1
|
Zadorozny L, Du J, Supanekar N, Annamalai K, Yu Q, Wang M. Caveolin and oxidative stress in cardiac pathology. Front Physiol 2025; 16:1550647. [PMID: 40041164 PMCID: PMC11876135 DOI: 10.3389/fphys.2025.1550647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Caveolins interact with signaling molecules within caveolae and subcellular membranes. Dysregulation of caveolin function and protein abundance contributes to cardiac pathophysiological processes, driving the development and progression of heart disease. Reactive oxygen species (ROS) play a critical role in maintaining cellular homeostasis and are key contributors to the pathophysiological mechanisms of cardiovascular disorders. Caveolins have been shown to modulate oxidative stress and regulate redox homeostasis. However, the specific roles of caveolins, particularly caveolin-1 and caveolin-3, in regulating ROS production during cardiac pathology remain unclear. This mini-review article highlights the correlation between caveolins and oxidative stress in maintaining cardiovascular health and modulating cardiac diseases, specifically in myocardial ischemia, heart failure, diabetes-induced metabolic cardiomyopathy, and septic cardiomyopathy. A deeper understanding of caveolin-mediated mechanisms may pave the way for innovative therapeutic approaches to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Lauren Zadorozny
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jiayue Du
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neil Supanekar
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karthik Annamalai
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Yu
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Meijing Wang
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
3
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
4
|
Polikowsky HG, Shaw DM, Petty LE, Chen HH, Pruett DG, Linklater JP, Viljoen KZ, Beilby JM, Highland HM, Levitt B, Avery CL, Mullan Harris K, Jones RM, Below JE, Kraft SJ. Population-based genetic effects for developmental stuttering. HGG ADVANCES 2022; 3:100073. [PMID: 35047858 PMCID: PMC8756529 DOI: 10.1016/j.xhgg.2021.100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Despite a lifetime prevalence of at least 5%, developmental stuttering, characterized by prolongations, blocks, and repetitions of speech sounds, remains a largely idiopathic speech disorder. Family, twin, and segregation studies overwhelmingly support a strong genetic influence on stuttering risk; however, its complex mode of inheritance combined with thus-far underpowered genetic studies contribute to the challenge of identifying and reproducing genes implicated in developmental stuttering susceptibility. We conducted a trans-ancestry genome-wide association study (GWAS) and meta-analysis of developmental stuttering in two primary datasets: The International Stuttering Project comprising 1,345 clinically ascertained cases from multiple global sites and 6,759 matched population controls from the biobank at Vanderbilt University Medical Center (VUMC), and 785 self-reported stuttering cases and 7,572 controls ascertained from The National Longitudinal Study of Adolescent to Adult Health (Add Health). Meta-analysis of these genome-wide association studies identified a genome-wide significant (GWS) signal for clinically reported developmental stuttering in the general population: a protective variant in the intronic or genic upstream region of SSUH2 (rs113284510, protective allele frequency = 7.49%, Z = -5.576, p = 2.46 × 10-8) that acts as an expression quantitative trait locus (eQTL) in esophagus-muscularis tissue by reducing its gene expression. In addition, we identified 15 loci reaching suggestive significance (p < 5 × 10-6). This foundational population-based genetic study of a common speech disorder reports the findings of a clinically ascertained study of developmental stuttering and highlights the need for further research.
Collapse
Affiliation(s)
- Hannah G Polikowsky
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dillon G Pruett
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Kathryn Z Viljoen
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Janet M Beilby
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandt Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robin M Jones
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelly Jo Kraft
- Communication Sciences and Disorders, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Gangfuß A, Schara-Schmidt U, Roos A. [Genomics and proteomics in the research of neuromuscular diseases]. DER NERVENARZT 2021; 93:114-121. [PMID: 34622318 DOI: 10.1007/s00115-021-01201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Neurological diseases affect 3-5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; "NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases".
