1
|
Eraña H, Sampedro-Torres-Quevedo C, Charco JM, Díaz-Domínguez CM, Peccati F, San-Juan-Ansoleaga M, Vidal E, Gonçalves-Anjo N, Pérez-Castro MA, González-Miranda E, Piñeiro P, Fernández-Veiga L, Galarza-Ahumada J, Fernández-Muñoz E, Perez de Nanclares G, Telling G, Geijo M, Jiménez-Osés G, Castilla J. A Protein Misfolding Shaking Amplification-based method for the spontaneous generation of hundreds of bona fide prions. Nat Commun 2024; 15:2112. [PMID: 38459071 PMCID: PMC10923866 DOI: 10.1038/s41467-024-46360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | | | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Enric Vidal
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Eraña H, Díaz-Domínguez CM, Charco JM, Vidal E, González-Miranda E, Pérez-Castro MA, Piñeiro P, López-Moreno R, Sampedro-Torres-Quevedo C, Fernández-Veiga L, Tasis-Galarza J, Lorenzo NL, Santini-Santiago A, Lázaro M, García-Martínez S, Gonçalves-Anjo N, San-Juan-Ansoleaga M, Galarza-Ahumada J, Fernández-Muñoz E, Giler S, Valle M, Telling GC, Geijó M, Requena JR, Castilla J. Understanding the key features of the spontaneous formation of bona fide prions through a novel methodology that enables their swift and consistent generation. Acta Neuropathol Commun 2023; 11:145. [PMID: 37679832 PMCID: PMC10486007 DOI: 10.1186/s40478-023-01640-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Rafael López-Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Cristina Sampedro-Torres-Quevedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Juan Tasis-Galarza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Aileen Santini-Santiago
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Melisa Lázaro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Sandra García-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Mikel Valle
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Glenn C Telling
- Prion Research Center (PRC), Colorado State University, Fort Collins, CO, 80523, USA
| | - Mariví Geijó
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Jesús R Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
3
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
4
|
The Possible Mechanism of Amyloid Transformation Based on the Geometrical Parameters of Early-Stage Intermediate in Silico Model for Protein Folding. Int J Mol Sci 2022; 23:ijms23169502. [PMID: 36012765 PMCID: PMC9409474 DOI: 10.3390/ijms23169502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The specificity of the available experimentally determined structures of amyloid forms is expressed primarily by the two- and not three-dimensional forms of a single polypeptide chain. Such a flat structure is possible due to the β structure, which occurs predominantly. The stabilization of the fibril in this structure is achieved due to the presence of the numerous hydrogen bonds between the adjacent chains. Together with the different forms of twists created by the single R- or L-handed α-helices, they form the hydrogen bond network. The specificity of the arrangement of these hydrogen bonds lies in their joint orientation in a system perpendicular to the plane formed by the chain and parallel to the fibril axis. The present work proposes the possible mechanism for obtaining such a structure based on the geometric characterization of the polypeptide chain constituting the basis of our early intermediate model for protein folding introduced formerly. This model, being the conformational subspace of Ramachandran plot (the ellipse path), was developed on the basis of the backbone conformation, with the side-chain interactions excluded. Our proposal is also based on the results from molecular dynamics available in the literature leading to the unfolding of α-helical sections, resulting in the β-structural forms. Both techniques used provide a similar suggestion in a search for a mechanism of conformational changes leading to a formation of the amyloid form. The potential mechanism of amyloid transformation is presented here using the fragment of the transthyretin as well as amyloid Aβ.
Collapse
|
5
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
6
|
Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, Michaels TCT, Heinzer D, Avar M, Cohen SIA, Hornemann S, Aguzzi A, Dobson CM, Sigurdson CJ, Knowles TPJ. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol 2021; 28:365-372. [PMID: 33767451 PMCID: PMC8922999 DOI: 10.1038/s41594-021-00565-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Prions consist of pathological aggregates of cellular prion protein and have the ability to replicate, causing neurodegenerative diseases, a phenomenon mirrored in many other diseases connected to protein aggregation, including Alzheimer's and Parkinson's diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic measurements of aggregate size to dissect the overall aggregation reaction into its constituent processes and quantify the reaction rates in mice. Taken together, the data show that multiplication of prions in vivo is slower than in in vitro experiments, but efficient when compared with other amyloid systems, and displays scaling behavior characteristic of aggregate fragmentation. These results provide a framework for the determination of the mechanisms of disease-associated aggregation processes within living organisms.
Collapse
Affiliation(s)
- Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy Kurt
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Itzel Condado-Morales
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Cyrus Bett
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Samuel I A Cohen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Wren Therapeutics, Cambridge, UK
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt-Jakob disease. Sci Rep 2021; 11:5165. [PMID: 33727594 PMCID: PMC7943797 DOI: 10.1038/s41598-021-84689-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Creutzfeldt-Jakob Disease (CJD) is a fatal, currently incurable, neurodegenerative disease. The search for candidate treatments would be greatly facilitated by the availability of human cell-based models of prion disease. Recently, an induced pluripotent stem cell derived human cerebral organoid model was shown to take up and propagate human CJD prions. This model offers new opportunities to screen drug candidates for the treatment of human prion diseases in an entirely human genetic background. Here we provide the first evidence that human cerebral organoids can be a viable model for CJD drug screening by using an established anti-prion compound, pentosan polysulfate (PPS). PPS delayed prion propagation in a prophylactic-like treatment paradigm and also alleviated propagation when applied following establishment of infection in a therapeutic-like treatment paradigm. This study demonstrates the utility of cerebral organoids as the first human 3D cell culture system for screening therapeutic drug candidates for human prion diseases.
