1
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Lowes LE, Goodale D, Xia Y, Postenka C, Piaseczny MM, Paczkowski F, Allan AL. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer. Oncotarget 2018; 7:76125-76139. [PMID: 27764810 PMCID: PMC5342801 DOI: 10.18632/oncotarget.12682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the cause of most prostate cancer (PCa) deaths and has been associated with circulating tumor cells (CTCs). The presence of ≥5 CTCs/7.5mL of blood is a poor prognosis indicator in metastatic PCa when assessed by the CellSearch® system, the “gold standard” clinical platform. However, ~35% of metastatic PCa patients assessed by CellSearch® have undetectable CTCs. We hypothesize that this is due to epithelial-to-mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers, with important implications for PCa metastasis. Two pre-clinical assays were developed to assess human CTCs in xenograft models; one comparable to CellSearch® (EpCAM-based) and one detecting CTCs semi-independent of EMT status via combined staining with EpCAM/HLA (human leukocyte antigen). In vivo differences in CTC generation, kinetics, metastasis and EMT status were determined using 4 PCa models with progressive epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes. Assay validation demonstrated that the CellSearch®-based assay failed to detect a significant number (~40-50%) of mesenchymal CTCs. In vivo, PCa with an increasingly mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater metastatic capacity than PCa with an epithelial phenotype. Notably, the CellSearch®-based assay captured the majority of CTCs shed during early-stage disease in vivo, and only after establishment of metastases were a significant number of undetectable CTCs present. This study provides important insight into the influence of EMT on CTC generation and subsequent metastasis, and highlights that novel technologies aimed at capturing mesenchymal CTCs may only be useful in the setting of advanced metastatic disease.
Collapse
Affiliation(s)
- Lori E Lowes
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Ying Xia
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Matthew M Piaseczny
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada
| | - Freeman Paczkowski
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Alison L Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada.,London Regional Cancer Program, London Health Sciences Centre, London ON, Canada.,Lawson Health Research Institute, London ON, Canada
| |
Collapse
|
3
|
Barata D, Spennati G, Correia C, Ribeiro N, Harink B, van Blitterswijk C, Habibovic P, van Rijt S. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology. Biomed Microdevices 2017; 19:81. [PMID: 28884359 PMCID: PMC5589786 DOI: 10.1007/s10544-017-0222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Giulia Spennati
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Cristina Correia
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Nelson Ribeiro
- Instituto de Engenharia Mecânica, Laboratório Associado de Energia, Transportes e Aeronáutica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Review: circulating tumor cells in the practice of breast cancer oncology. Clin Transl Oncol 2015; 18:749-59. [DOI: 10.1007/s12094-015-1460-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
|
5
|
Gwozdzinska P, Pawlowska R, Milczarek J, Garner LE, Thomas AW, Bazan GC, Chworos A. Phenylenevinylene conjugated oligoelectrolytes as fluorescent dyes for mammalian cell imaging. Chem Commun (Camb) 2015; 50:14859-61. [PMID: 25322778 DOI: 10.1039/c4cc06478j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated phenylenevinylene oligoelectrolytes, which consist of a phenylenevinylene core equipped at each end with hydrophilic pendent groups, are shown to be good candidates for mammalian cell membrane staining. When used in the micromolar concentration range, they express low to moderate cell toxicity for selected regular and cancerous cell lines as tested for adherent and suspension cells.