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Ulrike Schara-Schmidt
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Andreas Roos
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland. .,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Kanada.
| |
Collapse
|
6
|
Arpali E, Sunnetcioglu E, Demir E, Saglam A, Ozluk Y, Velioglu A, Yelken B, Baydar DE, Turkmen A, Oguz FS. Significance of caveolin-1 immunohistochemical staining differences in biopsy samples from kidney recipients with BK virus viremia. Transpl Infect Dis 2021; 23:e13605. [PMID: 33749103 DOI: 10.1111/tid.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
BK virus infections which usually remains asymptomatic in healthy adults may have different clinical manifestations in immunocompromised patient population. BK virus reactivation can cause BK virus nephropathy in 8% of kidney transplant patients and graft loss may be seen if not treated. Clathrin or Caveolar system is known to be required for the transport of many viruses from Polyomaviruses family including BK viruses. In this study, kidney transplant patients with BK virus viremia were divided into two groups according to the BK virus nephropathy found in kidney biopsy (Group I: Viremia+, Nephropathy+ / Group II: Viremia+, Nephropathy-). Kidney biopsies were examined with immunohistochemical staining to determine the distribution and density of the Caveolin-1 and Clathrin molecules. Immunohistochemical staining of the 31 pathologic specimens with anti-caveolin-1 immunoglobulin revealed statistically significant difference between group-I and group-II. The number of the specimens stained with anti-caveolin-1 was less in group I. On the other hand, we did not find any difference between the groups regarding the anti-clathrin immunochemical analysis. According to these findings, caveolin-1 expression differences in kidney transplant patients may be important in disease progression.
Collapse
Affiliation(s)
- Emre Arpali
- Department of Medical Biology, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Ecem Sunnetcioglu
- Department of Pathology, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Saglam
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Velioglu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berna Yelken
- Department of Organ Transplantation, Koç University Hospital, İstanbul, Turkey
| | - Dilek E Baydar
- Department of Pathology, School of Medicine, Koç University, İstanbul, Turkey
| | - Aydin Turkmen
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatma S Oguz
- Department of Medical Biology, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM. Early Lipid Raft-Related Changes: Interplay between Unilateral Denervation and Hindlimb Suspension. Int J Mol Sci 2021; 22:ijms22052239. [PMID: 33668129 PMCID: PMC7956661 DOI: 10.3390/ijms22052239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 01/15/2023] Open
Abstract
Muscle disuse and denervation leads to muscle atrophy, but underlying mechanisms can be different. Previously, we have found ceramide (Cer) accumulation and lipid raft disruption after acute hindlimb suspension (HS), a model of muscle disuse. Herein, using biochemical and fluorescent approaches the influence of unilateral denervation itself and in combination with short-term HS on membrane-related parameters of rat soleus muscle was studied. Denervation increased immunoexpression of sphingomyelinase and Cer in plasmalemmal regions, but decreased Cer content in the raft fraction and enhanced lipid raft integrity. Preliminary denervation suppressed (1) HS-induced Cer accumulation in plasmalemmal regions, shown for both nonraft and raft-fractions; (2) HS-mediated decrease in lipid raft integrity. Similar to denervation, inhibition of the sciatic nerve afferents with capsaicin itself increased Cer plasmalemmal immunoexpression, but attenuated the membrane-related effects of HS. Finally, both denervation and capsaicin treatment increased immunoexpression of proapoptotic protein Bax and inhibited HS-driven increase in antiapoptotic protein Bcl-2. Thus, denervation can increase lipid raft formation and attenuate HS-induced alterations probably due to decrease of Cer levels in the raft fraction. The effects of denervation could be at least partially caused by the loss of afferentation. The study points to the importance of motor and afferent inputs in control of Cer distribution and thereby stability of lipid rafts in the junctional and extrajunctional membranes of the muscle.
Collapse
Affiliation(s)
- Irina G. Bryndina
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Maria N. Shalagina
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Vladimir A. Protopopov
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Alexey V. Sekunov
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Andrey L. Zefirov
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
| | - Guzalia F. Zakirjanova
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, P. O. Box 30, Lobachevsky St. 2/31, Kazan 420111, Russia
| | - Alexey M. Petrov
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, P. O. Box 30, Lobachevsky St. 2/31, Kazan 420111, Russia
- Correspondence: or
| |
Collapse
|
8
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
9
|
Protein Expression of Canine and Feline Muscular Dystrophies. Top Companion Anim Med 2020; 42:100500. [PMID: 33249241 DOI: 10.1016/j.tcam.2020.100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Muscular dystrophies in dogs and cats represent a heterogeneous group of inherited, sometimes congenital, but infrequently diagnosed, progressive neuromuscular disorders. A correct identification and characterization of canine and feline muscular dystrophies could increase diagnostic and treatment strategies for veterinary neurologists and could identify useful animal models for the study of human dystrophies. However, in dogs and cats, diagnosis of muscular dystrophies is challenging due to a nonspecific clinical phenotype and pathological lesions, thus is most likely underestimated. We performed immunofluorescence and Western blot techniques using a wide panel of antibodies against proteins involved in human dystrophies (dystrophin mid-rod and carboxyterminal domain, α, β, γ, and δ-sarcoglycan, α-dystroglycan, caveolin-3, emerin, merosin, dysferlin, calpain-3, spectrin epitopes), on 9 canine and 3 feline muscle biopsies characterized by myopathic changes. Dystrophin deficiency was detected in 3 dogs and 2 novel canine muscular dystrophies have been identified, characterized by deficiency of caveolin-3 and calpain-3, respectively. In 2 cats, deficiency of β-SG and carboxyterminal domain of dystrophin in all muscle fibers has been detected. Performing immunofluorescence and Western blot analyses with a wider panel of antibodies allowed a correct identification of muscular dystrophies in dogs and cats and provides a direction for subsequent targeted genetic testing.
Collapse
|
10
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
11
|
Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020; 19:522-532. [PMID: 32470424 DOI: 10.1016/s1474-4422(20)30028-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Advances in DNA sequencing technologies have resulted in a near doubling, in under 10 years, of the number of causal genes identified for inherited neuromuscular disorders. However, around half of patients, whether children or adults, do not receive a molecular diagnosis after initial diagnostic workup. Massively parallel technologies targeting RNA, proteins, and metabolites are being increasingly used to diagnose these unsolved cases. The use of these technologies to delineate pathways, biomarkers, and therapeutic targets has led to new approaches entering the drug development pipeline. However, these technologies might give rise to misleading conclusions if used in isolation, and traditional techniques including comprehensive neurological evaluation, histopathology, and biochemistry continue to have a crucial role in diagnostics. For optimal diagnosis, prognosis, and precision medicine, no single ruling technology exists. Instead, an interdisciplinary approach combining novel and traditional neurological techniques with computer-aided analysis and international data sharing is needed to advance the diagnosis and treatment of neuromuscular disorders.
Collapse
|
12
|
Caveolae: Formation, dynamics, and function. Curr Opin Cell Biol 2020; 65:8-16. [PMID: 32146331 DOI: 10.1016/j.ceb.2020.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022]
Abstract
Caveolae are abundant surface pits formed by the assembly of cytoplasmic proteins on a platform generated by caveolin integral membrane proteins and membrane lipids. This membranous assembly can bud off into the cell or can be disassembled releasing the cavin proteins into the cytosol. Disassembly can be triggered by increased membrane tension, or by stress stimuli, such as UV. Here, we discuss recent mechanistic studies showing how caveolae are formed and how their unique properties allow them to function as multifunctional protective and signaling structures.
