1
|
Role of Nicotinic Acetylcholine Receptor α3 and α7 Subunits in Detrusor Overactivity Induced by Partial Bladder Outlet Obstruction in Rats. Int Neurourol J 2015; 19:12-8. [PMID: 25833476 PMCID: PMC4386486 DOI: 10.5213/inj.2015.19.1.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 11/08/2022] Open
Abstract
Purpose: To investigate the role of α3 and α7 nicotinic acetylcholine receptor subunits (nAChRs) in the bladder, using a rat model with detrusor overactivity induced by partial bladder outlet obstruction (BOO). Methods: Forty Sprague-Dawley rats were used: 10 were sham-operated (control group) and 30 were observed for 3 weeks after partial BOO. BOO-induced rats were further divided into 3 groups: Two groups of 10 rats each received intravesicular infusions with hexamethonium (HM group; n=10) or methyllycaconitine (MLC group; n=10), which are antagonists for α3 and α7 nAChRs, respectively. The remaining BOO-induced rats received only saline infusion (BOO group; n=10). Based on the contraction interval measurements using cystometrogram, the contraction pressure and nonvoiding bladder contractions were compared between the control and the three BOO-induced groups. Immunofluorescent staining and Western blotting were used to analyze α3 and α7 nAChRs levels. Results: The contraction interval of the MLC group was higher than that of the BOO group (P<0.05). Nonvoiding bladder contraction almost disappeared in the HM and MLC groups. Contraction pressure increased in the BOO group (P<0.05) compared with the control group and decreased in the HM and MLC groups compared with the BOO group (P<0.05). Immunofluorescence staining showed that the α3 nAChR signals increased in the urothelium, and the α7 nAChR signals increased in the urothelium and detrusor muscle of the BOO group compared with the control group. Western blot analysis showed that both α3 and α7 nAChR levels increased in the BOO group (P<0.05). Conclusions: Alpha3 and α7 nAChRs are associated with detrusor overactivity induced by BOO. Furthermore, nAChR antagonists could help in clinically improving detrusor overactivity.
Collapse
|
2
|
Abstract
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria ("mucosa") produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lori Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
3
|
Vrolix K, Fraussen J, Molenaar PC, Losen M, Somers V, Stinissen P, De Baets MH, Martínez-Martínez P. The auto-antigen repertoire in myasthenia gravis. Autoimmunity 2010; 43:380-400. [PMID: 20380581 DOI: 10.3109/08916930903518073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myasthenia Gravis (MG) is an antibody-mediated autoimmune disorder affecting the postsynaptic membrane of the neuromuscular junction (NMJ). MG is characterized by an impaired signal transmission between the motor neuron and the skeletal muscle cell, caused by auto-antibodies directed against NMJ proteins. The auto-antibodies target the nicotinic acetylcholine receptor (nAChR) in about 90% of MG patients. In approximately 5% of MG patients, the muscle specific kinase (MuSK) is the auto-antigen. In the remaining 5% of MG patients, however, antibodies against the nAChR or MuSK are not detectable (idiopathic MG, iMG). Although only the anti-nAChR and anti-MuSK auto-antibodies have been demonstrated to be pathogenic, several other antibodies recognizing self-antigens can also be found in MG patients. Various auto-antibodies associated with thymic abnormalities have been reported, as well as many non-MG-specific auto-antibodies. However, their contribution to the cause, pathology and severity of the disease is still poorly understood. Here, we comprehensively review the reported auto-antibodies in MG patients and discuss their role in the pathology of this autoimmune disease.