Collapse
Affiliation(s)
- Paulina Gwozdzinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90363 Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lung-derived factors mediate breast cancer cell migration through CD44 receptor-ligand interactions in a novel ex vivo system for analysis of organ-specific soluble proteins. Neoplasia 2014; 16:180-91. [PMID: 24709425 DOI: 10.1593/neo.132076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Breast cancer preferentially metastasizes to lung, lymph node, liver, bone, and brain. However, it is unclear whether properties of cancer cells, properties of organ microenvironments, or a combination of both is responsible for this observed organ tropism. We hypothesized that breast cancer cells exhibit distinctive migration/growth patterns in organ microenvironments that mirror common clinical sites of breast cancer metastasis and that receptor-ligand interactions between breast cancer cells and soluble organ-derived factors mediate this behavior. Using an ex vivo model system composed of organ-conditioned media (CM), human breast cancer cells (MDA-MB-231,MDA-MB-468, SUM149, and SUM159) displayed cell line-specific and organ-specific patterns of migration/proliferation that corresponded to their in vivo metastatic behavior. Notably, exposure to lung-CM increased migration of all cell lines and increased proliferation in two of four lines (P < .05). Several cluster of differentiation (CD) 44 ligands including osteopontin (OPN) and L-selectin (SELL) were identified in lung-CM by protein arrays. Immunodepletion of SELL decreased migration of MDA-MB-231 cells, whereas depletion of OPN decreased both migration and proliferation. Pretreatment of cells with a CD44-blocking antibody abrogated migration effects (P < .05). "Stemlike" breast cancer cells with high aldehyde dehydrogenase and CD44 (ALDH(hi)CD44(+)) responded in a distinct chemotactic manner toward organ-CM, preferentially migrating toward lung-CM through CD44 receptor-ligand interactions (P < .05). In contrast, organ-specific changes in migration were not observed for ALDH(low)CD44(-) cells. Our data suggest that interactions between CD44(+) breast cancer cells and soluble factors present in the lung microenvironment may play an important role in determining organotropic metastatic behavior.
Collapse
|
7
|
Coffey DS. WITHDRAWN: Evolution: Back to the future to understand and control prostate cancer. Asian J Urol 2014. [DOI: 10.1016/j.ajur.2014.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Coffey DS. Evolution: Back to the future to understand and control prostate cancer. Asian J Urol 2014; 1:4-11. [PMID: 29511632 PMCID: PMC5832888 DOI: 10.1016/j.ajur.2014.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Donald S Coffey
- Brady Urological Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
9
|
Markovic S, Li B, Pera V, Sznaier M, Camps O, Niedre M. A computer vision approach to rare cell in vivo fluorescence flow cytometry. Cytometry A 2014; 83:1113-23. [PMID: 24273157 DOI: 10.1002/cyto.a.22397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/23/2013] [Accepted: 09/03/2013] [Indexed: 12/25/2022]
Abstract
Noninvasive enumeration of rare circulating cell populations in small animals is of great importance in many areas of biomedical research. In this work, we describe a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently-labeled cells from multiple large blood vessels in the ear of a mouse. This imaging system uses a 660 nm laser and a high sensitivity electron-multiplied charge coupled device camera (EMCCD) to acquire fluorescence image sequences from relatively large (∼5 × 5 mm(2) ) imaging areas. The primary technical challenge was developing an automated method for identifying and tracking rare cell events in image sequences with substantial autofluorescence and noise content. To achieve this, we developed a two-step image analysis algorithm that first identified cell candidates in individual frames, and then merged cell candidates into tracks by dynamic analysis of image sequences. The second step was critical since it allowed rejection of >97% of false positive cell counts. Overall, our computer vision IVFC (CV-IVFC) approach allows single-cell detection sensitivity at estimated concentrations of 20 cells/mL of peripheral blood. In addition to simple enumeration, the technique recovers the cell's trajectory, which in the future could be used to automatically identify, for example, in vivo homing and docking events.
Collapse
Affiliation(s)
- Stacey Markovic
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | | | | | |
Collapse
|
10
|
Lowes LE, Allan AL. Recent advances in the molecular characterization of circulating tumor cells. Cancers (Basel) 2014; 6:595-624. [PMID: 24633084 PMCID: PMC3980613 DOI: 10.3390/cancers6010595] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 12/16/2022] Open
Abstract
Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a "real-time liquid biopsy" that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.
Collapse
Affiliation(s)
- Lori E Lowes
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6, Canada.
