1
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2025; 19:1103-1115. [PMID: 39718930 PMCID: PMC11752528 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Ai Y, Li X, Wu X, Montalbán-López M, Zheng Z, Mu D. Secreting recombinant barnase by Lactococcus lactis and its application in reducing RNA from forages. Enzyme Microb Technol 2023; 164:110191. [PMID: 36608408 DOI: 10.1016/j.enzmictec.2022.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Barnase is a ribonuclease used for plasmid purification, targeted gene therapy and studies of protein interactions. To make the use of barnase easier, the barnase gene from Bacillus amyloliquefaciens BH072 was cloned into Lactococcus lactis under the control of the PP5 or PnisA promoters. Four recombinant expression vectors were constructed with one or two signal peptides to control the enzyme secretion. 310 mg/L barnase was obtained in the presence of its inhibitor barstar after 36 h induction. The properties of barnase were investigated, showing that the optimal reaction temperature and pH were 50 °C and 5.0, respectively, and the highest enzyme activity reached 16.5 kU/mL. Barnase stored at 40 °C for 72 h retained 90 % of its initial activity, and maintained more than 80 % of its initial activity after 72 h of storage at pH 5.0-9.0. Furthermore, the optimal conditions for enzymatic reduction of nucleic acids in single-cell proteins (SCP) forages was investigated. 1 % salt solution with an SCP-enzyme ratio of 1000:1, pH 5.0 and incubated at 50 °C for 1 h, allowed 82 % RNA content reduction. Finally, homology modeling of barnase demonstrates its three-dimensional structure, and substrate simulation docking predicts key active residues as well as bonding patterns.
Collapse
Affiliation(s)
- Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Sun J, Thakur AK, Movileanu L. Current noise of a protein-selective biological nanopore. Proteomics 2022; 22:e2100077. [PMID: 34275190 PMCID: PMC8763983 DOI: 10.1002/pmic.202100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
1/f current noise is ubiquitous in protein pores, porins, and channels. We have previously shown that a protein-selective biological nanopore with an external protein receptor can function as a 1/f noise generator when a high-affinity protein ligand is reversibly captured by the receptor. Here, we demonstrate that the binding affinity and concentration of the ligand are key determinants for the nature of current noise. For example, 1/f was absent when a protein ligand was reversibly captured at a much lower concentration than its equilibrium dissociation constant against the receptor. Furthermore, we also analyzed the composite current noise that resulted from mixtures of low-affinity and high-affinity ligands against the same receptor. This study highlights the significance of protein recognition events in the current noise fluctuations across biological membranes.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Avinash Kumar Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA,The BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA,The corresponding author’s contact information: Liviu Movileanu, PhD, Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA. Phone: 315-443-8078;
| |
Collapse
|
5
|
Shilova O, Kotelnikova P, Proshkina G, Shramova E, Deyev S. Barnase-Barstar Pair: Contemporary Application in Cancer Research and Nanotechnology. Molecules 2021; 26:molecules26226785. [PMID: 34833876 PMCID: PMC8625414 DOI: 10.3390/molecules26226785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Correspondence: (O.S.); (S.D.)
| | - Polina Kotelnikova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Galina Proshkina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Elena Shramova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Sergey Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
6
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
Sun J, Thakur AK, Movileanu L. Protein Ligand-Induced Amplification in the 1/ f Noise of a Protein-Selective Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15247-15257. [PMID: 33307706 PMCID: PMC7755739 DOI: 10.1021/acs.langmuir.0c02498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Previous studies of transmembrane protein channels have employed noise analysis to examine their statistical current fluctuations. In general, these explorations determined a substrate-induced amplification in the Gaussian white noise of these systems at a low-frequency regime. This outcome implies a lack of slowly appearing fluctuations in the number and local mobility of diffusing charges in the presence of channel substrates. Such parameters are among the key factors in generating a low-frequency 1/f noise. Here, we show that a protein-selective biological nanopore exhibits a substrate-induced amplification in the 1/f noise. The modular composition of this biological nanopore includes a hydrophilic transmembrane protein pore fused to a water-soluble binding protein on its extramembranous side. In addition, this protein nanopore shows an open substate populated by a high-frequency current noise because of the flickering of an engineered polypeptide adaptor at the tip of the pore. However, the physical association of the protein ligand with the binding domain reversibly switches the protein nanopore from a high-frequency noise substate into a quiet substate. In the absence of the protein ligand, our nanopore shows a low-frequency white noise. Remarkably, in the presence of the protein ligand, an amplified low-frequency 1/f noise was detected in a ligand concentration-dependent fashion. This finding suggests slowly occurring equilibrium fluctuations in the density and local mobility of charge carriers under these conditions. Furthermore, we report that the excess in 1/f noise is generated by reversible switches between the noisy ligand-released substate and the quiet ligand-captured substate. Finally, quantitative aspects of the low-frequency 1/f noise are in accord with theoretical predictions of the current noise analysis of protein channel-ligand interactions.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Avinash Kumar Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
- The corresponding author’s contact information: Liviu Movileanu, PhD, Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA. Phone: 315-443-8078; Fax: 315-443-9103;
| |
Collapse
|
9
|
Thakur AK, Movileanu L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat Biotechnol 2018; 37:nbt.4316. [PMID: 30531896 PMCID: PMC6557705 DOI: 10.1038/nbt.4316] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
Protein-protein interactions (PPIs) are essential for many cellular processes. However, transient PPIs are difficult to measure at high throughput or in complex biological fluids using existing methods. We engineered a genetically encoded sensor for real-time sampling of transient PPIs at single-molecule resolution. Our sensor comprises a truncated outer membrane protein pore, a flexible tether, a protein receptor and a peptide adaptor. When a protein ligand present in solution binds to the receptor, reversible capture and release events of the receptor can be measured as current transitions between two open substates of the pore. Notably, the binding and release of the receptor by a protein ligand can be unambiguously discriminated in a complex sample containing fetal bovine serum. Our selective nanopore sensor could be applied for single-molecule protein detection, could form the basis for a nanoproteomics platform or might be adapted to build tools for protein profiling and biomarker discovery.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University, Syracuse, New York, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
10
|
de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 2016; 9:1-11. [PMID: 27390530 PMCID: PMC4930227 DOI: 10.2147/aabc.s105289] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism-or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein-protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.