Collapse
Affiliation(s)
- Kathleen Vrolix
- Division of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Beckel JM, Kanai A, Lee SJ, de Groat WC, Birder LA. Expression of functional nicotinic acetylcholine receptors in rat urinary bladder epithelial cells. Am J Physiol Renal Physiol 2005; 290:F103-10. [PMID: 16144967 PMCID: PMC2760261 DOI: 10.1152/ajprenal.00098.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although nicotinic acetylcholine receptors in both the central and peripheral nervous systems play a prominent role in the control of urinary bladder function, little is known regarding expression or function of nicotinic receptors in the bladder epithelium, or urothelium. Nicotinic receptors have been described in epithelial cells lining the upper gastrointestinal tract, respiratory tract, and the skin. Thus the present study examined the expression and functionality of nicotinic receptors in the urothelium, as well as the effects of stimulation of nicotinic receptors on the micturition reflex. mRNA for the alpha3, alpha5, alpha7, beta3, and beta4 nicotinic subunits was identified in rat urothelial cells using RT-PCR. Western blotting also confirmed urothelial expression of the alpha3- and alpha7-subunits. Application of nicotine (50 nM) to cultured rat urothelial cells elicited an increase in intracellular Ca2+ concentration, indicating that at least some of the subunits form functional channels. These effects were blocked by the application of the nicotinic antagonist hexamethonium. During in vivo bladder cystometrograms in urethane-anesthetized rats, intravesical administration of nicotine, choline, or the antagonists methyllycaconitine citrate and hexamethonium elicited changes in voiding parameters. Intravesical nicotine (50 nM, 1 microM) increased the intercontraction interval. Intravesical choline (1-100 microM) also affected bladder reflexes similarly, suggesting that alpha7 nicotinic receptors mediate this effect. Intravesical administration of hexamethonium (1-100 microM) potentiated the nicotine-induced changes in bladder reflexes. Methyllycaconitine citrate, a specific alpha7-receptor antagonist, prevented nicotine-, choline-, and hexamethonium-induced bladder inhibition. These results are the first indication that stimulation of nonneuronal nicotinic receptors in the bladder can affect micturition.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Dept. of Pharmacology, Univ. of Pittsburgh School of Medicine, A1220 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
5
|
Emmett SR, Greenfield SA. Correlation between dopaminergic neurons, acetylcholinesterase and nicotinic acetylcholine receptors containing the α3- or α5-subunit in the rat substantia nigra. J Chem Neuroanat 2005; 30:34-44. [PMID: 15975762 DOI: 10.1016/j.jchemneu.2005.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/28/2004] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between the cells possessing the alpha3 or alpha5 nicotinic acetylcholine receptor subunits and the enzyme acetylcholinesterase, with respect to tyrosine hydroxylase immunoreactive dopaminergic neurons in the rat substantia nigra. Most, but certainly not all, acetylcholinesterase immunoreactive cells were located in the pars compacta. In the substantia nigra pars compacta there were in turn two populations of acetylcholinesterase containing neurons: those that were tyrosine hydroxylase reactive and those that were not. Double label studies, that included an antibody immunoreactive against a common immunogen on alpha1 of muscle and alpha3 and alpha5 neuronal nicotinic acetylcholine receptor subunits, revealed that nearly all nicotinic receptor positive cells were also tyrosine hydroxylase neurons. However, a minority non-tyrosine hydroxylase population was alpha3- and/or alpha5-nAChR positive and these were always AChE-immunoreactive. In summary, there appears to be a close correlation between nicotinic receptors and acetylcholinesterase in the substantia nigra, irrespective of the transmitter phenotype in different neuronal subpopulations.
Collapse
Affiliation(s)
- Stevan R Emmett
- University Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
6
|
Abstract
Neurodegeneration induced by excitatory neurotransmitter glutamate is considered to be of particular relevance in several types of acute and chronic neurological impairments ranging from cerebral ischaemia to neuropathological conditions such as motor neuron disease, Alzheimer's, Parkinson's disease and epilepsy. The hyperexcitation of glutamate receptors coupled with calcium overload can be prevented or modulated by using well-established competitive and non-competitive antagonists targeting ion/receptor channels. The exponentially increasing body of pharmacological evidence over the years indicates potential applications of peptide toxins, due to their exquisite subtype selectivity on ion channels and receptors, as lead structures for the development of drugs for the treatment of wide variety of neurological disorders. This review comprehensively highlights the overview of the diversity in the molecular as well as neurobiological mechanisms of different peptide toxins derived from venomous animals with particular reference to neuroprotection. In addition, the potential applications of peptide toxins in the diagnosis and treatment of neurological disorders such as neuromuscular disorders, epilepsy, Alzheimer's and Parkinson's diseases, gliomas and ischaemic stroke and their future prospects in the diagnosis as well as in the therapy are addressed.