Collapse
|
13
|
Roos A, Hathazi D, Schara U. Immunofluorescence-Based Analysis of Caveolin-3 in the Diagnostic Management of Neuromuscular Diseases. Methods Mol Biol 2020; 2169:197-216. [PMID: 32548831 DOI: 10.1007/978-1-0716-0732-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunohistochemistry- and/or immunofluorescence-based analysis of muscular proteins represents a standard procedure in the diagnostic management of patients suffering from neuromuscular diseases such as "Caveolinopathies" which are caused by mutations in the CAV3 gene encoding for caveolin-3. Human caveolin-3 is a 151 amino acid sized transmembrane protein localized within caveolae, predominantly expressed in cardiac and skeletal muscle cells and involved in a diversity of cellular functions crucial for muscle cell homeostasis. Loss of caveolin-3 protein abundance is indicative for the presence of pathogenic mutations within the corresponding gene and thus for the diagnosis of "Caveolinopathies." Moreover, description of abnormal immunoreactivity findings for the caveolin-3 protein is increasing in the context of other neuromuscular diseases suggesting that profound knowledge of abnormal caveolin-3-expression and/or distribution findings can be decisive also for the diagnosis of other neurological diseases as well as for a better understanding of the biology of the protein. Here, we summarize the current knowledge about the caveolin-3, report on a protocol for immunofluorescence-based analysis of the protein in the diagnostic workup of neuromuscular patients-also considering problems encountered-and confirm as well as summarize already published abnormal histological findings in muscular pathologies beyond "Caveolinopathies."
Collapse
Affiliation(s)
- Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
15
|
Shang L, Chen T, Xian J, Deng Y, Huang Y, Zhao Q, Liang G, Liang Z, Lian F, Wei H, Huang Q. The caveolin-3 P104L mutation in LGMD-1C patients inhibits non-insulin-stimulated glucose metabolism and growth but promotes myocyte proliferation. Cell Biol Int 2019; 43:669-677. [PMID: 30958599 DOI: 10.1002/cbin.11144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/23/2019] [Indexed: 12/21/2022]
Abstract
The caveolin-3 (CAV3) protein is known to be specifically expressed in various myocytes, and skeletal muscle consumes most of the blood glucose as an energy source to maintain normal cell metabolism and function. The P104L mutation in the coding sequence of the human CAV3 gene leads to autosomal dominant disease limb-girdle muscular dystrophy type 1C (LGMD-1C). We previously reported that C2C12 cells transiently transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis after insulin stimulation. The present study aimed to examine whether the P104L mutation affects C2C12 cell glucose metabolism, growth, and proliferation without insulin stimulation. C2C12 cells stably transfected with CAV3-P104L were established, and biochemical assays, western blot analysis and confocal microscopy were used to observe glucose metabolism as well as cell growth and proliferation and to determine the effect of the P104L mutation on the PI3K/Akt signaling pathway. Without insulin stimulation, C2C12 cells stably transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis, decreased CAV3 expression and reduced localization of CAV3 and GLUT4 on the cell membrane. The P104L mutant significantly reduced the cell diameters, but accelerated cell proliferation. Akt phosphorylation was inhibited, and protein expression of GLUT4, p-GSK3β, and p-p70s6K, which are molecules downstream of Akt, was significantly decreased. The CAV3-P104L mutation inhibits glycometabolism and cell growth but accelerates C2C12 cell proliferation by reducing CAV3 protein expression and cell membrane localization, which may contribute to the pathogenesis of LGMD-1C.