Collapse
Affiliation(s)
| | | | - Ralf Blossey
- University Lille, CNRS UMR8576 UGSF, Lille, France
| | | |
Collapse
|
11
|
Yamniuk AP, Newitt JA, Doyle ML, Arisaka F, Giannetti AM, Hensley P, Myszka DG, Schwarz FP, Thomson JA, Eisenstein E. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions. J Biomol Tech 2015; 26:125-41. [PMID: 26543437 DOI: 10.7171/jbt.15-2604-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - John A Newitt
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Michael L Doyle
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Fumio Arisaka
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Anthony M Giannetti
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Preston Hensley
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - David G Myszka
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Fred P Schwarz
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - James A Thomson
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Edward Eisenstein
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
12
|
Moritsugu K, Terada T, Kidera A. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling. PLoS Comput Biol 2014; 10:e1003901. [PMID: 25340714 PMCID: PMC4207830 DOI: 10.1371/journal.pcbi.1003901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. Dynamic nature of the protein-protein interactions is an important element of cellular processes such as metabolic reactions and signal transduction, but its atomistic details are still unclear. Computational survey using molecular dynamics simulation is a straightforward method to elucidate these atomistic protein-protein interaction processes. However, a sufficient configurational sampling of the large system containing the atomistic protein complex model and explicit solvent remains a great challenge due to the long timescale involved. Here, we demonstrate that the multiscale enhanced sampling (MSES) successfully captured the atomistic details of the association/dissociation processes of a barnase-barstar complex covering the sampled space from the native complex structure to fully non-native configurations. The landscape derived from the simulation indicates that the association process is funnel-like downhill, analogously to the funnel landscape of fast-folding proteins. The funnel was found to be originated from near-native orientations guided by the shape complementarity between barnase and barstar, accelerating the formation of native inter-molecular interactions to complete the final complex structure.
Collapse
Affiliation(s)
- Kei Moritsugu
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- * E-mail:
| | - Tohru Terada
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Akinori Kidera
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
13
|
Długosz M, Antosiewicz JM. Hydrodynamic effects on the relative rotational velocity of associating proteins. J Phys Chem B 2013; 117:6165-74. [PMID: 23631732 DOI: 10.1021/jp402534c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrodynamic steering effects on the barnase-barstar association were studied through the analysis of the relative rotational velocity of the proteins. We considered the two proteins approaching each other in response to their electrostatic attraction and employed a method that accounts for the long-range and many-body character of the hydrodynamic interactions, as well as the complicated shapes of the proteins. Hydrodynamic steering effects were clearly seen when attractive forces were applied to the geometric centers of the proteins (resulting in zero torques) and the attraction acted along the line that connects centers of geometry of proteins in their crystallographic complex. When we rotated barstar relative to barnase around this line by an angle in the range from -90° to 60°, the rotational velocity arising solely from hydrodynamic interactions restored the orientation of the proteins in the crystal structure. However, because, in reality, both electrostatic forces and torques act on the proteins and these forces and torques depend on the protein-protein distance and the relative orientation of the binding partners, we also investigated more realistic situations employing continuum electrostatics calculations based on atomistic protein models. Overall, we conclude that hydrodynamic interactions aid barnase and barstar in assuming a proper relative orientation upon complex formation.
Collapse
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, 02-89 Warsaw, Poland.
| | | |
Collapse
|
14
|
Sokalingam S, Madan B, Raghunathan G, Lee SG. In silico study on the effect of surface lysines and arginines on the electrostatic interactions and protein stability. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0516-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Długosz M, Antosiewicz JM. Anisotropic Diffusion Effects on the Barnase–Barstar Encounter Kinetics. J Chem Theory Comput 2013; 9:1667-77. [DOI: 10.1021/ct300937z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, Warsaw
02-089, Poland
| | - Jan M. Antosiewicz
- Department
of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
16
|
Khait R, Schreiber G. FRETex: a FRET-based, high-throughput technique to analyze protein-protein interactions. Protein Eng Des Sel 2012; 25:681-7. [DOI: 10.1093/protein/gzs067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Spång HCL, Braathen R, Bogen B. Heterodimeric barnase-barstar vaccine molecules: influence of one versus two targeting units specific for antigen presenting cells. PLoS One 2012; 7:e45393. [PMID: 23028981 PMCID: PMC3445521 DOI: 10.1371/journal.pone.0045393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
It is known that targeting of antigen to antigen presenting cells (APC) increases immune responses. However, it is unclear if more than one APC-specific targeting unit in the antigenic molecule will increase responses. To address this issue, we have here made heterodimeric vaccine molecules that each express four different fusion subunits. The bacterial ribonuclease barnase and its inhibitor barstar interact with high affinity, and the barnase-barstar complex was therefore used as a dimerization unit. Barnase and barstar were fused N-terminally with single chain fragment variable (scFv)s targeting units specific for either MHC class II molecules on APC or the hapten 5-iodo-4-hydroxy-3-nitrophenylacetyl (NIP). C-terminal antigenic fusions were either the fluorescent protein mCherry or scFv315 derived from myeloma protein M315. The heterodimeric vaccine molecules were formed both in vitro and in vivo. Moreover, the four different fused moieties appeared to fold correctly since they retained their specificity and function. DNA vaccination with MHC class II-targeted vaccine induced higher mCherry-specific IgG1 responses compared to non-targeted control. Since mCherry and MHC class II are in trans in this heterodimer, this suggests that heterodimeric proteins are formed in vivo without prior protein purification. Surprisingly, one targeting moiety was sufficient for the increased IgG1 response, and addition of a second targeting moiety did not increase responses. Similar results were found in in vitro T cell assays; vaccine molecules with one targeting unit were as potent as those with two. In combination with the easy cloning strategy, the heterodimeric barnase-barstar vaccine molecule could provide a flexible platform for development of novel DNA vaccines with increased potency.
Collapse
Affiliation(s)
- Heidi Cecilie Larsen Spång
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ranveig Braathen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail:
| | - Bjarne Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Pérez-Nueno VI, Ritchie DW. Identifying and characterizing promiscuous targets: implications for virtual screening. Expert Opin Drug Discov 2011; 7:1-17. [PMID: 22468890 DOI: 10.1517/17460441.2011.632406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, the question of how to best choose the initial query compounds and their conformations remains largely unsolved. This issue gains importance when dealing with promiscuous targets, that is, proteins that bind multiple ligand scaffold families in one or more binding site. Conventional shape matching VS approaches assume that there is only one binding mode for a given protein target. This may be true for some targets, but it is certainly not true in all cases. Several recent studies have shown that some protein targets bind to different ligands in different ways. AREAS COVERED The authors discuss the concept of promiscuity in the context of virtual drug screening, and present and analyze several examples of promiscuous targets. The article also reports on the impact of the query conformation on the performance of shape-based VS and the potential to improve VS performance by using consensus shape clustering techniques. EXPERT OPINION The notion of polypharmacology is becoming highly relevant in drug discovery. Understanding and exploiting promiscuity present challenges and opportunities for drug discovery endeavors. The examples of promiscuity presented here suggest that promiscuous targets and ligands are much more common than previously assumed, and this should be taken into account in practical VS protocols. Although some progress has been made, there is a need to develop more sophisticated computational techniques and protocols that can identify and characterize promiscuous targets on a genomic scale.
Collapse
|
19
|
Wang L, Stumm B, Helms V. Graph-theoretical identification of dissociation pathways on free energy landscapes of biomolecular interaction. J Comput Chem 2009; 31:847-54. [PMID: 19603501 DOI: 10.1002/jcc.21368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular association and dissociation reactions take place on complicated interaction free energy landscapes that are still very hard to characterize computationally. For large enough distances, though, it often suffices to consider the six relative translational and rotational degrees of freedom of the two particles treated as rigid bodies. Here, we computed the six-dimensional free energy surface of a dimer of water-soluble alpha-helices by scanning these six degrees of freedom in about one million grid points. In each point, the relative free energy difference was computed as the sum of the polar and nonpolar solvation free energies of the helix dimer and of the intermolecular coulombic interaction energy. The Dijkstra graph algorithm was then applied to search for the lowest cost dissociation pathways based on a weighted, directed graph, where the vertices represent the grid points, the edges connect the grid points and their neighbors, and the weights are the reaction costs between adjacent pairs of grid points. As an example, the configuration of the bound state was chosen as the source node, and the eight corners of the translational cube were chosen as the destination nodes. With the strong electrostatic interaction of the two helices giving rise to a clearly funnel-shaped energy landscape, the eight lowest-energy cost pathways coming from different orientations converge into a well-defined pathway for association. We believe that the methodology presented here will prove useful for identifying low-energy association and dissociation pathways in future studies of complicated free energy landscapes for biomolecular interaction.
Collapse
Affiliation(s)
- Ling Wang
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | | | | |
Collapse
|
20
|
Butler JS, Mitrea DM, Mitrousis G, Cingolani G, Loh SN. Structural and thermodynamic analysis of a conformationally strained circular permutant of barnase. Biochemistry 2009; 48:3497-507. [PMID: 19260676 DOI: 10.1021/bi900039e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circular permutation of a protein covalently links its original termini and creates new ends at another location. To maintain the stability of the permuted structure, the termini are typically bridged by a peptide long enough to span the original distance between them. Here, we take the opposite approach and employ a very short linker to introduce conformational strain into a protein by forcing its termini together. We join the N- and C-termini of the small ribonuclease barnase (normally 27.2 A distant) with a single Cys residue and introduce new termini at a surface loop, to create pBn. Compared to a similar variant permuted with an 18-residue linker, permutation with a single amino acid dramatically destabilizes barnase. Surprisingly, pBn is folded at 10 degrees C and possesses near wild-type ribonuclease activity. The 2.25 A X-ray crystal structure of pBn reveals how the barnase fold is able to adapt to permutation, partially defuse conformational strain, and preserve enzymatic function. We demonstrate that strain in pBn can be relieved by cleaving the linker with a chemical reagent. Catalytic activity of both uncleaved (strained) pBn and cleaved (relaxed) pBn is proportional to their thermodynamic stabilities, i.e., the fraction of folded molecules. The stability and activity of cleaved pBn are dependent on protein concentration. At concentrations above approximately 2 microM, cleaving pBn is predicted to increase the fraction of folded molecules and thus enhance ribonuclease activity at 37 degrees C. This study suggests that introducing conformational strain by permutation, and releasing strain by cleavage, is a potential mechanism for engineering an artificial zymogen.
Collapse
Affiliation(s)
- James S Butler
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Stabilization provided by neighboring strands is critical for the mechanical stability of proteins. Biophys J 2008; 95:3935-42. [PMID: 18599623 DOI: 10.1529/biophysj.108.134072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule force spectroscopy studies and steered molecular dynamics simulations have revealed that protein topology and pulling geometry play important roles in determining the mechanical stability of proteins. Most studies have focused on local interactions that are associated with the force-bearing beta-strands. Interactions mediated by neighboring strands are often overlooked. Here we use Top7 and barstar as model systems to illustrate the critical importance of the stabilization effect provided by neighboring beta-strands on the mechanical stability. Using single-molecule atomic force microscopy, we showed that Top7 and barstar, which have similar topology in their force-bearing region, exhibit vastly different mechanical-stability characteristics. Top7 is mechanically stable and unfolds at approximately 150 pN, whereas barstar is mechanically labile and unfolds largely below 50 pN. Steered molecular dynamics simulations revealed that stretching force peels one force-bearing strand away from barstar to trigger unfolding, whereas Top7 unfolds via a substructure-sliding mechanism. This previously overlooked stabilization effect from neighboring beta-strands is likely to be a general mechanism in protein mechanics and can serve as a guideline for the de novo design of proteins with significant mechanical stability and novel protein topology.