Collapse
Affiliation(s)
- Wudayagiri Rajendra
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
7
|
Skok M, Lykhmus E, Bobrovnik S, Tzartos S, Tsouloufis T, Vanderesse R, Coutrot F, Thong Cung M, Marraud M, Krikorian D, Sakarellos-Daitsiotis M. Structure of epitopes recognized by the antibodies to alpha(181-192) peptides of neuronal nicotinic acetylcholine receptors: extrapolation to the structure of acetylcholine-binding domain. J Neuroimmunol 2001; 121:59-66. [PMID: 11730940 DOI: 10.1016/s0165-5728(01)00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the alpha(181-192) peptides of neuronal nicotinic acetylcholine receptor (nAChR) and Ala-substituted peptide analogues, amino acid residues critical for specific monoclonal antibody (mAb) binding were identified. By means of 2D nuclear magnetic resonance (2D-NMR) analysis followed by molecular modeling, it was found that mAb binding resulted in stabilization of the free alpha3(181-192) peptide flexible conformation yielding an extended structure with residues 6-11 of the peptide being in direct contact with the Ab. Since the Ab binds the native AChR as well, it is suggested that the corresponding fragment of AChR alpha3 subunit is exposed to solution and also appears in extended conformation.
Collapse
Affiliation(s)
- M Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry, 9, Leontovicha str., 01030, Kiev, Ukraine.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Skok MV, Voitenko LP, Voitenko SV, Lykhmus EY, Kalashnik EN, Litvin TI, Tzartos SJ, Skok VI. Alpha subunit composition of nicotinic acetylcholine receptors in the rat autonomic ganglia neurons as determined with subunit-specific anti-alpha(181-192) peptide antibodies. Neuroscience 1999; 93:1427-36. [PMID: 10501468 DOI: 10.1016/s0306-4522(99)00160-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The subunit composition of nicotinic acetylcholine receptors of rat autonomic ganglia neurons was studied by means of antibodies, which differentiated between different alpha subunits and specifically blocked acetylcholine-induced membrane currents. Polyclonal rabbit antibodies and mouse monoclonal antibodies were raised against synthetic peptides matching in sequence the alpha(181-192) region of alpha3, alpha4, alpha5, and alpha7 subunits of rat neuronal nicotinic acetylcholine receptors. The antibodies discriminated among alpha3, alpha4, alpha5, and alpha7 peptides in enzyme-linked immunosorbent assay and bound to native acetylcholine receptors expressed in PC-12 cells. By means of immunoperoxidase staining of cultured rat autonomic neurons followed by transmission, dark-field and phase-contrast microscopy, it was found that all cells of the superior cervical ganglia expressed the alpha3, alpha5, and alpha7 nicotinic acetylcholine receptors, whereas approximately half of the cells were clearly alpha4-positive. In contrast, only about one-third of the intracardiac neurons were alpha3-positive, about 50% were alpha4-positive, one-seventh were alpha5-positive, and one-fifth were alpha7-positive. All antibodies tested blocked acetylcholine-induced currents in the neurons of the superior cervical ganglia as was demonstrated by whole-cell patch-clamp studies. Although each antibody could block up to 80% of the current, the degree of inhibition varied considerably from cell to cell. It is concluded that alpha3, alpha5, and alpha7 subunits are expressed in all neurons of the superior cervical ganglion and in some intracardiac neurons, whereas alpha4 subunits are expressed in some but not all neurons of both tissues. The neurons of the superior cervical ganglion express heterogeneous acetylcholine receptors and differ in relative amounts of acetylcholine receptor subtypes expressed.