Collapse
|
8
|
Defining the Protein Seeds of Neurodegeneration using Real-Time Quaking-Induced Conversion Assays. Biomolecules 2020; 10:biom10091233. [PMID: 32854212 PMCID: PMC7564261 DOI: 10.3390/biom10091233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of disease-related misfolded proteins. It is now widely understood that the characteristic self-amplifying (i.e., seeding) capacity once only attributed to the prions of transmissible spongiform encephalopathy diseases is a feature of other misfolded proteins of neurodegenerative diseases, including tau, Aβ, and αSynuclein (αSyn). Ultrasensitive diagnostic assays, known as real-time quaking-induced conversion (RT-QuIC) assays, exploit these seeding capabilities in order to exponentially amplify protein seeds from various biospecimens. To date, RT-QuIC assays have been developed for the detection of protein seeds related to known prion diseases of mammals, the αSyn aggregates of Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, and the tau aggregates of Alzheimer’s disease, chronic traumatic encephalopathy, and other tauopathies including progressive supranuclear palsy. Application of these assays to premortem human biospecimens shows promise for diagnosis of neurodegenerative disease and is an area of active investigation. RT-QuIC assays are also powerful experimental tools that can be used to dissect seeding networks within and between tissues and to evaluate how protein seed distribution and quantity correlate to disease-related outcomes in a host. As well, RT-QuIC application may help characterize molecular pathways influencing protein seed accumulation, transmission, and clearance. In this review we discuss the application of RT-QuIC assays as diagnostic, experimental, and structural tools for detection and discrimination of PrP prions, tau, and αSyn protein seeds.
Collapse
|
9
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
10
|
Caughey B, Kraus A. Transmissibility versus Pathogenicity of Self-Propagating Protein Aggregates. Viruses 2019; 11:E1044. [PMID: 31717531 PMCID: PMC6893620 DOI: 10.3390/v11111044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The prion-like spreading and accumulation of specific protein aggregates appear to be central to the pathogenesis of many human diseases, including Alzheimer's and Parkinson's. Accumulating evidence indicates that inoculation of tissue extracts from diseased individuals into suitable experimental animals can in many cases induce the aggregation of the disease-associated protein, as well as related pathological lesions. These findings, together with the history of the prion field, have raised the questions about whether such disease-associated protein aggregates are transmissible between humans by casual or iatrogenic routes, and, if so, do they propagate enough in the new host to cause disease? These practical considerations are important because real, and perhaps even only imagined, risks of human-to-human transmission of diseases such as Alzheimer's and Parkinson's may force costly changes in clinical practice that, in turn, are likely to have unintended consequences. The prion field has taught us that a single protein, PrP, can aggregate into forms that can propagate exponentially in vitro, but range from being innocuous to deadly when injected into experimental animals in ways that depend strongly on factors such as conformational subtleties, routes of inoculation, and host responses. In assessing the hazards posed by various disease-associated, self-propagating protein aggregates, it is imperative to consider both their actual transmissibilities and the pathological consequences of their propagation, if any, in recipient hosts.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
12
|
Nan H, Chen H, Tuite MF, Xu X. A viral expression factor behaves as a prion. Nat Commun 2019; 10:359. [PMID: 30664652 PMCID: PMC6341119 DOI: 10.1038/s41467-018-08180-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Prions are proteins that can fold into multiple conformations some of which are self-propagating. Such prion-forming proteins have been found in animal, plant, fungal and bacterial species, but have not yet been identified in viruses. Here we report that LEF-10, a baculovirus-encoded protein, behaves as a prion. Full-length LEF-10 or its candidate prion-forming domain (cPrD) can functionally replace the PrD of Sup35, a widely studied prion-forming protein from yeast, displaying a [PSI+]-like phenotype. Furthermore, we observe that high multiplicity of infection can induce the conversion of LEF-10 into an aggregated state in virus-infected cells, resulting in the inhibition of viral late gene expression. Our findings extend the knowledge of current prion proteins from cellular organisms to non-cellular life forms and provide evidence to support the hypothesis that prion-forming proteins are a widespread phenomenon in nature.
Collapse
Affiliation(s)
- Hao Nan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Hongying Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Abstract
Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the adaptive immune response. Although more research into mechanisms and safety is required, these immunotherapies offer novel therapeutic targets for prion diseases.
Collapse
Affiliation(s)
- Jennifer T Burchell
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| |
Collapse
|
14
|
Shim SY, Karri S, Law S, Schatzl HM, Gilch S. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci Rep 2016; 6:21658. [PMID: 26865414 PMCID: PMC4749993 DOI: 10.1038/srep21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrPSc accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases.
Collapse
Affiliation(s)
- Su Yeon Shim
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Srinivasarao Karri
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sampson Law
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M Schatzl
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Skinner PJ, Kim HO, Bryant D, Kinzel NJ, Reilly C, Priola SA, Ward AE, Goodman PA, Olson K, Seelig DM. Treatment of Prion Disease with Heterologous Prion Proteins. PLoS One 2015; 10:e0131993. [PMID: 26134409 PMCID: PMC4489745 DOI: 10.1371/journal.pone.0131993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/10/2015] [Indexed: 01/03/2023] Open
Abstract
Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans.
Collapse
Affiliation(s)
- Pamela J. Skinner
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
- * E-mail:
| | - Hyeon O. Kim
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Damani Bryant
- University of Minnesota, Veterinary Clinical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Nikilyn J. Kinzel
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Cavan Reilly
- University of Minnesota, School of Public Health, Division of Biostatistics, Minneapolis, MN, 55455, United States of America
| | - Suzette A. Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, United States of America
| | - Anne E. Ward
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, United States of America
| | - Patricia A. Goodman
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Katherine Olson
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Davis M. Seelig
- University of Minnesota, Veterinary Clinical Sciences Department, Saint Paul, MN 55108, United States of America
| |
Collapse
|
16
|
Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio 2015; 6:mBio.02451-14. [PMID: 25604790 PMCID: PMC4313917 DOI: 10.1128/mbio.02451-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fast, definitive diagnosis of Creutzfeldt-Jakob disease (CJD) is important in assessing patient care options and transmission risks. Real-time quaking-induced conversion (RT-QuIC) assays of cerebrospinal fluid (CSF) and nasal-brushing specimens are valuable in distinguishing CJD from non-CJD conditions but have required 2.5 to 5 days. Here, an improved RT-QuIC assay is described which identified positive CSF samples within 4 to 14 h with better analytical sensitivity. Moreover, analysis of 11 CJD patients demonstrated that while 7 were RT-QuIC positive using the previous conditions, 10 were positive using the new assay. In these and further analyses, a total of 46 of 48 CSF samples from sporadic CJD patients were positive, while all 39 non-CJD patients were negative, giving 95.8% diagnostic sensitivity and 100% specificity. This second-generation RT-QuIC assay markedly improved the speed and sensitivity of detecting prion seeds in CSF specimens from CJD patients. This should enhance prospects for rapid and accurate ante mortem CJD diagnosis. A long-standing problem in dealing with various neurodegenerative protein misfolding diseases is early and accurate diagnosis. This issue is particularly important with human prion diseases, such as CJD, because prions are deadly, transmissible, and unusually resistant to decontamination. The recently developed RT-QuIC test allows for highly sensitive and specific detection of CJD in human cerebrospinal fluid and is being broadly implemented as a key diagnostic tool. However, as currently applied, RT-QuIC takes 2.5 to 5 days and misses 11 to 23% of CJD cases. Now, we have markedly improved RT-QuIC analysis of human CSF such that CJD and non-CJD patients can be discriminated in a matter of hours rather than days with enhanced sensitivity. These improvements should allow for much faster, more accurate, and practical testing for CJD. In broader terms, our study provides a prototype for tests for misfolded protein aggregates that cause many important amyloid diseases, such as Alzheimer’s, Parkinson’s, and tauopathies.
Collapse
|
17
|
Nussbaum-Krammer CI, Neto MF, Brielmann RM, Pedersen JS, Morimoto RI. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J Vis Exp 2015:52321. [PMID: 25591151 DOI: 10.3791/52321] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans.
Collapse
Affiliation(s)
- Carmen I Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University;
| | - Mário F Neto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University
| | - Renée M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University
| | - Jesper S Pedersen
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University
| |
Collapse
|
18
|
Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease. PLoS One 2014; 9:e111492. [PMID: 25365422 PMCID: PMC4218758 DOI: 10.1371/journal.pone.0111492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/16/2014] [Indexed: 12/29/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD). The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers) are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12–24 mers) invitro called Large Fatty Acid-derived Oligomers (LFAOs) (Kumar et al., 2012, J. Biol. Chem). In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer – oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.
Collapse
|
19
|
Evidence for prion-like mechanisms in several neurodegenerative diseases: potential implications for immunotherapy. Clin Dev Immunol 2013; 2013:473706. [PMID: 24228054 PMCID: PMC3817797 DOI: 10.1155/2013/473706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases. While the impact of TSEs on human health is relatively minor, these diseases are having a major influence on how we view, and potentially treat, other more common neurodegenerative disorders. Until recently, TSEs encapsulated a distinct category of neurodegenerative disorder, exclusive in their defining characteristic of infectivity. It now appears that similar mechanisms of self-propagation may underlie other proteinopathies such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. This link is of scientific interest and potential therapeutic importance as this route of self-propagation offers conceptual support and guidance for vaccine development efforts. Specifically, the existence of a pathological, self-promoting isoform offers a rational vaccine target. Here, we review the evidence of prion-like mechanisms within a number of common neurodegenerative disorders and speculate on potential implications and opportunities for vaccine development.