Collapse
|
23
|
Kövér KE, Bruix M, Santoro J, Batta G, Laurents DV, Rico M. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition. J Mol Biol 2008; 379:953-65. [PMID: 18495155 DOI: 10.1016/j.jmb.2008.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 02/05/2023]
Abstract
Human pancreatic ribonuclease (RNase 1) is expressed in many tissues; has several important enzymatic and biological activities, including efficient cleavage of single-stranded RNA, double-stranded RNA and double-stranded RNA-DNA hybrids, digestion of dietary RNA, regulation of vascular homeostasis, inactivation of the HIV, activation of immature dendritic cells and induction of cytokine production; and furthermore shows potential as an anti-tumor agent. The solution structure and dynamics of uncomplexed, wild-type RNase 1 have been determined by NMR spectroscopy methods to better understand these activities. The family of 20 structures determined on the basis of 6115 unambiguous nuclear Overhauser enhancements is well resolved (pairwise backbone RMSD=1.07 A) and has the classic RNase A type of tertiary structure. Important structural differences compared with previously determined crystal structures of RNase 1 variants or inhibitor-bound complexes are observed in the conformation of loop regions and side chains implicated in the enzymatic as well as biological activities and binding to the cytoplasmic RNase inhibitor. Multiple side chain conformations observed for key surface residues are proposed to be crucial for membrane binding as well as translocation and efficient RNA hydrolysis. (15)N-(1)H relaxation measurements interpreted with the standard and our extended Lipari-Szabo formalism reveal rigid regions and identify more dynamic loop regions. Some of the most dynamic areas are key for binding to the cytoplasmic RNase inhibitor. This finding and the important differences observed between the structure in solution and that bound to the inhibitor are indications that RNase 1 to inhibitor binding can be better described by the "induced fit" model rather than the rigid "lock-into-key" mechanism. Translational diffusion measurements reveal that RNase 1 is predominantly dimeric above 1 mM concentration; the possible implications of this dimeric state for the remarkable biological properties of RNase 1 are discussed.
Collapse
Affiliation(s)
- K E Kövér
- Department of Chemistry, University of Debrecen, 4010 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Urakubo Y, Ikura T, Ito N. Crystal structural analysis of protein-protein interactions drastically destabilized by a single mutation. Protein Sci 2008; 17:1055-65. [PMID: 18441234 DOI: 10.1110/ps.073322508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The complex of barnase (bn) and barstar (bs), which has been widely studied as a model for quantitative analysis of protein-protein interactions, is significantly destabilized by a single mutation, namely, bs Asp39 --> Ala, which corresponds to a change of 7.7 kcal x mol(-1) in the free energy of binding. However, there has been no structural information available to explain such a drastic destabilization. In the present study, we determined the structure of the mutant complex at 1.58 A resolution by X-ray crystallography. The complex was similar to the wild-type complex in terms of overall and interface structures; however, the hydrogen bond network mediated by water molecules at the interface was significantly different. Several water molecules filled the cavity created by the mutation and consequently caused rearrangement of the hydrated water molecules at the interface. The water molecules were redistributed into a channel-like structure that penetrated into the complex. Furthermore, molecular dynamics simulations showed that the mutation increased the mobility of water molecules at the interface. Since such a drastic change in hydration was not observed in other mutant complexes of bn and bs, the significant destabilization of the interaction may be due to this channel-like structure of hydrated water molecules.
Collapse
Affiliation(s)
- Yoshiaki Urakubo
- Laboratory of Structural Biology, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
25
|
Harel M, Cohen M, Schreiber G. On the dynamic nature of the transition state for protein-protein association as determined by double-mutant cycle analysis and simulation. J Mol Biol 2007; 371:180-96. [PMID: 17561113 DOI: 10.1016/j.jmb.2007.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/15/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
The process of protein-protein association starts with their random collision, which may develop into an encounter complex followed by a transition state and final complex formation. Here we aim to experimentally characterize the nature of the transition state of protein-protein association for three different protein-protein interactions; Barnase-Barstar, TEM1-BLIP and IFNalpha2-IFNAR2, and use the data to model the transition state structures. To model the transition state, we determined inter-protein distance-constraints of the activated complex by using double mutant cycles (DMC) assuming that interacting residues are spatially close. Significant DeltaDeltaG(double dagger)(int) values were obtained only between residues on Barnase and Barstar. However, introducing specific mutations that optimize the charge complementarity between BLIP and TEM1 resulted in the introduction of significant DeltaDeltaG(double dagger)(int) values also between residues of these two proteins. While electrostatic interactions make major contributions towards stabilizing the transition state, we show two examples where steric hindrance exerts an effect on the transition state as well. To model the transition-state structures from the experimental DeltaDeltaG(double dagger)(int) values, we introduced a method for structure perturbation, searching for those inter-protein orientations that best support the experimental DeltaDeltaG(double dagger)(int) values. Two types of transition states were found, specific as observed for Barnase-Barstar and the electrostatically optimized TEM1-BLIP mutants, and diffusive as shown for wild-type TEM1-BLIP and IFNalpha2-IFNAR2. The specific transition states are characterized by defined inter-protein orientations, which cannot be modeled for the diffusive transition states. Mutations introduced through rational design can change the transition state from diffusive to specific. Together, these data provide a structural view of the mechanism allowing rates of association to differ by five orders of magnitude between different protein complexes.