Collapse
Affiliation(s)
- M V Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tzartos SJ, Tsantili P, Papanastasiou D, Mamalaki A. Construction of single-chain Fv fragments of anti-MIR monoclonal antibodies. Ann N Y Acad Sci 1998; 841:475-7. [PMID: 9668278 DOI: 10.1111/j.1749-6632.1998.tb10966.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gallivan JP, Lester HA, Dougherty DA. Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. CHEMISTRY & BIOLOGY 1997; 4:739-49. [PMID: 9375252 DOI: 10.1016/s1074-5521(97)90312-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND A key structural issue for all integral membrane proteins is the exposure of individual residues to the intracellular or extracellular media. This issue involves the basic transmembrane topology as well as more subtle variations in surface accessibility. Direct methods to evaluate the degree of exposure for residues in functional proteins expressed in living cells would be highly valuable. We sought to develop a new experimental method to determine highly surface-exposed residues, and thus transmembrane topology of membrane proteins expressed in Xenopus oocytes. RESULTS We have used the in vivo nonsense suppression technique to incorporate biotinylated unnatural amino acids into functional ion channels expressed in Xenopus oocytes. Binding of 125I-streptavidin to biotinylated receptors was used to determine the surface exposure of individual amino acids. In particular, we studied the main immunogenic region of the nicotinic acetylcholine receptor. The biotin-containing amino acid biocytin was efficiently incorporated into five sites in the main immunogenic region and extracellular streptavidin bound to one residue in particular, alpha 70. The position of alpha 70 as highly exposed on the receptor surface was thus established. CONCLUSIONS The in vivo nonsense suppression technique has been extended to provide the first in a potential series of methods to identify exposed residues and to assess their relative exposure in functional proteins expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- J P Gallivan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
11
|
Abstract
The neuromuscular junction is vulnerable to antibody-mediated autoimmune attack, probably because it lacks the protection of the blood-brain barrier. This review focuses on three disorders: myasthenia gravis (MG) and the Lambert-Eaton myasthenic syndrome (LEMS), in both of which there is fatiguable muscle weakness, and acquired neuromyotonia (ANMT), in which hyperexcitable peripheral nerves lead to continuous muscle fiber activity and sometimes parasthesias. Each can occur as a paraneoplastic disorder (thymoma in MG and ANMT, and small cell lung cancer in LEMS). The clinical abnormalities are improved following plasmapheresis (which removes circulating antibodies), and injection of experimental animals with immunoglobulins of patients transfers the pathophysiological changes. The ion channel targets in these three disorders are the muscle acetylcholine receptor (a ligand-gated cation channel) in MG, nerve terminal and autonomic voltage-gated calcium channels in LEMS, and peripheral nerve voltage-gated potassium channels in ANMT. The autoantibody attack results in a reduced number of functional channels. Each of the autoantibodies can be detected in serum by immunoassay. These discoveries have allowed new approaches to treatment and suggest that there may be other undiscovered antibody-mediated ion channelopathies. NEUROSCIENTIST 3:337–346, 1997
Collapse
|
12
|
Tzartos SJ, Tzartos E, Tzartos JS. Monoclonal antibodies against the acetylcholine receptor gamma-subunit as site specific probes for receptor tyrosine phosphorylation. FEBS Lett 1995; 363:195-8. [PMID: 7537227 DOI: 10.1016/0014-5793(95)00316-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation of the nicotinic acetylcholine receptor (AChR) may be involved in AChR desensitization and clustering. Torpedo AChR gamma-subunit is phosphorylated at Tyr365. Using overlapping synthetic peptides, we have precisely mapped the epitopes of five anti-gamma-subunit monoclonal antibodies (mAbs) and found that the epitope(s) for the mAbs 154, 165 and 168 (gamma 365-370) all contain Tyr365. mAb 168 is a known blocker of AChR channel function. Using peptide analogues, Tyr365 was found to be indispensable for mAb165 binding; furthermore its binding was selectively inhibited by in vitro AChR tyrosine phosphorylation. The possible connection between gamma-subunit phosphorylation and regulation of AChR function and the proven usefulness of these mAbs as tools should facilitate functional studies of AChR gamma-subunit phosphorylation.
Collapse
Affiliation(s)
- S J Tzartos
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | |
Collapse
|
13
|
Tzartos SJ, Kouvatsou R, Tzartos E. Monoclonal Antibodies as Site-Specific Probes for the Acetylcholine-receptor delta-Subunit Tyrosine and Serine Phosphorylation Sites. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.00463.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Tzartos SJ, Kouvatsou R, Tzartos E. Monoclonal Antibodies as Site-Specific Probes for the Acetylcholine-receptor delta-Subunit Tyrosine and Serine Phosphorylation Sites. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0463n.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|