| |
Collapse
|
11
|
Lowes LE, Hedley BD, Keeney M, Allan AL. Adaptation of semiautomated circulating tumor cell (CTC) assays for clinical and preclinical research applications. J Vis Exp 2014:e51248. [PMID: 24637923 DOI: 10.3791/51248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Collapse
Affiliation(s)
- Lori E Lowes
- London Regional Cancer Program, London Health Sciences Centre; Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University
| | | | - Michael Keeney
- Special Hematology/Flow Cytometry, London Health Sciences Centre; Lawson Health Research Institute
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre; Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University; Lawson Health Research Institute; Department of Oncology, Western University;
| |
Collapse
|
12
|
Strotman L, O'Connell R, Casavant BP, Berry SM, Sperger JM, Lang JM, Beebe DJ. Selective nucleic acid removal via exclusion (SNARE): capturing mRNA and DNA from a single sample. Anal Chem 2013; 85:9764-70. [PMID: 24016179 PMCID: PMC3897163 DOI: 10.1021/ac402162r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The path from gene (DNA) to gene product (RNA or protein) is the foundation of genotype giving rise to phenotype. Comparison of genomic analyses (DNA) with paired transcriptomic studies (mRNA) is critical to evaluating the pathogenic processes that give rise to human disease. The ability to analyze both DNA and mRNA from the same sample is not only important for biologic interrogation but also to minimize variance (e.g., sample loss) unrelated to the biology. Existing methods for RNA and DNA purification from a single sample are typically time-consuming and labor intensive or require large sample sizes to split for separate RNA and DNA extraction procedures. Thus, there is a need for more efficient and cost-effective methods to purify both RNA and DNA from a single sample. To address this need, we have developed a technique, termed SNARE (Selective Nucleic Acid Removal via Exclusion), that uses pinned oil interfaces to simultaneous purify mRNA and DNA from a single sample. A unique advantage of SNARE is the elimination of dilutive wash and centrifugation processes that are fundamental to conventional methods where sample is typically discarded. This minimizes loss and maximizes recovery by allowing nondilutive reinterrogation of the sample. We demonstrate that SNARE is more sensitive than commercially available kits, robustly and repeatably achieving mRNA and DNA purification from extremely low numbers of cells for downstream analyses. In addition to sensitivity, SNARE is fast, easy to use, and cost-effective and requires no laboratory infrastructure or hazardous chemicals. We demonstrate the clinical utility of the SNARE with prostate cancer circulating tumor cells to demonstrate its ability to perform both genomic and transcriptomic interrogation on rare cell populations that would be difficult to achieve with any current method.
Collapse
Affiliation(s)
- Lindsay Strotman
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin53706, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv 2013; 31:1063-84. [PMID: 23999357 DOI: 10.1016/j.biotechadv.2013.08.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Efforts to improve the clinical management of several cancers include finding better methods for the quantitative and qualitative analysis of circulating tumor cells (CTCs). However, detection and isolation of CTCs from the blood circulation is not a trivial task given their scarcity and the lack of reliable markers to identify these cells. With a variety of emerging technologies, a thorough review of the exploited principles and techniques as well as the trends observed in the development of these technologies can assist researchers to recognize the potential improvements and alternative approaches. To help better understand the related biological concepts, a simplified framework explaining cancer formation and its spread to other organs as well as how CTCs contribute to this process has been presented first. Then, based on their basic working-principles, the existing methods for detection and isolation of CTCs have been classified and reviewed as nucleic acid-based, physical properties-based and antibody-based methods. The review of literature suggests that antibody-based methods, particularly in conjunction with a microfluidic lab-on-a-chip setting, offer the highest overall performance for detection and isolation of CTCs. Further biological and engineering-related research is required to improve the existing methods. These include finding more specific markers for CTCs as well as enhancing the throughput, sensitivity, and analytic functionality of current devices.
Collapse
Affiliation(s)
- Hadi Esmaeilsabzali
- School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102nd Avenue, Surrey, V3T 0A3, BC, Canada; Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada; School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada
| | | | | | | | | |
Collapse
|
14
|
Casavant BP, Guckenberger DJ, Berry SM, Tokar JT, Lang JM, Beebe DJ. The VerIFAST: an integrated method for cell isolation and extracellular/intracellular staining. LAB ON A CHIP 2013; 13:391-6. [PMID: 23223939 DOI: 10.1039/c2lc41136a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isolation and characterization of a specific subset of cells from a large heterogeneous population is necessary for studying rare subpopulations of cells. Existing methods require transfer or wash steps that risk causing loss of the rare cell population of interest. Integrated methods reduce loss, making these methods especially useful for reliable isolation of rare cell populations. In this report, we demonstrate the VerIFAST, a device that builds upon the simplified workflow of the Immiscible Filtration Assisted by Surface Tension (IFAST) to integrate a method for cellular isolation with methods for extra- and intracellular staining. First, a front-end purification step allows cells and unwanted particulates to passively settle out of the operational path of the paramagnetic particles, resulting in good efficiency of capture (>80%) and purity (>70%) with a single virtual wall traverse. Second, a Sieve Chamber is used downstream of the isolation chamber that removes excess unbound paramagnetic particles (PMPs) and performs complex multi-step washing procedures without centrifugation or transfer steps. Further, cellular staining can be performed in the device and is demonstrated for extracellular epithelial cell adhesion molecule (EpCAM), intracellular pan-cytokeratins, and Ki-67.