Collapse
|
20
|
Nussbaum-Krammer CI, Park KW, Li L, Melki R, Morimoto RI. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003351. [PMID: 23555277 PMCID: PMC3610634 DOI: 10.1371/journal.pgen.1003351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023] Open
Abstract
Prion proteins can adopt self-propagating alternative conformations that account for the infectious nature of transmissible spongiform encephalopathies (TSEs) and the epigenetic inheritance of certain traits in yeast. Recent evidence suggests a similar propagation of misfolded proteins in the spreading of pathology of neurodegenerative diseases including Alzheimer's or Parkinson's disease. Currently there is only a limited number of animal model systems available to study the mechanisms that underlie the cell-to-cell transmission of aggregation-prone proteins. Here, we have established a new metazoan model in Caenorhabditis elegans expressing the prion domain NM of the cytosolic yeast prion protein Sup35, in which aggregation and toxicity are dependent upon the length of oligopeptide repeats in the glutamine/asparagine (Q/N)-rich N-terminus. NM forms multiple classes of highly toxic aggregate species and co-localizes to autophagy-related vesicles that transport the prion domain from the site of expression to adjacent tissues. This is associated with a profound cell autonomous and cell non-autonomous disruption of mitochondrial integrity, embryonic and larval arrest, developmental delay, widespread tissue defects, and loss of organismal proteostasis. Our results reveal that the Sup35 prion domain exhibits prion-like properties when expressed in the multicellular organism C. elegans and adapts to different requirements for propagation that involve the autophagy-lysosome pathway to transmit cytosolic aggregation-prone proteins between tissues. Alzheimer's, Parkinson's, Huntington's, frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and prion diseases are all age-related, fatal neurodegenerative disorders. Hallmarks of these diseases include the expression of toxic protein species. The ability to spread and infect naive cells was thought to be limited to prions but has recently been observed for other disease-linked protein aggregates in tissue culture cells and transgenic mice. The underlying cellular pathways of this cell-to-cell transmission, however, remain elusive. We have developed a new prion model in the roundworm Caenorhabditis elegans and show that the appearance of aggregate species is associated with cellular toxicity, not only in the expressing cell but as well as in adjacent tissues. We monitored in real time the spreading of prion domains by autophagy-derived lysosomal vesicles from cell-to-cell. Given that autophagy and lysosomal degradation have a role in several neurodegenerative diseases, this cellular pathway might be the basis of amyloid infectivity in general.
Collapse
Affiliation(s)
- Carmen I. Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Kyung-Won Park
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Jetha NN, Semenchenko V, Wishart DS, Cashman NR, Marziali A. Nanopore analysis of wild-type and mutant prion protein (PrP(C)): single molecule discrimination and PrP(C) kinetics. PLoS One 2013; 8:e54982. [PMID: 23393562 PMCID: PMC3564863 DOI: 10.1371/journal.pone.0054982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrP(C)) in the central nervous system into the infectious isoform (PrP(Sc)). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrP(Sc). A number of pathogenic PrP(C) mutants exist that are characterized by an increased propensity for conversion into PrP(Sc) and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrP(C) conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrP(C), (a PrP(C) mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrP(C) capture event. Moreover, we present a four-state model to describe wild-type PrP(C) kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrP(C). These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.
Collapse
Affiliation(s)
- Nahid N Jetha
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
22
|
Vascellari S, Orrù CD, Hughson AG, King D, Barron R, Wilham JM, Baron GS, Race B, Pani A, Caughey B. Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One 2012; 7:e48969. [PMID: 23139828 PMCID: PMC3489776 DOI: 10.1371/journal.pone.0048969] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.
Collapse
Affiliation(s)
- Sarah Vascellari
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Christina D. Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Declan King
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Rona Barron
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Jason M. Wilham
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gerald S. Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alessandra Pani
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that occur in a wide variety of mammals. In humans, TSE diseases include kuru, sporadic and iatrogenic Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). So far, TSE diseases occur only rarely in humans; however, scrapie is a widespread problem in sheep, and the recent epidemic of bovine spongiform encephalopathy (BSE or mad cow disease) has seriously affected the British cattle industry. Of special concern is the recent appearance of a new variant of CJD in humans that is suspected of being caused by infections from BSE-infected cattle products. In all these diseases, an abnormal form of a host protein, prion protein (PrP), is essential for the pathogenic process. The relationship of this protein to the transmissible agent is currently the subject of great interest and controversy and is the subject of this review.
Collapse
|
24
|
Supattapone S. Phosphatidylethanolamine as a prion cofactor: potential implications for disease pathogenesis. Prion 2012; 6:417-9. [PMID: 22895101 DOI: 10.4161/pri.21826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian prions with significant levels of specific infectivity can be formed in vitro from mixtures of prion protein (PrP) and cofactor molecules, but not from PrP alone. We recently isolated and identified the essential membrane phospholipid phosphatidylethanolamine (PE) as an endogenous cofactor for prion propagation in vitro. ( 1) In this article, we discuss the potential role of PE and other essential cofactor molecules as a molecular link between the processes of prion formation and prion-induced neurodegeneration.
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
25
|
Abstract
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis.
Collapse
|
26
|
Issack BB, Berjanskii M, Wishart DS, Stepanova M. Exploring the essential collective dynamics of interacting proteins: application to prion protein dimers. Proteins 2012; 80:1847-65. [PMID: 22488640 DOI: 10.1002/prot.24082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 11/11/2022]
Abstract
Essential collective dynamics is a promising and robust approach for analysing the slow motions of macromolecules from short molecular dynamics trajectories. In this study, an extension of the method to treat a collection of interacting protein molecules is presented. The extension is applied to investigate the effects of dimerization on the collective dynamics of ovine prion protein molecules in two different arrangements. Examination of the structural plasticity shows that aggregation has a restricting effect on the local mobility of the prion protein molecules in the interfacial regions. Domain motions of the two dimeric ovine prion protein conformations are distinctly different and can be related to interatomic correlations at the interface. Correlated motions are among the slow collective modes extensively analysed by considering both main-chain and side-chain atoms. Correlation maps reveal the existence of a vast network of dynamically correlated side groups, which extends beyond individual subunits via interfacial interconnections. The network is formed by a core of hydrophobic side chains surrounded by hydrophilic groups at the periphery. The relevance of these findings are discussed in the context of mutations associated with prion diseases. The binding free energy of the dimeric conformations is evaluated to probe their thermodynamic stability. The descriptions afforded by the analysis of the essential collective dynamics of the prion dimers are consistent with their binding free energies. The agreement validates the extension of the methodology and provides a means of interpreting the collective dynamics in terms of the thermodynamic stability of ovine prion proteins.