Collapse
Affiliation(s)
- Lina Shang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, Guangxi Medical University First Affiliated Hospital, Nanning, 530022, Guangxi, China
| | - Yufeng Deng
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Yiyuan Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Qiwei Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Guining Liang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhifeng Liang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Fang Lian
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hongqiao Wei
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Qin Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| |
Collapse
|
16
|
Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol 2018; 234:7874-7884. [PMID: 30536378 DOI: 10.1002/jcp.27907] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a highly heterogeneous group of neuromuscular disorders that are associated with weakness and wasting of muscles in legs and arms. Signs and symptoms may begin at any age and usually worsen by time. LGMDs are autosomal disorders with different types and their prevalence is not the same in different areas. New technologies such as next-generation sequencing can accelerate their diagnosis. Several important pathological mechanisms that are involved in the pathology of the LGMD include abnormalities in dystrophin-glycoprotein complex, the sarcomere, glycosylation of dystroglycan, vesicle and molecular trafficking, signal transduction pathways, and nuclear functions. Here, we provide a comprehensive review that integrates LGMD clinical manifestations, prevalence, and some pathological mechanisms involved in LGMDs.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculity of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Science, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
17
|
Tillu VA, Lim YW, Kovtun O, Mureev S, Ferguson C, Bastiani M, McMahon KA, Lo HP, Hall TE, Alexandrov K, Collins BM, Parton RG. A variable undecad repeat domain in cavin1 regulates caveola formation and stability. EMBO Rep 2018; 19:e45775. [PMID: 30021837 PMCID: PMC6123655 DOI: 10.15252/embr.201845775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane-embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.
Collapse
Affiliation(s)
- Vikas A Tillu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
18
|
Campostrini G, Bonzanni M, Lissoni A, Bazzini C, Milanesi R, Vezzoli E, Francolini M, Baruscotti M, Bucchi A, Rivolta I, Fantini M, Severi S, Cappato R, Crotti L, J Schwartz P, DiFrancesco D, Barbuti A. The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability. Cardiovasc Res 2018; 113:1256-1265. [PMID: 28898996 PMCID: PMC5852518 DOI: 10.1093/cvr/cvx122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aims Caveolinopathies are a family of genetic disorders arising from alterations of the caveolin-3 (cav-3) gene. The T78M cav-3 variant has been associated with both skeletal and cardiac muscle pathologies but its functional contribution, especially to cardiac diseases, is still controversial. Here, we evaluated the effect of the T78M cav-3 variant on cardiac ion channel function and membrane excitability. Methods and results We transfected either the wild type (WT) or T78M cav-3 in caveolin-1 knock-out mouse embryonic fibroblasts and found by immunofluorescence and electron microscopy that both are expressed at the plasma membrane and form caveolae. Two ion channels known to interact and co-immunoprecipitate with the cav-3, hKv1.5 and hHCN4, interact also with T78M cav-3 and reside in lipid rafts. Electrophysiological analysis showed that the T78M cav-3 causes hKv1.5 channels to activate and inactivate at more hyperpolarized potentials and the hHCN4 channels to activate at more depolarized potentials, in a dominant way. In spontaneously beating neonatal cardiomyocytes, the expression of the T78M cav-3 significantly increased action potential peak-to-peak variability without altering neither the mean rate nor the maximum diastolic potential. We also found that in a small cohort of patients with supraventricular arrhythmias, the T78M cav-3 variant is more frequent than in the general population. Finally, in silico analysis of both sinoatrial and atrial cell models confirmed that the T78M-dependent changes are compatible with a pro-arrhythmic effect. Conclusion This study demonstrates that the T78M cav-3 induces complex modifications in ion channel function that ultimately alter membrane excitability. The presence of the T78M cav-3 can thus generate a susceptible substrate that, in concert with other structural alterations and/or genetic mutations, may become arrhythmogenic.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Mattia Bonzanni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Alessio Lissoni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Claudia Bazzini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Rivolta
- Department of Health Science, Università di Milano Bicocca, Monza, Italy
| | - Matteo Fantini
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Stefano Severi
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Riccardo Cappato
- Arrhythmia & Electrophysiology Unit II, Humanitas Gavazzeni Clinics, Bergamo, Italy.,Arrhythmia & Electrophysiology Research Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
19
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
20
|
Zhang X, Wang B, Xiao Y, Wang C, He L. Targetable, two-photon fluorescent probes for local nitric oxide capture in the plasma membranes of live cells and brain tissues. Analyst 2018; 143:4180-4188. [DOI: 10.1039/c8an00905h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A plasma membrane-targetable two-photon fluorescent probe for capturing nitric oxide in cells and brain tissues.