Collapse
Affiliation(s)
- Michal Harel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
26
|
Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC. The nuclease a-inhibitor complex is characterized by a novel metal ion bridge. J Biol Chem 2007; 282:5682-90. [PMID: 17138564 PMCID: PMC2072808 DOI: 10.1074/jbc.m605986200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonspecific, extracellular nucleases have received enhanced attention recently as a consequence of the critical role that these enzymes can play in infectivity by overcoming the host neutrophil defense system. The activity of the cyanobacterial nuclease NucA, a member of the betabetaalpha Me superfamily, is controlled by the specific nuclease inhibitor, NuiA. Here we report the 2.3-A resolution crystal structure of the NucA-NuiA complex, showing that NucA inhibition by NuiA involves an unusual divalent metal ion bridge that connects the nuclease with its inhibitor. The C-terminal Thr-135(NuiA) hydroxyl oxygen is directly coordinated with the catalytic Mg(2+) of the nuclease active site, and Glu-24(NuiA) also extends into the active site, mimicking the charge of a scissile phosphate. NuiA residues Asp-75 and Trp-76 form a second interaction site, contributing to the strength and specificity of the interaction. The crystallographically defined interface is shown to be consistent with results of studies using site-directed NuiA mutants. This mode of inhibition differs dramatically from the exosite mechanism of inhibition seen with the DNase colicins E7/E9 and from other nuclease-inhibitor complexes that have been studied. The structure of this complex provides valuable insights for the development of inhibitors for related nonspecific nucleases that share the DRGH active site motif such as the Streptococcus pneumoniae nuclease EndA, which mediates infectivity of this pathogen, and mitochondrial EndoG, which is involved in recombination and apoptosis.
Collapse
Affiliation(s)
- Mahua Ghosh
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gregor Meiss
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alfred Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning Mutagenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/1-4020-5372-x_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
|
29
|
Gabel F, Simon B, Sattler M. A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:313-27. [PMID: 16416140 DOI: 10.1007/s00249-005-0037-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/25/2005] [Accepted: 12/05/2005] [Indexed: 11/28/2022]
Abstract
We present a novel target function based on atomic coordinates that permits quaternary structural refinement of multi-domain protein-protein or protein-RNA complexes. It requires that the high-resolution structures of the individual domains are known and that small angle scattering (SAS) data as well as NMR orientational restraints from residual dipolar couplings (RDCs) of the complex are available. We show that, when used in combination, the translational and rotational restraints contained in SAS intensities and RDCs, respectively, define a target potential function that permits to determine the overall topology of complexes made up of domains with low internal symmetry. We apply the target function on a modestly anisotropic model system, the Barnase/Barstar complex, and discuss factors that influence the structural refinement such as data errors and the geometrical properties of the individual domains.
Collapse
Affiliation(s)
- Frank Gabel
- Structural and Computational Biology Group, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
|
31
|
Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Plückthun A. Design of multivalent complexes using the barnase*barstar module. Nat Biotechnol 2003; 21:1486-92. [PMID: 14634668 DOI: 10.1038/nbt916] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 09/25/2003] [Indexed: 01/01/2023]
Abstract
The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.
Collapse
Affiliation(s)
- Sergey M Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry and Institute of Gene Biology, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, 117997 Moscow, Russia.
| | | | | | | | | |
Collapse
|
32
|
Mitkevich VA, Schulga AA, Ermolyuk YS, Lobachov VM, Chekhov VO, Yakovlev GI, Hartley RW, Nick Pace C, Kirpichnikov MP, Makarov AA. Thermodynamics of denaturation of complexes of barnase and binase with barstar. Biophys Chem 2003; 105:383-90. [PMID: 14499906 DOI: 10.1016/s0301-4622(03)00103-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Differential scanning calorimetry was used to study the thermodynamics of denaturation of protein complexes for which the free energy stabilizing the complexes varied between -8 and -16 kcal/mol. The proteins studied were the ribonucleases barnase and binase, their inhibitor barstar and mutants thereof, and complexes between the two. The results are in good agreement with the model developed by Brandts and Lin for studying the thermodynamics of denaturation for tight complexes between two proteins which undergo two-state thermal unfolding transitions.
Collapse
Affiliation(s)
- Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yokota A, Tsumoto K, Shiroishi M, Kondo H, Kumagai I. The role of hydrogen bonding via interfacial water molecules in antigen-antibody complexation. The HyHEL-10-HEL interaction. J Biol Chem 2003; 278:5410-8. [PMID: 12444085 DOI: 10.1074/jbc.m210182200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the role of hydrogen bonding via interfacial water molecules in protein-protein interactions, we examined the interaction between hen egg white lysozyme (HEL) and its HyHEL-10 variable domain fragment (Fv) antibody. We constructed three antibody mutants (l-Y50F, l-S91A, and l-S93A) and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the mutations significantly decreased the negative enthalpy change (8-25 kJ mol(-1)), despite some offset by a favorable entropy change. X-ray crystallography demonstrated that the complexes had nearly identical structures, including the positions of the interfacial water molecules. Taken together, the isothermal titration calorimetric and x-ray crystallographic results indicate that hydrogen bonding via interfacial water enthalpically contributes to the Fv-HEL interaction despite the partial offset because of entropy loss, suggesting that hydrogen bonding stiffens the antigen-antibody complex.