Collapse
Affiliation(s)
- Bilkiss B Issack
- National Institute for Nanotechnology, National research Council, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
27
|
Hedlin P, Taschuk R, Potter A, Griebel P, Napper S. Detection and control of prion diseases in food animals. ISRN VETERINARY SCIENCE 2012; 2012:254739. [PMID: 23738120 PMCID: PMC3658581 DOI: 10.5402/2012/254739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, represent a unique form of infectious disease based on misfolding of a self-protein (PrPC) into a pathological, infectious conformation (PrPSc). Prion diseases of food animals gained notoriety during the bovine spongiform encephalopathy (BSE) outbreak of the 1980s. In particular, disease transmission to humans, to the generation of a fatal, untreatable disease, elevated the perspective on livestock prion diseases from food production to food safety. While the immediate threat posed by BSE has been successfully addressed through surveillance and improved management practices, another prion disease is rapidly spreading. Chronic wasting disease (CWD), a prion disease of cervids, has been confirmed in wild and captive populations with devastating impact on the farmed cervid industries. Furthermore, the unabated spread of this disease through wild populations threatens a natural resource that is a source of considerable economic benefit and national pride. In a worst-case scenario, CWD may represent a zoonotic threat either through direct transmission via consumption of infected cervids or through a secondary food animal, such as cattle. This has energized efforts to understand prion diseases as well as to develop tools for disease detection, prevention, and management. Progress in each of these areas is discussed.
Collapse
Affiliation(s)
- Peter Hedlin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3 ; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
28
|
Barria MA, Gonzalez-Romero D, Soto C. Cyclic amplification of prion protein misfolding. Methods Mol Biol 2012; 849:199-212. [PMID: 22528092 DOI: 10.1007/978-1-61779-551-0_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Protein misfolding cyclic amplification (PMCA) is a technique that takes advantage of the nucleation-dependent prion replication process to accelerate the conversion of PrP(C) into PrP(Sc) in the test tube. PMCA uses ultrasound waves to fragment the PrP(Sc) polymers, increasing the amount of seeds present in the infected sample without affecting their ability to act as conversion nuclei. Over the past 5 years, PMCA has become an invaluable technique to study diverse aspects of prions. The PMCA technology has been used by several groups to understand the molecular mechanism of prion replication, the cellular factors involved in prion propagation, the intriguing phenomena of prion strains and species barriers, to detect PrP(Sc) in tissues and biological fluids, and to screen for inhibitors against prion replication. In this chapter, we describe a detailed protocol of the PMCA technique, highlighting some of the important technical aspects to obtain a successful and reproducible application of the technology.
Collapse
Affiliation(s)
- Marcelo A Barria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX, USA
| | | | | |
Collapse
|
29
|
Rigter A, Priem J, Langeveld JPM, Bossers A. Prion protein self-interaction in prion disease therapy approaches. Vet Q 2011; 31:115-28. [PMID: 22029882 DOI: 10.1080/01652176.2011.604976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.
Collapse
Affiliation(s)
- Alan Rigter
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Atarashi R, Sano K, Satoh K, Nishida N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion 2011; 5:150-3. [PMID: 21778820 DOI: 10.4161/pri.5.3.16893] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently developed a new in vitro amplification technology, designated "real-time quaking-induced conversion (RT-QUIC)", for detection of the abnormal form of prion protein (PrPSc) in easily accessible specimens such as cerebrospinal fluid (CSF). After assessment of more than 200 CSF specimens from Japanese and Australian patients, we found no instance of a false positive, and more than 80% accuracy for the correct diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). Furthermore, the RT-QUIC can be applied to other prion diseases, including scrapie, chronic wasting disease (CWD), and bovine spongiform encephalopathy (BSE), and is able to quantify prion seeding activity when combined with an end-point dilution of samples. These results indicate that the RT-QUIC, with its high sensitivity and specificity, will be of great use as an early, rapid and specific assay for prion diseases.
Collapse
Affiliation(s)
- Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | |
Collapse
|
31
|
Yap YHY, Say YH. Resistance against apoptosis by the cellular prion protein is dependent on its glycosylation status in oral HSC-2 and colon LS 174T cancer cells. Cancer Lett 2011; 306:111-9. [DOI: 10.1016/j.canlet.2011.02.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/25/2022]
|
32
|
Jones M, Peden AH, Head MW, Ironside JW. The application of in vitro cell-free conversion systems to human prion diseases. Acta Neuropathol 2011; 121:135-43. [PMID: 20535485 DOI: 10.1007/s00401-010-0708-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/20/2010] [Accepted: 05/30/2010] [Indexed: 01/15/2023]
Abstract
A key event in the pathogenesis of prion diseases is the conversion of the normal cellular isoform of the prion protein into the disease-associated isoform, but the mechanisms operating in this critical event are not yet fully understood. A number of novel approaches have recently been developed to study factors influencing this process. One of these, the protein misfolding cyclical amplification (PMCA) technique, has been used to explore defined factors influencing the conversion of cellular prion protein in a cell-free model system. Although initially developed in animal models, this technique has been increasingly applied to human prion diseases. Recent studies have focused on the role of different isoforms of the disease-associated human prion protein and the effects of the naturally occurring polymorphism at codon 129 in the human prion protein gene on the conversion process, improving our understanding of the interaction between host and agent factors that influence the wide range of phenotypes in human prion diseases. This technique also allows a greatly enhanced sensitivity of detection of disease-associated prion protein in human tissues and fluids, which is potentially applicable to disease screening, particularly for variant Creutzfeldt-Jakob disease. The PMCA technique can also be used to model human susceptibility to a range of prions of non-human origin, which is likely to prove of considerable future interest as more novel and potentially pathogenic prion diseases are identified in animal species that form part of the human food chain.
