1
|
Morales L, Desfilis E, Medina L. Development of catecholaminergic neurons of Otp-lineage in the medial extended amygdala and related forebrain centers. Front Neuroanat 2025; 19:1553952. [PMID: 40177299 PMCID: PMC11961924 DOI: 10.3389/fnana.2025.1553952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Catecholaminergic (CA) neurons of the medial extended amygdala, preoptic region and adjacent alar hypothalamus have been involved in different aspects of social behavior, as well as in modulation of homeostasis in response to different stressors. Previous data suggested that at least some CA neurons of the medial extended amygdala could originate in a hypothalamic embryonic domain that expresses the transcription factor Otp. To investigate this, we used Otp-eGFP mice (with permanent labeling of GFP in Otp cells) to analyze coexpression of GFP and tyrosine hydroxylase (TH) throughout ontogenesis by way of double immunofluorescence. Our results provide evidence that some forebrain CA cells belong to the Otp lineage. In particular, we found small subpopulations of TH cells that coexpress GFP within the medial extended amygdala, the periventricular preoptic area, the paraventricular hypothalamus, the periventricular hypothalamus, as well as some subdivisions of the basal hypothalamus. In some of the Otp cells, such as those of extended amygdala, the expression of TH appears to be transitory, in agreement with previous studies. The results open interesting questions about the role of these Otp versus non-Otp catecholaminergic subpopulations during development, network integration and in modulation of different functions, including homeostasis and social behaviors.
Collapse
Affiliation(s)
- Lorena Morales
- Department of Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Kant T, Koyama E, Zai CC, Sanches M, Beitchman JH, Kennedy JL. COMT Val/Met, stressful life events and externalizing behaviors in youth: A longitudinal study from the ABCD sample. Heliyon 2023; 9:e21126. [PMID: 38027832 PMCID: PMC10665666 DOI: 10.1016/j.heliyon.2023.e21126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Early adolescence is a crucial time for understanding and detecting the risk factors that may influence youth externalizing/disruptive behaviors and disorders. Previous literature reported evidence that risk factors for disruptive behaviors include catechol-O-methyltransferase (COMT) Val158Met (rs4680) polymorphism and environmental influences. An unanswered question is whether there is a change in these risk factors over stages of youth development. This longitudinal study examines the interaction effect of Val158Met and stressful life events (SLE) on youth externalizing behaviors from ages 9-11. Participants were 2363 children of European ancestry recruited as part of the Adolescent Brain Cognitive Development study. Repeated measures linear mixed models were used to examine the effect of the interaction between Val158Met and SLE (G × E) on disruptive behaviors over development. Externalizing behaviors were analyzed at both baseline and two-year follow-up. Both Val158Met genotype and SLE scores demonstrated significant main effects on disruptive behaviors in youth, and those effects were consistent at both time points. G × E was not associated with externalizing behaviors. Youth who carried the Val allele and/or were exposed to higher SLE consistently had increased externalizing behavior scores. To our knowledge, this is the first study to longitudinally examine the interaction effects of Val158Met and SLE on externalizing behaviors in youth. The results highlight the importance of understanding the genetic and environmental factors underlying externalizing behaviors for better detection of at-risk youth, helping further with early prevention efforts. The findings propose that COMT Val158Met genotype may act as a biomarker for development of novel treatment strategies for disruptive behaviors.
Collapse
Affiliation(s)
- Tuana Kant
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Emiko Koyama
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Clement C. Zai
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcos Sanches
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Joseph H. Beitchman
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
| | - James L. Kennedy
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
3
|
Hentges RF, Davies PT, Sturge-Apple ML. Domain specificity of differential susceptibility: Testing an evolutionary theory of temperament in early childhood. Dev Psychopathol 2023; 35:1515-1528. [PMID: 35550240 DOI: 10.1017/s0954579422000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
According to differential susceptibility theory (DST), some children may be more sensitive to both positive and negative features of the environment. However, research has generated a list of widely disparate temperamental traits that may reflect differential susceptibility to the environment. In addition, findings have implicated these temperament × environment interactions in predicting a wide variety of child outcomes. This study uses a novel evolutionary model of temperament to examine whether differential susceptibility operates in a domain-general or domain-specific manner. Using a racially and socioeconomically diverse sample of 243 preschoolers and their parents (56% female; 48% African American), we examined the interactions between maternal and paternal parenting quality and two evolutionary informed temperament profiles (i.e., Hawks and Doves) in predicting changes in teacher-reported conduct problems and depressive symptoms from preschool to first grade. Results suggest that differential susceptibility operates in a domain-specific fashion. Specifically, the "Hawk" temperament was differentially susceptible to maternal parenting in predicting externalizing problems. In contrast, the "Dove" temperament was susceptible to both paternal and maternal parenting quality in predicting changes in depressive symptoms. Findings provide support for an integrative framework that synthesizes DST with an evolutionary, function-based approach to temperament.
Collapse
Affiliation(s)
- Rochelle F Hentges
- Strong BRAIN Institute, East Tennessee State University, Johnson City, TN, USA
| | - Patrick T Davies
- Department of Psychology, University of Rochester, New York, NY, USA
| | | |
Collapse
|
4
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Yamada M, Shikama Y, Matsushita K. Long-Term Soft-Food Rearing in Young Mice Alters Brain Function and Mood-Related Behavior. Nutrients 2023; 15:2397. [PMID: 37242280 PMCID: PMC10222696 DOI: 10.3390/nu15102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between caloric and nutrient intake and overall health has been extensively studied. However, little research has focused on the impact of the hardness of staple foods on health. In this study, we investigated the effects of a soft diet on brain function and behavior in mice from an early age. Mice fed a soft diet for six months exhibited increased body weight and total cholesterol levels, along with impaired cognitive and motor function, heightened nocturnal activity, and increased aggression. Interestingly, when these mice were switched back to a solid diet for three months, their weight gain ceased, total cholesterol levels stabilized, cognitive function improved, and aggression decreased, while their nocturnal activity remained high. These findings suggest that long-term consumption of a soft diet during early development can influence various behaviors associated with anxiety and mood regulation, including weight gain, cognitive decline, impaired motor coordination, increased nocturnal activity, and heightened aggression. Therefore, the hardness of food can impact brain function, mental well-being, and motor skills during the developmental stage. Early consumption of hard foods may be crucial for promoting and maintaining healthy brain function.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan;
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| |
Collapse
|
5
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
6
|
Kukuia KK, Appiah F, Dugbartey GJ, Takyi YF, Amoateng P, Amponsah SK, Adi-Dako O, Koomson AE, Ayertey F, Adutwum-Ofosu KK. Extract of Mallotus oppositifolius (Geiseler) Müll. Arg. increased prefrontal cortex dendritic spine density and serotonin and attenuated para-chlorophenylalanine-aggravated aggressive and depressive behaviors in mice. Front Pharmacol 2022; 13:962549. [PMID: 36386158 PMCID: PMC9649488 DOI: 10.3389/fphar.2022.962549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background/Aim: Depression-related aggression is linked to serotonin (5-HT) and dendritic spine alterations. Although Mallotus oppositifolius extract (MOE) has potential for reducing this effect, its specific role remains uncertain. Herein, we evaluated this potential and associated alterations in the brain. Methods: A standard resident-intruder model of para-chlorophenylalanine (pCPA)-induced depression-associated aggression in male ICR mice was used. The resident mice received pCPA (300 mg/kg, i. p.) for 3 consecutive days while saline-treated mice served as negative control. The pCPA aggressive mice were subsequently treated orally with either MOE (30, 100, 300 mg/kg), fluoxetine (20 mg/kg), tryptophan (20 mg/kg) or saline (untreated pCPA group) for 28 days. Locomotor activity was assessed using open field test. Serotonin (5-HT) levels in mice brain and phytochemical fingerprint of MOE were determined by high performance liquid chromatography (HPLC) while gas chromatography-mass spectrometry (GC-MS) was used to identify constituents of MOE. Dendritic spine density and morphology were evaluated using Golgi-Cox staining technique and analyzed with ImageJ and Reconstruct software. Results: Administration of pCPA induced aggressive behavior in mice, evidenced by increased attack behaviors (increased number and duration of attacks), which positively correlated with squeaking and tail rattling. MOE treatment significantly reduced these characteristics of aggression in comparison with vehicle (non-aggressive) and untreated pCPA groups (p < 0.001), and also reduced social exploration behavior. Although the behavioral effects of MOE were comparable to those of fluoxetine and tryptophan, these effects were quicker compared to fluoxetine and tryptophan. Additionally, MOE also markedly increased 5-HT concentration and dendritic spine density in the prefrontal cortex relative to vehicle and untreated pCPA groups (p < 0.05). Interestingly, these behavioral effects were produced without compromising locomotor activity. GC-MS analysis of the MOE identified 17 known compounds from different chemical classes with anti-inflammatory, antioxidant, neuroprotective and antidepressant activities, which may have contributed to its anti-aggressive effect. Conclusion: MOE decreased depression-associated aggressive behavior in mice via increased 5-HT concentration and dendritic spine density in the prefrontal cortex. The MOE-mediated effects were faster than those of fluoxetine and tryptophan. Our finding suggests that MOE may have clinical promise in decreasing aggressive and depressive behaviors.
Collapse
Affiliation(s)
- Kennedy K.E. Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Kennedy K.E. Kukuia, ; Kevin K. Adutwum-Ofosu,
| | - Frimpong Appiah
- Department of Community Health and Medicine, School of Food and Health Sciences, Anglican University College of Technology, Nkoranza, Ghana
| | - George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Yaw F. Takyi
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Seth K. Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Awo E. Koomson
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frederick Ayertey
- Department of Phytochemistry, Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Kevin K. Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Kennedy K.E. Kukuia, ; Kevin K. Adutwum-Ofosu,
| |
Collapse
|
7
|
Meng X, Grandjean J, Sbrini G, Schipper P, Hofwijks N, Stoop J, Calabrese F, Homberg J. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem Neurosci 2022; 13:2974-2981. [PMID: 36197033 PMCID: PMC9585586 DOI: 10.1021/acschemneuro.2c00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
The central serotoninergic system is critical for stress responsivity and social behavior, and its dysregulations have been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to develop new treatment approaches. Previously, mice lacking tryptophan hydroxylase 2 (Tph2) have been developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying mechanisms. In this study, we used a Tph2 knockout (Tph2-/-) male rat model to study how the lack of serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated in these behaviors, we furthermore explored whether the effects of Tph2 knockout on behavior would relate to changes in the oxytocin system. We show that Tph2-/- rats display reduced anxiety-like behavior and a high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in the infralimbic and prelimbic cortices, paraventricular nucleus, dorsal raphe nucleus, and some subregions of the hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex and paraventricular nucleus but not the dorsal raphe nucleus, central amygdala, and hippocampus. In conclusion, our study demonstrated reduced anxiety but exaggerated aggression in Tph2-/- male rats and reveals for the first time a potential involvement of altered oxytocin system function. Meanwhile, the research of oxytocin could be distinguished in almost any psychiatric disorder including anxiety and mental disorders. This research potentially proposes a new target for the treatment of such disorders, from a genetic serotonin deficiency aspect.
Collapse
Affiliation(s)
- Xianzong Meng
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
- Department
of Medical Imaging, Radboud University Medical
Centre, 6525 GA Nijmegen, The Netherlands
| | - Giulia Sbrini
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Pieter Schipper
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Nita Hofwijks
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Jesse Stoop
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Francesca Calabrese
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Judith Homberg
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
8
|
Dukart J, Markello RD, Raine A, Eickhoff SB, Poeppl TB. Aberrant Brain Activity in Individuals With Psychopathy Links to Receptor Distribution, Gene Expression, and Behavior. Biol Psychiatry 2022; 91:e45-e47. [PMID: 34861978 DOI: 10.1016/j.biopsych.2021.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Juergen Dukart
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adrian Raine
- Department of Criminology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timm B Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Dos Santos ACM, Dos Santos BRC, Dos Santos BB, Bastos DM, de Moura EL, Neto ABL, E Silva ACP, de Farias KF, de Medeiros Alves V, Nardi AE, de Souza Figueiredo EVM. The Role of the IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) Polymorphisms of Impulsive and Aggressive Personality Traits in Cocaine/Crack Users. Neuroscience 2022; 498:280-288. [PMID: 35716966 DOI: 10.1016/j.neuroscience.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Cytokines and nitric oxide have been associated with impulsive and aggressive personality traits. We conducted the first study that investigated the role of SNPs in cytokines and nitric oxide genes and the influence in the progression of aggressive and impulsive behavior in 107 of cocaine and crack users. In this case-control, IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) polymorphisms were determined by Real-Time PCR. In addition, the relationship between these polymorphisms and Impulsivity and Aggression was determined. We found that the physical aggressiveness sub score was negatively correlated with the C allele of -819C/T polymorphism of the IL-10 (b = -0.14; p = 0.04). The T allele of the SNP -786T/C of the ENOS gene positively predicts traits of physical aggressiveness (b = 0.14; p = 0.04). The GA genotype (b = 0.22; p = 0.01) and the A allele (b = 0.15; p = 0.02) of -308 G/A polymorphism of the TNFA were positively correlated with aggressiveness physical. The GA genotype (b = 0.20; p = 0.03) was positively correlated with aggressiveness verbal. IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) polymorphisms might be associated with high risk of aggressive and impulsive behavior.
Collapse
Affiliation(s)
- Ana Caroline Melo Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Barbara Rayssa Correia Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Bruna Brandão Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Dhayane Magalhães Bastos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil
| | - Edilson Leite de Moura
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Abel Barbosa Lira Neto
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil
| | | | - Karol Fireman de Farias
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Department of Nursing, Postgraduate Program in Nursing of the Federal University of Alagoas, Brazil
| | | | - Antônio Egídio Nardi
- Federal University of Rio de Janeiro, Brazilian Academy of Sciences and National Academy of Medicine, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil.
| |
Collapse
|
10
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Coria-Avila GA, Pfaus JG, Orihuela A, Domínguez-Oliva A, José-Pérez N, Hernández LA, Mota-Rojas D. The Neurobiology of Behavior and Its Applicability for Animal Welfare: A Review. Animals (Basel) 2022; 12:ani12070928. [PMID: 35405916 PMCID: PMC8997080 DOI: 10.3390/ani12070928] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Animal welfare is the result of physical and psychological well-being and is expected to occur if animals are free: (1) from hunger, thirst and malnutrition, (2) from discomfort, (3) from pain, (4) to express normal behavior, and (5) from fear and distress. Nevertheless, well-being is not a constant state but rather the result of certain brain dynamics underlying innate motivated behaviors and learned responses. Thus, by understanding the foundations of the neurobiology of behavior we fathom how emotions and well-being occur in the brain. Herein, we discuss the potential applicability of this approach for animal welfare. First, we provide a general view of the basic responses coordinated by the central nervous system from the processing of internal and external stimuli. Then, we discuss how those stimuli mediate activity in seven neurobiological systems that evoke innate emotional and behavioral responses that directly influence well-being and biological fitness. Finally, we discuss the basic mechanisms of learning and how it affects motivated responses and welfare. Abstract Understanding the foundations of the neurobiology of behavior and well-being can help us better achieve animal welfare. Behavior is the expression of several physiological, endocrine, motor and emotional responses that are coordinated by the central nervous system from the processing of internal and external stimuli. In mammals, seven basic emotional systems have been described that when activated by the right stimuli evoke positive or negative innate responses that evolved to facilitate biological fitness. This review describes the process of how those neurobiological systems can directly influence animal welfare. We also describe examples of the interaction between primary (innate) and secondary (learned) processes that influence behavior.
Collapse
Affiliation(s)
- Genaro A. Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| | - James G. Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Department of Psychology and Life Sciences, Charles University, 182 00 Prague, Czech Republic
- Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Nancy José-Pérez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Laura Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| |
Collapse
|
12
|
Kwon CY, Suh HW, Kim JW, Chung SY. Anti-anger Effects of Herbal Medicine: A Mini-Review of Rat Studies. Chin J Integr Med 2022; 28:263-271. [PMID: 35084699 DOI: 10.1007/s11655-022-3506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To analyze the available data on the anti-anger effects of herbal medicines (HMs) as well as their underlying mechanisms in rat models. METHODS From 6 electronic databases [PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Wanfang, Oriental Medicine Advanced Searching Integrated System (OASIS), and Research Information Sharing Service (RISS)], relevant animal experiments were searched by using "anger," "rats," and "animal" as search keywords. The last search was conducted on November 22, 2019, and all experiments involving rat models of anger and treatment using HMs published until the date of the search were considered. RESULTS A total of 24 studies with 16 kinds of HMs were included. Most studies have used the "tail irritating method" and "social isolation and resident intruder" method to establish anger models. According to the included studies, the therapeutic mechanisms of HMs for anger regulation and important herbs by their frequency and/or preclinical evidence mainly incladed regulation of hemorheology (Bupleuri Radix, Paeoniae Radix Alba, and Glycyrrhizae Radix), regulation of sex hormones (Bupleuri Radix, Cyperi Rhizoma, and Paeoniae Radix Alba), regulation of neurotransmitters (Cyperi Rhizoma), regulation of anger-related genes (Bupleuri Radix, Glycyrrhizae Radix, and Paeoniae Radix Alba), and other effects. Overall, Liver (Gan) qi-smoothing herbs including Bupleuri Radix and Cyperi Rhizoma were the most frequently used. CONCLUSIONS This review found the frequent methods to establish an anger model, and major mechanisms of anti-anger effects of HMs. Interestingly, some Liver qi-smoothing herbs have been frequently used to investigate the anti-anger effects of HM. These findings provide insight into the role and relevance of HMs in the field of anger management.
Collapse
Affiliation(s)
- Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Hyo-Weon Suh
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea
| | - Sun-Yong Chung
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea.
| |
Collapse
|
13
|
Fanelli G, Sokolowski M, Wasserman D, Kasper S, Zohar J, Souery D, Montgomery S, Albani D, Forloni G, Ferentinos P, Rujescu D, Mendlewicz J, De Ronchi D, Serretti A, Fabbri C. Polygenic risk scores for neuropsychiatric, inflammatory, and cardio-metabolic traits highlight possible genetic overlap with suicide attempt and treatment-emergent suicidal ideation. Am J Med Genet B Neuropsychiatr Genet 2022; 189:74-85. [PMID: 35191176 PMCID: PMC9305542 DOI: 10.1002/ajmg.b.32891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Suicide is the second cause of death among youths. Genetics may contribute to suicidal phenotypes and their co-occurrence in other neuropsychiatric and medical conditions. Our study aimed to investigate the association of polygenic risk scores (PRSs) for 24 neuropsychiatric, inflammatory, and cardio-metabolic traits/diseases with suicide attempt (SA) or treatment-worsening/emergent suicidal ideation (TWESI). PRSs were computed based on summary statistics of genome-wide association studies. Regression analyses were performed between PRSs and SA or TWESI in four clinical cohorts. Results were then meta-analyzed across samples, including a total of 688 patients with SA (Neff = 2,258) and 214 with TWESI (Neff = 785). Stratified genetic covariance analyses were performed to investigate functionally cross-phenotype PRS associations. After Bonferroni correction, PRS for major depressive disorder (MDD) was associated with SA (OR = 1.24; 95% CI = 1.11-1.38; p = 1.73 × 10-4 ). Nominal associations were shown between PRSs for coronary artery disease (CAD) (p = 4.6 × 10-3 ), loneliness (p = .009), or chronic pain (p = .016) and SA, PRSs for MDD or CAD and TWESI (p = .043 and p = .032, respectively). Genetic covariance between MDD and SA was shown in 86 gene sets related to drugs having antisuicidal effects. A higher genetic liability for MDD may underlie a higher SA risk. Further, but milder, possible modulatory factors are genetic risk for loneliness and CAD.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly,Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill‐Health (NASP)Karolinska InstituteStockholmSweden
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill‐Health (NASP)Karolinska InstituteStockholmSweden
| | | | - Siegfried Kasper
- Department of Psychiatry and PsychotherapyMedical University ViennaViennaAustria
| | - Joseph Zohar
- Department of PsychiatrySheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv UniversityTel HashomerIsrael
| | - Daniel Souery
- Laboratoire de Psychologie MédicaleUniversité Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie MédicaleBrusselsBelgium
| | | | - Diego Albani
- Laboratory of Biology of Neurodegenerative DisordersDepartment of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative DisordersDepartment of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | | | - Dan Rujescu
- University Clinic for PsychiatryPsychotherapy and Psychosomatic, Martin‐Luther‐University, Halle‐WittenbergGermany
| | | | - Diana De Ronchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly,Social, Genetic & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| |
Collapse
|
14
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
15
|
Ten Eyck GR, Ten Eyck LM. Serotonin and vasotocin function in territoriality. Pharmacol Biochem Behav 2020; 199:173068. [PMID: 33144208 DOI: 10.1016/j.pbb.2020.173068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
This ethopharmacological investigation comprised a long-term field study that examined the function of serotonergic and vasotonergic systems in territoriality. Adult territorial and non-territorial (silent) male coquí frogs (Eleutherodactylus coqui) were injected (IP) with either arginine vasotocin (AVT) or one of two serotonin agonists, 5-HT2A/2C selective agonist, (±) DOI - [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane], or 2) the 5-HT1A selective agonist, 8-OH-DPAT - [(±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene]. Control groups received saline injections. Each male received two injections. Following the first injection, whether AVT or a 5HT agonist, the male was observed so that behavior could be documented prior to the second injection, which consisted of the other drug class. All frogs were marked, placed back in the exact location as captured, and observed for all behaviors and vocalizations. Territoriality in E. coqui includes several behavioral components: movement into a calling site, presentation of dominant physical displays, emitting advertisement calls, and defense a territory (including the use of physical force and/or aggressive vocalizations). This investigation found that particular territorial behaviors were significantly influenced by 5HT and AVT action. Initiation of advertisement calling is activated by AVT and suppressed by 5HT, calling rate is affected by 5HT activation, presentation of dominant physical displays are activated by AVT and repressed by 5HT activation, and movement associated with activation of territorial behavior is stimulated by AVT. These data suggested that both 5HT and AVT have a profound impact on territoriality and are two fundamental neuroendocrine systems that govern territorial behavior in social systems.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA.
| | - