a mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter gene by AR mutant Y763C was negligible at 0.1 nM R1881 and only 55% at 10 nM R1881 when compared to the maximal response with the normal AR, as assessed by CAT activity. Mutant M807V retained only 22% of normal R1881 binding and mutant R855C was unable to bind the steroid. In accordance with the steroid binding, transcriptional activation of MMTV-CAT by M807V rose to only 26% of control in the presence of 10 nM R1881, a concentration at which R855C remained functionally inactive. In summary, missense mutations within the exons of the androgen receptor gene encoding the steroid-binding domain of the receptor are common causes of both partial and complete forms of androgen insensitivity syndrome.
Collapse
Affiliation(s)
- K Murono
- Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paolo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Dupont A, Gomez JL, Cusan L, Koutsilieris M, Labrie F. Response to flutamide withdrawal in advanced prostate cancer in progression under combination therapy. J Urol 1993; 150:908-13. [PMID: 7688437 DOI: 10.1016/s0022-5347(17)35646-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of flutamide withdrawal was studied in 40 patients with stage D2 prostate cancer showing progression of the disease after an initial and long (average 3.9 years) period of positive response to combination therapy with flutamide associated with medical (luteinizing hormone-releasing hormone agonist) or surgical castration. Using the criteria of response of the United States National Prostatic Cancer Project, 1 complete, 3 partial and 26 stable responses were observed, while 10 patients continued to have progression after discontinuation of flutamide. The average durations of previous treatment with combination therapy were 1,794 days for the 30 responders (complete, partial and stable responses), compared to 1,726 days for the 10 nonresponders. The average duration of response after the arrest of flutamide was 440 days. Serum prostate specific antigen, which was elevated in all patients, decreased by 90% or more in 19 of the 30 responders (63%) and returned to normal in 17 (57%). The concentration of testosterone binding globulin increased after discontinuation of flutamide, thus also suggesting the suppression of an androgenic influence, while the serum levels of testosterone and dihydrotestosterone, as well as their main metabolites, did not change after withdrawal of flutamide. Alteration of local sensitivity to androgens is a probable explanation for the paradoxical positive response to the arrest of flutamide suggested in the present preliminary study.
Collapse
Affiliation(s)
- A Dupont
- Clinical Research Unit, CHUL Research Center, Quebec, Canada
| | | | | | | | | |
Collapse
|