Collapse
Affiliation(s)
- Michael Jones
- Components and vCJD Research, National Science Laboratories, Scottish National Blood Transfusion Service, Edinburgh, EH 17 7QT, UK
| | | | | | | |
Collapse
|
33
|
Li L, Napper S, Cashman NR. Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy 2010; 2:269-82. [PMID: 20635933 DOI: 10.2217/imt.10.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) represent a unique form of infectious disease based on the misfolding of a self-protein into a pathological conformation. While other human diseases are also attributed to protein misfolding, the TSEs are unique in their zoonotic potential and iatrogenic infectivity. These characteristics are of particular importance in the aftermath of the UK bovine spongiform encephalopathy (BSE) outbreak due to the dual concerns that a subpopulation of individuals exposed to the infectious agent may be serving as asymptomatic carriers, and that TSEs of other food animals may also threaten human health. These potentials, in addition to the ongoing baseline of familial and sporadic human prion diseases, necessitate development of effective treatment options. While TSEs represent a novel paradigm of infection, there is nevertheless the opportunity to apply traditional approaches of medicine for disease treatment and prevention, including vaccines for immunotherapy and immunoprophylaxis. However, vaccine development for TSEs is complicated by the challenges and potential dangers associated with induction of immune responses to a self-epitope, as well as the obstacles to treatment of a chronic infection through immunotherapy. The ongoing threat of TSEs to human health, together with the opportunity to apply information emerging from these investigations to other protein misfolding disorders, justifies the efforts required to overcome these obstacles.
Collapse
Affiliation(s)
- Li Li
- University of British Columbia & Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
34
|
Choi YP, Gröner A, Ironside JW, Head MW. Correlation of polydispersed prion protein and characteristic pathology in the thalamus in variant Creutzfeldt-Jakob disease: implication of small oligomeric species. Brain Pathol 2010; 21:298-307. [PMID: 21029243 DOI: 10.1111/j.1750-3639.2010.00446.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vacuolation, neuronal loss and gliosis that characterize human prion disease pathology are accompanied by the accumulation of an aggregated, insoluble and protease-resistant form (termed PrP(Sc)) of the host-encoded normal cellular prion protein (PrP(C)). In variant Creutzfeldt-Jakob disease the frontal cortex and cerebellum exhibit intense vacuolation and the accumulation of PrP(Sc) in the form of amyloid plaques and plaque-like structures. In contrast the posterior thalamus is characterized by intense gliosis and neuronal loss, but PrP(Sc) plaques are rare and vacuolation is patchy. We have used sucrose density gradient centrifugation coupled with conformation dependent immunoassay to examine the biochemical properties of the PrP(Sc) that accumulates in these different brain regions. The results show a greater degree of PrP(Sc) polydisperal in thalamus compared with frontal cortex or cerebellum, including a subpopulation PrP(Sc) molecules in the thalamus that have sedimentation properties resembling those of PrP(C). Much effort has focused on identifying aspects of PrP(Sc) biochemistry that distinguish between different forms of human prion disease and contribute to differential diagnosis. Here we show that PrP(Sc) sedimentation properties, which can depend on aggregation state, correlate with, and may underlie the distinct neurodegenerative processes occurring in different regions of the variant Creutzfeldt-Jakob disease brain.
Collapse
Affiliation(s)
- Young Pyo Choi
- National Creutzfeldt-Jakob Disease Surveillance Unit, School of Molecular and Clinical Medicine (Pathology), University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
35
|
Prion protein self-interactions: A gateway to novel therapeutic strategies? Vaccine 2010; 28:7810-23. [DOI: 10.1016/j.vaccine.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|
36
|
Rambaldi DC, Reschiglian P, Zattoni A. Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 2010; 399:1439-47. [DOI: 10.1007/s00216-010-4312-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/29/2022]
|
37
|
Chich JF, Chapuis C, Henry C, Vidic J, Rezaei H, Noinville S. Vesicle permeabilization by purified soluble oligomers of prion protein: a comparative study of the interaction of oligomers and monomers with lipid membranes. J Mol Biol 2010; 397:1017-30. [PMID: 20156446 DOI: 10.1016/j.jmb.2010.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 11/28/2022]
Abstract
The conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of alpha-rich PrP monomers and beta-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes. We compare their structural properties when associated with lipid bilayers and study their propensities to permeabilize the membrane at physiological pH. We also study the influence of the N-terminal flexible region (residues 24-103) by comparing full-length PrP(24-234) and N-terminally truncated PrP(104-234) oligomers. We showed that both 12-subunit oligomers cause an immediate and large increase in the permeability of the membrane, whereas equivalent amounts of monomeric forms cause no detectable leakage. Although the two monomeric PrP constructs undergo an alpha-to-beta conformational change when bound to the negatively charged membrane, only the full-length form of monomeric PrP has a weak fusogenic effect. Finally, the oligomers affect the integrity of the membrane differently from the monomers, independently of the presence of the N-terminal flexible domain. As for other forms of amyloidogenesis, a reasonable mechanism for the toxicity arising from PrP fibrillization must be associated with low-molecular-weight oligomeric intermediates, rather than with mature fibrils. Knowledge of the mechanism of action of these soluble oligomers would have a high impact on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- J-F Chich
- INRA, Unité de Virologie Immunologie Moléculaires, 78 352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
38
|
Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 2009; 78:177-204. [PMID: 19231987 DOI: 10.1146/annurev.biochem.78.082907.145410] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prion (infectious protein) concept has evolved with the discovery of new self-propagating protein states in organisms as diverse as mammals and fungi. The infectious agent of the mammalian transmissible spongiform encephalopathies (TSE) has long been considered the prototypical prion, and recent cell-free propagation and biophysical analyses of TSE infectivity have now firmly established its prion credentials. Other disease-associated protein aggregates, such as some amyloids, can also have prion-like characteristics under certain experimental conditions. However, most amyloids appear to lack the natural transmissibility of TSE prions. One feature that distinguishes the latter from the former is the glycophosphatidylinositol membrane anchor on prion protein, the molecule that is corrupted in TSE diseases. The presence of this anchor profoundly affects TSE pathogenesis, which involves major membrane distortions in the brain, and may be a key reason for the greater neurovirulence of TSE prions relative to many other autocatalytic protein aggregates.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
39
|
Li L, Guest W, Huang A, Plotkin SS, Cashman NR. Immunological mimicry of PrPC-PrPSc interactions: antibody-induced PrP misfolding. Protein Eng Des Sel 2009; 22:523-9. [DOI: 10.1093/protein/gzp038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Orrú CD, Wilham JM, Hughson AG, Raymond LD, McNally KL, Bossers A, Ligios C, Caughey B. Human variant Creutzfeldt-Jakob disease and sheep scrapie PrP(res) detection using seeded conversion of recombinant prion protein. Protein Eng Des Sel 2009; 22:515-21. [PMID: 19570812 DOI: 10.1093/protein/gzp031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathological isoform of the prion protein (PrP(res)) can serve as a marker for prion diseases, but more practical tests are needed for preclinical diagnosis and sensitive detection of many prion infections. Previously we showed that the quaking-induced conversion (QuIC) assay can detect sub-femtogram levels of PrP(res) in scrapie-infected hamster brain tissue and distinguish cerebral spinal fluid (CSF) samples from normal and scrapie-infected hamsters. We now report the adaptation of the QuIC reaction to prion diseases of medical and agricultural interest: human variant Creutzfeldt-Jakob disease (vCJD) and sheep scrapie. PrP(res)-positive and -negative brain homogenates from humans and sheep were discriminated within 1-2 days with a sensitivity of 10-100 fg PrP(res). More importantly, in as little as 22 h we were able to distinguish CSF samples from scrapie-infected and uninfected sheep. These results suggest the presence of prions in CSF from scrapie-infected sheep. This new method enables the relatively rapid and sensitive detection of human CJD and sheep scrapie PrP(res) and may facilitate the development of practical preclinical diagnostic and high-throughput interference tests.
Collapse
Affiliation(s)
- Christina D Orrú
- Laboratory of Persistent Viral Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:375-97. [DOI: 10.1016/j.bbapap.2008.10.016] [Citation(s) in RCA: 507] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/17/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
42
|
Calvez V, Lenuzza N, Oelz D, Deslys JP, Laurent P, Mouthon F, Perthame B. Size distribution dependence of prion aggregates infectivity. Math Biosci 2009; 217:88-99. [DOI: 10.1016/j.mbs.2008.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/27/2022]
|
43
|
Béringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res 2008; 39:47. [PMID: 18519020 DOI: 10.1051/vetres:2008024] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/30/2008] [Indexed: 11/14/2022] Open
Abstract
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie et Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
44
|
Abstract
Prions were originally defined as infectious agents of protein nature, which caused neurodegenerative diseases in animals and humans. The prion concept implies that the infectious agent is a protein in special conformation that can be transmitted to the normal molecules of the same protein through protein-protein interactions. Until the 1990s, the prion phenomenon was associated with the single protein named PrP. Discovery of prions in lower eukaryotes, the yeast Saccharomyces cerevisiae and fungus Podospora anserina, suggests that prions have wider significance. Prions of lower eukaryotes are not related to diseases; their propagation caused by aggregation of prion-like proteins underlies the inheritance of phenotypic traits and most likely has adaptive significance. This review covers prions of mammals and lower eukaryotes, mechanisms of their appearance de novo and maintenance, structure of prion particles, and prospects for the treatment of prion diseases. Recent data concerning the search for new prion-like proteins is included. The paper focuses on the [PSI+] prion of S. cerevisiae, since at present it is the most investigated one. The biological significance of prions is discussed.
Collapse
Affiliation(s)
- I S Shkundina
- Russian Cardiology Research-Industrial Center, 3-ya Cherepkovskaya ul. 15A, 121552 Moscow, Russia
| | | |
Collapse
|
45
|
Abstract
Prion diseases are caused by proteinaceous pathogens termed prions. Although the details of the mechanism of prion propagation are not fully understood, conformational conversion of cellular prion protein (PrP(C)) to misfolded, disease-associated scrapie prion protein (PrP(Sc)) is considered the essential biochemical event for prion replication. Currently, studying prion replication in vitro is difficult due to the lack of a system which fully recapitulates the in vivo phenomenon. Over the last 15 years, a number of in vitro systems supporting PrP(C) conversion, PrP(Sc) amplification, or amyloid fibril formation have been established. In this review, we describe the evolving methodology of in vitro prion propagation assays and discuss their ability in reflecting prion propagation in vivo.