Collapse
Affiliation(s)
- Xinfu Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Benlei Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chao Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Ling He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
21
|
Shang L, Chen T, Deng Y, Huang Y, Huang Y, Xian J, Lu W, Yang L, Huang Q. Caveolin-3 promotes glycometabolism, growth and proliferation in muscle cells. PLoS One 2017; 12:e0189004. [PMID: 29206848 PMCID: PMC5716543 DOI: 10.1371/journal.pone.0189004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022] Open
Abstract
Objective Caveolin-3 (CAV3) protein is known to be expressed specifically in various myocytes, but its physiological function remains unclear. CAV3, located at the cell membrane, may promote the sensitivity of the Akt signaling pathway, which is closely related to glucose metabolism and to cell growth and proliferation. Methods The CAV3 gene was stably transfected into C2C12 muscle cells, and the effects were evaluated by biochemical assays, WB and confocal microscopy for the observation of cellular glucose metabolism, growth and proliferation, and the effect of CAV3 on the Akt signaling pathway with no insulin stimulation. Results After C2C12 cells were transfected with the mouse CAV3 gene, which increased CAV3 expression, the abundance of the CAV3 and GLUT4 proteins on the cell membrane increased, but the total GLUT4 protein content of the cell was unchanged. Glucose uptake was increased, and this did not affect the glycogen synthesis, but the cell surface area and cell proliferation increased. While there were significant increases in p-Akt and p-p70s6K, which is a downstream component of Akt signaling, the level of GSK3β protein, another component of Akt signaling did not change. Conclusions The muscle, CAV3 protein can activate Akt signaling, increase GLUT4 protein localization in the cell membrane, increase glucose uptake, and promote myocyte growth and proliferation. CAV3 protein has a physiological role in glycometabolism, growth and proliferation, independent of insulin stimulation.
Collapse
Affiliation(s)
- Lina Shang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufeng Deng
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyuan Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanheng Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wensheng Lu
- Department of Endocrinology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lihui Yang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
22
|
Abstract
ice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function. Ptrf deletion also caused decreased mitochondrial function, oxygen consumption, and altered myofiber composition. Thus, in addition to compromised adipocyte-related physiology, the absence of PTRF/cavin-1 in mice caused a unique form of muscular dystrophy with a phenotype similar or identical to that seen in humans lacking this protein. Further understanding of this muscular dystrophy model will provide information relevant to the human situation and guidance for potential therapies.
Collapse
Affiliation(s)
| | | | - Paul F Pilch
- Department of Biochemistry.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Chitranshi N, Dheer Y, Wall RV, Gupta V, Abbasi M, Graham SL, Gupta V. Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Deng YF, Huang YY, Lu WS, Huang YH, Xian J, Wei HQ, Huang Q. The Caveolin-3 P104L mutation of LGMD-1C leads to disordered glucose metabolism in muscle cells. Biochem Biophys Res Commun 2017; 486:218-223. [PMID: 28232187 DOI: 10.1016/j.bbrc.2017.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
Caveolin-3 (CAV3) is a muscle specific protein that plays an important role in maintaining muscle health and glucose homeostasis in vivo. A novel autosomal dominant form of LGMD-1C in humans is due to a P104L mutation within the coding sequence of the human CAV3 gene. The mechanism by which the LGMD-1C mutation leads to muscle weakness remains unknown. Our objective was to determine whether muscle weakness was related to the imbalance of glucose metabolism. We found that when the P104L mutation was transiently transfected into C2C12 cells, there was decreased glucose uptake and glycogen synthesis after insulin stimulation. Immunoblotting analysis showed that the P104L mutation resulted in decreased expression of CAV3, CAV1 and pAkt. Confocal immunomicroscopy indicated that the P104L mutation reduced CAV3 and GLUT4 in the cell membrane, which accumulated mainly near the nucleus. This work is the first report of an association between muscle weakness due to LGMD-1C and energy metabolism. The P104L mutation led to a decrease in C2C12 muscle glucose uptake and glycogen synthesis and may be involved in the pathogenesis of LGMD-1C.