Collapse
Affiliation(s)
- Benjamin P Casavant
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lowes LE, Hedley BD, Keeney M, Allan AL. User-defined protein marker assay development for characterization of circulating tumor cells using the CellSearch® system. Cytometry A 2012; 81:983-95. [DOI: 10.1002/cyto.a.22158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/12/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022]
|
16
|
Li J, King MR. Adhesion receptors as therapeutic targets for circulating tumor cells. Front Oncol 2012; 2:79. [PMID: 22837985 PMCID: PMC3402858 DOI: 10.3389/fonc.2012.00079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/07/2012] [Indexed: 12/12/2022] Open
Abstract
Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds,” circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.
Collapse
Affiliation(s)
- Jiahe Li
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
17
|
Pozarowski P, Holden E, Darzynkiewicz Z. Laser scanning cytometry: principles and applications-an update. Methods Mol Biol 2012; 931:187-212. [PMID: 23027005 DOI: 10.1007/978-1-62703-056-4_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of unique analytical capabilities, not provided by flow cytometry (FCM). This review describes attributes of LSC and covers its numerous applications derived from plentitude of the parameters that can be measured. Among many LSC applications the following are emphasized: (a) assessment of chromatin condensation to identify mitotic, apoptotic cells, or senescent cells; (b) detection of nuclear or mitochondrial translocation of critical factors such as NF-κB, p53, or Bax; (c) semi-automatic scoring of micronuclei in mutagenicity assays; (d) analysis of fluorescence in situ hybridization (FISH) and use of the FISH analysis attribute to measure other punctuate fluorescence patterns such as γH2AX foci or receptor clustering; (e) enumeration and morphometry of nucleoli and other cell organelles; (f) analysis of progeny of individual cells in clonogenicity assay; (g) cell immunophenotyping; (h) imaging, visual examination, or sequential analysis using different probes of the same cells upon their relocation; (i) in situ enzyme kinetics, drug uptake, and other time-resolved processes; (j) analysis of tissue section architecture using fluorescent and chromogenic probes; (k) application for hypocellular samples (needle aspirate, spinal fluid, etc.); and (l) other clinical applications. Advantages and limitations of LSC are discussed and compared with FCM.
Collapse
Affiliation(s)
- Piotr Pozarowski
- The Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
18
|
Chu JE, Allan AL. The Role of Cancer Stem Cells in the Organ Tropism of Breast Cancer Metastasis: A Mechanistic Balance between the "Seed" and the "Soil"? Int J Breast Cancer 2011; 2012:209748. [PMID: 22295241 PMCID: PMC3262605 DOI: 10.1155/2012/209748] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a prevalent disease worldwide, and the majority of deaths occur due to metastatic disease. Clinical studies have identified a specific pattern for the metastatic spread of breast cancer, termed organ tropism; where preferential secondary sites include lymph node, bone, brain, lung, and liver. A rare subpopulation of tumor cells, the cancer stem cells (CSCs), has been hypothesized to be responsible for metastatic disease and therapy resistance. Current treatments are highly ineffective against metastatic breast cancer, likely due to the innate therapy resistance of CSCs and the complex interactions that occur between cancer cells and their metastatic microenvironments. A better understanding of these interactions is essential for the development of novel therapeutic targets for metastatic disease. This paper summarizes the characteristics of breast CSCs and their potential metastatic microenvironments. Furthermore, it raises the question of the existence of a CSC niche and highlights areas for future investigation.
Collapse
Affiliation(s)
- Jenny E. Chu
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 3K7
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada N6A 4L6
| | - Alison L. Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 3K7
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada N6A 4L6
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 4L6
- Lawson Health Research Institute, Cancer Research Laboratories, London, ON, Canada N6A 4V2
| |
Collapse
|