Collapse
Affiliation(s)
- Akiko Yokota
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|
34
|
Eriksson MAL, Roux B. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophys J 2002; 83:2595-609. [PMID: 12414693 PMCID: PMC1302345 DOI: 10.1016/s0006-3495(02)75270-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Computational methods are used to determine the three-dimensional structure of the Agitoxin (AgTx2)-Shaker complex. In a first stage, a large number of models of the complex are generated using high temperature molecular dynamics, accounting for side chain flexibility with distance restraints deduced from thermodynamic analysis of double mutant cycles. Four plausible binding mode candidates are found using this procedure. In a second stage, the quality and validity of the resulting complexes is assessed by examining the stability of the binding modes during molecular dynamics simulations with explicit water molecules and by calculating the binding free energies of mutant proteins using a continuum solvent representation and comparing with experimental data. The docking protocol and the continuum solvent model are validated using the Barstar-Barnase and the lysozyme-antibody D1.2 complexes, for which there are high-resolution structures as well as double mutant data. This combination of computational methods permits the identification of two possible structural models of AgTx2 in complex with the Shaker K+ channel, additional structural analysis providing further evidence in favor of a single model. In this final complex, the toxin is bound to the extracellular entrance of the channel along the pore axis via a combination of hydrophobic, hydrogen bonding, and electrostatic interactions. The magnitude of the buried solvent accessible area corresponding to the protein-protein contact is on the order of 1000 A with roughly similar contributions from each of the four subunits. Some side chains of the toxin adopt different conformation than in the experimental solution structure, indicating the importance of an induced-fit upon the formation of the complex. In particular, the side chain of Lys-27, a residue highly conserved among scorpion toxins, points deep into the pore with its positively charge amino group positioned at the outer binding site for K+. Specific site-directed mutagenesis experiments are suggested to verify and confirm the structure of the toxin-channel complex.
Collapse
Affiliation(s)
- Mats A L Eriksson
- Weill Medical College of Cornell University, Department of Biochemistry, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
35
|
Kolade OO, Carr SB, Kühlmann UC, Pommer A, Kleanthous C, Bouchcinsky CA, Hemmings AM. Structural aspects of the inhibition of DNase and rRNase colicins by their immunity proteins. Biochimie 2002; 84:439-46. [PMID: 12423787 DOI: 10.1016/s0300-9084(02)01451-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nuclease E colicins that exert their cytotoxic activity through either non-specific DNase or specific rRNase action are inhibited by immunity proteins in a high affinity interaction that gives complete protection to the producing host cell from the deleterious effects of the toxin. Previous X-ray crystallographic analysis of these systems has revealed that in both cases, the immunity protein inhibitor forms its highly stable complex with the enzyme by binding as an exosite inhibitor-adjacent to, but not obscuring, the enzyme active site. The structures of the free E9 DNase domain and its complex with an ssDNA substrate now show that inhibition is achieved without deformation of the enzyme and by occlusion of a limited number of residues of the enzyme critical in recognition and binding of the substrate that are 3' to the cleaved scissile phosphodiester. No sequence or structural similarity is evident between the two classes of cytotoxic domain, and the heterodimer interfaces are also dissimilar. Thus, whilst these structures suggest the basis for specificity in each case, they give few indications as to the basis for the remarkably strong binding that is observed. Structural analyses of complexes bearing single site mutations in the immunity protein at the heterodimer interface reveal further differences. For the DNases, a largely plastic interface is suggested, where optimal binding may be achieved in part by rigid body adjustment in the relative positions of inhibitor and enzyme. For the rRNases, a large solvent-filled cavity is found at the immunity-enzyme interface, suggesting that other considerations, such as that arising from the entropy contribution from bound water molecules, may have greater significance in the determination of rRNase complex affinity than for the DNases.
Collapse
Affiliation(s)
- Olatomirin O Kolade
- Schools of Biological and Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Bae JH, Alefelder S, Kaiser JT, Friedrich R, Moroder L, Huber R, Budisa N. Incorporation of beta-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography. J Mol Biol 2001; 309:925-36. [PMID: 11399069 DOI: 10.1006/jmbi.2001.4699] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Selenolo[3,2-b]pyrrolyl-L-alanine that mimics tryptophan with the benzene ring of the indole moiety replaced by selenophene, was incorporated into human annexin V and barstar. This was achieved by fermentation and expression in a Trp-auxotrophic Escherichia coli host strain using the selective pressure incorporation method. The seleno- proteins were obtained in yields comparable to those of the wild-type proteins and exhibit full crystallographic isomorphism to the parent proteins, but expectedly show altered absorbance profiles and quenched tryptophan fluorescence. Since the occurrence of tryptophan residues in proteins is rare, incorporation of the electron-rich selenium-containing tryptophan surrogate into proteins represents a useful supplementation and even a promising novel alternative to selenomethionine for solving the phase problem in protein X-ray crystallography.
Collapse
Affiliation(s)
- J H Bae
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee LP, Tidor B. Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex. Protein Sci 2001; 10:362-77. [PMID: 11266622 PMCID: PMC2373948 DOI: 10.1110/ps.40001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (K(d) approximately 10(-14) M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins.
Collapse
Affiliation(s)
- L P Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
38
|
Elcock AH, Sept D, McCammon JA. Computer Simulation of Protein−Protein Interactions. J Phys Chem B 2001. [DOI: 10.1021/jp003602d] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242-1109, Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| | - David Sept
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242-1109, Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| | - J. Andrew McCammon
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242-1109, Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| |
Collapse
|
39
|
Burritt JB, DeLeo FR, McDonald CL, Prigge JR, Dinauer MC, Nakamura M, Nauseef WM, Jesaitis AJ. Phage display epitope mapping of human neutrophil flavocytochrome b558. Identification of two juxtaposed extracellular domains. J Biol Chem 2001; 276:2053-61. [PMID: 11027685 DOI: 10.1074/jbc.m006236200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite extensive experimental and clinical evidence demonstrating the critical role of flavocytochrome b558 (Cyt b) in the NADPH-dependent oxidase, there is a paucity of direct structural data defining its topology in the phagocyte membrane. Unlike other Cyt b-specific monoclonal antibodies, 7D5 binds exclusively to an extracellular domain, and identification of its epitope should provide novel insight into the membrane topology of Cyt b. To that end, we examined biochemical features of 7D5-Cyt b binding and used the J404 phage display nonapeptide library to identify the bound epitope. 7D5 precipitated only heterodimeric gp91-p22phox and not individual or denatured Cyt b subunits from detergent extracts of human neutrophils and promyelocytic leukemia cells (gp91-PLB). Moreover, 7D5 precipitated precursor gp65-p22phox complexes from detergent extracts of the biosynthetically active gp91-PLB cells, demonstrating that complex carbohydrates were not required for epitope recognition. Epitope mimetics selected from the J404 phage display library by 7D5 demonstrated that (226)RIVRG(230) and (160)IKNP(163) regions of gp91phox were both bound by 7D5. These studies reveal specific information about Cyt b membrane topology and structure, namely that gp91phox residues (226)RIVRG(230) and (160)IKNP(163) are closely juxtaposed on extracytoplasmic domains and that predicted helices containing residues Gly(165)-Ile(190) and Ser(200)-Glu(225) are adjacent to each other in the membrane.
Collapse
Affiliation(s)
- J B Burritt
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.
Collapse
Affiliation(s)
- S C Sahu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | |
Collapse
|
41
|
Kühlmann UC, Pommer AJ, Moore GR, James R, Kleanthous C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J Mol Biol 2000; 301:1163-78. [PMID: 10966813 DOI: 10.1006/jmbi.2000.3945] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria producing endonuclease colicins are protected against their cytotoxic activity by virtue of a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. DNase binding by the immunity protein occurs through a "dual recognition" mechanism in which conserved residues from helix III act as the binding-site anchor, while variable residues from helix II define specificity. We now report the 1.7 A crystal structure of the 24.5 kDa complex formed between the endonuclease domain of colicin E9 and its cognate immunity protein Im9, which provides a molecular rationale for this mechanism. Conserved residues of Im9 form a binding-energy hotspot through a combination of backbone hydrogen bonds to the endonuclease, many via buried solvent molecules, and hydrophobic interactions at the core of the interface, while the specificity-determining residues interact with corresponding specificity side-chains on the enzyme. Comparison between the present structure and that reported recently for the colicin E7 endonuclease domain in complex with Im7 highlights how specificity is achieved by very different interactions in the two complexes, predominantly hydrophobic in nature in the E9-Im9 complex but charged in the E7-Im7 complex. A key feature of both complexes is the contact between a conserved tyrosine residue from the immunity proteins (Im9 Tyr54) with a specificity residue on the endonuclease directing it toward the specificity sites of the immunity protein. Remarkably, this tyrosine residue and its neighbour (Im9 Tyr55) are the pivots of a 19 degrees rigid-body rotation that relates the positions of Im7 and Im9 in the two complexes. This rotation does not affect conserved immunity protein interactions with the endonuclease but results in different regions of the specificity helix being presented to the enzyme.
Collapse
Affiliation(s)
- U C Kühlmann
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Takahashi KI, Noguti T, Hojo H, Yamauchi K, Kinoshita M, Aimoto S, Ohkubo T, Gō M. A mini-protein designed by removing a module from barnase: molecular modeling and NMR measurements of the conformation. PROTEIN ENGINEERING 1999; 12:673-80. [PMID: 10469828 DOI: 10.1093/protein/12.8.673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A globular domain can be decomposed into compact modules consisting of contiguous 10-30 amino acid residues. The correlation between modules and exons observed in different proteins suggests that each module was encoded by an ancestral exon and that modules were combined into globular domains by exon fusion. Barnase is a single domain RNase consisting of 110 amino acid residues and was decomposed into six modules. We designed a mini-protein by removing the second module, M2, from barnase in order to gain an insight into the structural and functional roles of the module. In the molecular modeling of the mini-protein, we evaluated thermodynamic stability and aqueous solubility together with mechanical stability of the model. We chemically synthesized a mini-barnase with (15)N-labeling at 10 residues, whose corresponding residues in barnase are all found in the region around the hydrophobic core. Circular dichroism and NMR measurements revealed that mini-barnase takes a non-random specific conformation that has a similar hydrophobic core structure to that of barnase. This result, that a module could be deleted without altering the structure of core region of barnase, supports the view that modules act as the building blocks of protein design.
Collapse
Affiliation(s)
- K i Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Martin C, Hartley R, Mauguen Y. X-ray structural analysis of compensating mutations at the barnase-barstar interface. FEBS Lett 1999; 452:128-32. [PMID: 10386576 DOI: 10.1016/s0014-5793(99)00621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of the barstar mutants (Y29P) and (Y29D, Y30W) as well as that of the complexes of barstar(Y29P) with wild-type barnase and barnase(H102K) have been determined. These barstar mutants compensate for the dramatic loss of barnase-barstar interaction energy caused by a single mutation of the barnase active site His-102 to a lysine. The latter introduces an uncompensated charge in the pocket at the surface of barstar where Lys-102 is located. The analysis of the structures suggests a mechanism for this compensation based on the solvation of the charge of Lys-102. Additional compensation occurs through the formation of a hydrogen bond.
Collapse
Affiliation(s)
- C Martin
- Laboratoire de Physique, Centre d'Etudes Pharmaceutiques, Châtenay-Malabry, France
| | | | | |
Collapse
|
45
|
Killick TR, Freund SM, Fersht AR. Real-time NMR studies on a transient folding intermediate of barstar. Protein Sci 1999; 8:1286-91. [PMID: 10386878 PMCID: PMC2144352 DOI: 10.1110/ps.8.6.1286] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The refolding of barstar, the intracellular inhibitor of barnase, is dominated by the slow formation of a cis peptidyl prolyl bond in the native protein. The triple mutant C40/82A P27A in which two cysteine residues and one trans proline were replaced by alanine was used as model system to investigate the kinetics and structural consequences of the trans/cis interconversion of Pro48. One- and two-dimensional real-time NMR spectroscopy was used to follow the trans/cis interconversion after folding was initiated by rapid dilution of the urea denatured protein. Series of 1H, 15N HSQC spectra acquired with and without the addition of peptidyl prolyl isomerase unambiguously revealed the accumulation of a transient trans-Pro48 intermediate within the dead time of the experiment. Subtle chemical shift differences between the native state and the intermediate spectra indicate that the intermediate is predominantly native-like with a local rearrangement in the Pro48 loop and in the beta-sheet region including residues Tyr47, Ala82, Thr85, and Val50.
Collapse
Affiliation(s)
- T R Killick
- Cambridge Centre for Protein Engineering, Department of Chemistry, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
46
|
Vaughan CK, Buckle AM, Fersht AR. Structural response to mutation at a protein-protein interface. J Mol Biol 1999; 286:1487-506. [PMID: 10064711 DOI: 10.1006/jmbi.1998.2559] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have crystallised three mutants of the barnase-barstar complex in which interactions across the interface have been deleted by simultaneous mutation of both residues involved in the interaction. Each mutant deletes a different type of interaction at the interface: the first complex bnHis102-->Ala-bsTyr29-->Phe (bn, barnase; bs, barstar), deletes a van der Waals packing interaction; the second complex, bnLys27-->Ala-bsThr42-->Ala, deletes a hydrogen bond; the third, bnLys27-->Ala-bsAsp35-->Ala, deletes a long-range charge-charge interaction. The contribution of each of these side-chains to the stability of the complex is known; the coupling energy between the deleted side-chains is also known. Despite each of the double mutants being significantly destabilised compared with the wild-type, the effects of mutation are local. Only small movements in the main-chain surrounding the sites of mutation and some larger movements of neighbouring side-chains are observed in the mutant complexes. The exact response to mutation is context-dependent and for the same mutant can vary depending upon the environment within the crystal. In some double mutant complexes, interfacial pockets, which are accessible to bulk solvent are formed, whereas interfacial cavities which are isolated from bulk solvent, are formed in others. In all double mutants, water molecules fill the created pockets and cavities. These water molecules mimic the deleted side-chains by occupying positions close to the non-carbon atoms of truncated side-chains and re-making many hydrogen bonds made by the truncated side-chains in the wild-type. It remains extremely difficult, however, to correlate energetic and structural responses to mutation because of unknown changes in entropy and entropy-enthalpy compensation.
Collapse
Affiliation(s)
- C K Vaughan
- MRC Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
47
|
Protasevich II, Schulga AA, Vasilieva LI, Polyakov KM, Lobachov VM, Hartley RW, Kirpichnikov MP, Makarov AA. Key role of barstar Cys-40 residue in the mechanism of heat denaturation of bacterial ribonuclease complexes with barstar. FEBS Lett 1999; 445:384-8. [PMID: 10094494 DOI: 10.1016/s0014-5793(99)00158-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanism by which barnase and binase are stabilized in their complexes with barstar and the role of the Cys-40 residue of barstar in that stabilization have been investigated by scanning microcalorimetry. Melting of ribonuclease complexes with barstar and its Cys-82-Ala mutant is described by two 2-state transitions. The lower-temperature one corresponds to barstar denaturation and the higher-temperature transition to ribonuclease melting. The barstar mutation Cys-40-Ala, which is within the principal barnase-binding region of barstar, simplifies the melting to a single 2-state transition. The presence of residue Cys-40 in barstar results in additional stabilization of ribonuclease in the complex.
Collapse
Affiliation(s)
- I I Protasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins.
Collapse
Affiliation(s)
- L Lo Conte
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB1 1JX, England
| | | | | |
Collapse
|
49
|
Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 1999; 7:91-102. [PMID: 10368275 DOI: 10.1016/s0969-2126(99)80012-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition. RESULTS The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 A resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel alpha/beta fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (alpha1(*)-loop12-alpha2(*); where * represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23-alpha3(*)-loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7. CONCLUSIONS The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.
Collapse
Affiliation(s)
- T P Ko
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | | | | | | | | |
Collapse
|
50
|
Chothia C, Gelfand I, Kister A. Structural determinants in the sequences of immunoglobulin variable domain. J Mol Biol 1998; 278:457-79. [PMID: 9571064 DOI: 10.1006/jmbi.1998.1653] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the general relation between the sequence and structure of variable domains of immunoglobulins we have carried out an analysis of their atomic structures, some 5300 different expressed sequences and the human germline gene segments. Variable domains are formed by two beta-sheets, packed face to face, and the inter-strand turns. Comparison of the different known structures shows that they have a core of 76 residues which has the same main-chain conformation in all structures. This common core contains almost all of the beta-sheet structure and three inter-strand turns. The regions that differ in conformation are the three hypervariable regions, three other inter-strand turns and a few adjacent residues. The 5300 expressed sequences currently known for variable domains were examined to determine the residues that occur at the 76 sites. Ignoring site conservations that occur for functional reasons, there are eight sites that have the same residue in almost all sequences; 12 that have one of a small group of very similar residues, and 52 where the chemical character of the residues is strongly conserved but not their volume. The role of residues at each site in the core was determined from the examination of their accessible surface areas, contacts, packing and buried side-chain hydrogen bonds. The most strongly conserved sites form the "deep" structure of the domain at the centre of the interface between the beta-sheets. It includes eight invariant sites and 11 sites that have one of a set of very similar residues. Around the deep structure there are buried hydrophobic residues that, in different variable domains, can differ greatly in volume. These differences in volume are accommodated by conformational changes in turn regions that are outside the common core. On the surface nearly all residues not involved in function or turn conformations strongly conserve hydrophilic or neutral residues. The implications of these results for the general relations between the sequence and structure of proteins are discussed.
Collapse
Affiliation(s)
- C Chothia
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | | | |
Collapse
|