Collapse
Affiliation(s)
- Yu Feng Deng
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yi Yuan Huang
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Wen Sheng Lu
- Department of Endocrinology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yuan Heng Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Qiao Wei
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
25
|
Macias A, Gambin T, Szafranski P, Jhangiani SN, Kolasa A, Obersztyn E, Lupski JR, Stankiewicz P, Kaminska A. CAV3 mutation in a patient with transient hyperCKemia and myalgia. Neurol Neurochir Pol 2016; 50:468-473. [DOI: 10.1016/j.pjnns.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
26
|
Massalska D, Zimowski JG, Bijok J, Kucińska-Chahwan A, Łusakowska A, Jakiel G, Roszkowski T. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016; 90:199-210. [PMID: 27197572 DOI: 10.1111/cge.12801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Congenital myopathies and muscular dystrophies constitute a genetically and phenotypically heterogeneous group of rare inherited diseases characterized by muscle weakness and atrophy, motor delay and respiratory insufficiency. To date, curative care is not available for these diseases, which may severely affect both life-span and quality of life. We discuss prenatal diagnosis and genetic counseling for families at risk, as well as diagnostic possibilities in sporadic cases.
Collapse
Affiliation(s)
- D Massalska
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - J G Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - J Bijok
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Kucińska-Chahwan
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Łusakowska
- Department of Neurology, Medical University of Warsaw, Poland
| | - G Jakiel
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - T Roszkowski
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
27
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Murphy AP, Straub V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. J Neuromuscul Dis 2015; 2:S7-S19. [PMID: 27858764 PMCID: PMC5271430 DOI: 10.3233/jnd-150105] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the pathogenesis is possible.To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion. There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments. Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Volker Straub
- Correspondence to: Volker Straub, The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom. NE1 3BZ. Tel.: +44 1912 418652; Fax: +44 1912 418770;
| |
Collapse
|
29
|
Abstract
Popdc (Popeye-domain-containing) genes encode membrane-bound proteins and are abundantly present in cardiac myocytes and in skeletal muscle fibres. Functional analysis of Popdc1 (Bves) and Popdc2 in mice and of popdc2 in zebrafish revealed an overlapping role for proper electrical conduction in the heart and maintaining structural integrity of skeletal muscle. Popdc proteins mediate cAMP signalling and modulate the biological activity of interacting proteins. The two-pore channel TREK-1 interacts with all three Popdc proteins. In Xenopus oocytes, the presence of Popdc proteins causes an enhanced membrane transport leading to an increase in TREK-1 current, which is blocked when cAMP levels are increased. Another important Popdc-interacting protein is caveolin 3, and the loss of Popdc1 affects caveolar size. Thus a family of membrane-bound cAMP-binding proteins has been identified, which modulate the subcellular localization of effector proteins involved in organizing signalling complexes and assuring proper membrane physiology of cardiac myocytes.
Collapse
|
30
|
Sanon VP, Sawaki D, Mjaatvedt CH, Jourdan‐Le Saux C. Myocardial Tissue Caveolae. Compr Physiol 2015; 5:871-86. [DOI: 10.1002/cphy.c140050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Li W, Chen L, He W, Li W, Qu X, Liang B, Gao Q, Feng C, Jia X, Lv Y, Zhang S, Li X. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis. PLoS One 2013; 8:e71191. [PMID: 23940716 PMCID: PMC3733802 DOI: 10.1371/journal.pone.0071191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/28/2013] [Indexed: 01/12/2023] Open
Abstract
The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on “guilt by association” analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on “guilt by association” analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LC); (XL)
| | - Weiming He
- Institute of Opto-electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Weiguo Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoli Qu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Qianping Gao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenchen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yana Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Siya Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LC); (XL)
| |
Collapse
|
32
|
Cheng J, Valdivia CR, Vaidyanathan R, Balijepalli RC, Ackerman MJ, Makielski JC. Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J Mol Cell Cardiol 2013; 61:102-10. [PMID: 23541953 PMCID: PMC3720711 DOI: 10.1016/j.yjmcc.2013.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
AIMS Mutations in CAV3-encoding caveolin-3 (Cav3) have been implicated in type 9 long QT syndrome (LQT9) and sudden infant death syndrome (SIDS). When co-expressed with SCN5A-encoded cardiac sodium channels these mutations increased late sodium current (INa) but the mechanism was unclear. The present study was designed to address the mechanism by which the LQT9-causing mutant Cav3-F97C affects the function of caveolar SCN5A. METHODS AND RESULTS HEK-293 cells expressing SCN5A and LQT9 mutation Cav3-F97C resulted in a 2-fold increase in late INa compared to Cav3-WT. This increase was reversed by the neural nitric oxide synthase (nNOS) inhibitor L-NMMA. Based on these findings, we hypothesized that an nNOS complex mediated the effect of Cav3 on SCN5A. A SCN5A macromolecular complex was established in HEK-293 cells by transiently expressing SCN5A, α1-syntrophin (SNTA1), nNOS, and Cav3. Compared with Cav3-WT, Cav3-F97C produced significantly larger peak INa amplitudes, and showed 3.3-fold increase in the late INa associated with increased S-nitrosylation of SCN5A. L-NMMA reversed both the Cav3-F97C induced increase in late and peak INa and decreased S-nitrosylation of SCN5A. Overexpression of Cav3-F97C in adult rat cardiomyocytes caused a significant increase in late INa compared to Cav3-WT, and prolonged the action potential duration (APD90) in a nNOS-dependent manner. CONCLUSIONS Cav3 is identified as an important negative regulator for cardiac late INa via nNOS dependent direct S-nitrosylation of SCN5A. This provides a molecular mechanism for how Cav3 mutations increase late INa to cause LQT9. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Jianding Cheng
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Carmen R. Valdivia
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Ravi Vaidyanathan
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Ravi C. Balijepalli
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Michael J. Ackerman
- Divisions of Cardiovascular Diseases and Pediatric Cardiology, Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan C. Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
33
|
Impacts of massively parallel sequencing for genetic diagnosis of neuromuscular disorders. Acta Neuropathol 2013; 125:173-85. [PMID: 23224362 DOI: 10.1007/s00401-012-1072-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
Neuromuscular disorders (NMD) such as neuropathy or myopathy are rare and often severe inherited disorders, affecting muscle and/or nerves with neonatal, childhood or adulthood onset, with considerable burden for the patients, their families and public health systems. Genetic and clinical heterogeneity, unspecific clinical features, unidentified genes and the implication of large and/or several genes requiring complementary methods are the main drawbacks in routine molecular diagnosis, leading to increased turnaround time and delay in the molecular validation of the diagnosis. The application of massively parallel sequencing, also called next generation sequencing, as a routine diagnostic strategy could lead to a rapid screening and fast identification of mutations in rare genetic disorders like NMD. This review aims to summarize and to discuss recent advances in the genetic diagnosis of neuromuscular disorders, and more generally monogenic diseases, fostered by massively parallel sequencing. We remind the challenges and benefit of obtaining an accurate genetic diagnosis, introduce the massively parallel sequencing technology and its novel applications in diagnosis of patients, prenatal diagnosis and carrier detection, and discuss the limitations and necessary improvements. Massively parallel sequencing synergizes with clinical and pathological investigations into an integrated diagnosis approach. Clinicians and pathologists are crucial in patient selection and interpretation of data, and persons trained in data management and analysis need to be integrated to the diagnosis pipeline. Massively parallel sequencing for mutation identification is expected to greatly improve diagnosis, genetic counseling and patient management.
Collapse
|