Collapse
Affiliation(s)
- Chongsuk Ryou
- Sanders Brown Center on Aging and Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
46
|
Abstract
The discovery of prion disease and the establishment of the protein only hypothesis of prion propagation raised substantial interest in the class of maladies referred to as conformational diseases. Although significant progress has been made in elucidating the mechanisms of polymerization for several amyloidogenic proteins and peptides linked to conformational disorders and solving their fibrillar 3D structures, studies of prion protein amyloid fibrils and their polymerization mechanism have proven to be very difficult. The present minireview introduces the mechanism of branched-chain reaction for describing the peculiar kinetics of prion polymerization and summarizes our current knowledge about the substructure of prion protein amyloid fibrils.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD, USA.
| |
Collapse
|
47
|
Mapping of possible prion protein self-interaction domains using peptide arrays. BMC BIOCHEMISTRY 2007; 8:6. [PMID: 17430579 PMCID: PMC1855927 DOI: 10.1186/1471-2091-8-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 04/12/2007] [Indexed: 11/10/2022]
Abstract
Background The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP). Results The peptide-arrays revealed two distinct high binding areas as well as some regions of lower affinity in PrPC resulting in total in 7 distinct amino acid sequences (AAs). The first high binding area comprises sheep-PrP peptides 43–102 (AA 43–116), including the N-terminal octarepeats. The second high binding area of sheep-PrP peptides 134–177 (AA 134–191), encompasses most of the scrapie susceptibility-associated polymorphisms in sheep. This concurs with previous studies showing that scrapie associated-polymorphisms do not modulate the initial binding of PrPC to PrPSc. Comparison of ovine – and bovine peptide-array binding patterns revealed that amino acid specific differences can influence the MBP-PrP binding pattern. PrP-specific antibodies were capable to completely block interaction between the peptide-array and MBP-PrP. MBP-PrP was also capable to specifically bind to PrP in a Western blot approach. The octarepeat region of PrP seems primarily important for this interaction because proteinase K pre-treatment of PrPSc completely abolished binding. Conclusion Binding of MBP-PrP to PrP-specific sequences indicate that several specific self-interactions between individual PrP molecules can occur and suggest that an array of interactions between PrPC-PrPC as well as PrPC-PrPSc may be possible, which ultimately lead to variations in species barrier and strain differences.
Collapse
|
48
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 PMCID: PMC11517296 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Chantal Zuber
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Daphne Nikles
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| |
Collapse
|
49
|
Abstract
The discovery of prion disease transmission in mammals, as well as a non-Mendelian type of inheritance in yeast, has led to the establishment of a new concept in biology, the prion hypothesis. The prion hypothesis postulates that an abnormal protein conformation propagates itself in an autocatalytic manner using the normal isoform of the same protein as a substrate and thereby acts either as a transmissible agent of disease (in mammals), or as a heritable determinant of phenotype (in yeast and fungus). While the prion biology of yeast and fungus supports this idea strongly, the direct proof of the prion hypothesis in mammals, specifically the reconstitution of the disease-associated isoform of the prion protein (PrP(Sc)) in vitro de novo from noninfectious prion protein, has been difficult to achieve despite many years of effort. The present review summarizes our current knowledge about the biochemical nature of the prion infectious agent and structure of PrP(Sc), describes potential strategies for generating prion infectivity de novo and provides some insight on why the reconstitution of infectivity has been difficult to achieve in vitro. Several hypotheses are proposed to explain the apparently low infectivity of the first generation of recently reported synthetic mammalian prions.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Medical Biotechnology Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Saá P, Castilla J, Soto C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 2006; 281:35245-52. [PMID: 16982620 DOI: 10.1074/jbc.m603964200] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions are the unconventional infectious agents responsible for transmissible spongiform encephalopathies, which appear to be composed mainly or exclusively of the misfolded prion protein (PrPSc). Prion replication involves the conversion of the normal prion protein (PrPC) into the misfolded isoform, catalyzed by tiny quantities of PrPSc present in the infectious material. We have recently developed the protein misfolding cyclic amplification (PMCA) technology to sustain the autocatalytic replication of infectious prions in vitro. Here we show that PMCA enables the specific and reproducible amplification of exceptionally minute quantities of PrPSc. Indeed, after seven rounds of PMCA, we were able to generate large amounts of PrPSc starting from a 1x10(-12) dilution of scrapie hamster brain, which contains the equivalent of approximately 26 molecules of protein monomers. According to recent data, this quantity is similar to the minimum number of molecules present in a single particle of infectious PrPSc, indicating that PMCA may enable detection of as little as one oligomeric PrPSc infectious particle. Interestingly, the in vitro generated PrPSc was infectious when injected in wild-type hamsters, producing a disease identical to the one generated by inoculation of the brain infectious material. The unprecedented amplification efficiency of PMCA leads to a several billion-fold increase of sensitivity for PrPSc detection as compared with standard tests used to screen prion-infected cattle and at least 4000 times more sensitivity than the animal bioassay. Therefore, PMCA offers great promise for the development of highly sensitive, specific, and early diagnosis of transmissible spongiform encephalopathy and to further understand the molecular basis of prion propagation.
Collapse
Affiliation(s)
- Paula Saá
- George and Cynthia Mitchell Center for Alzheimer Disease and Related Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|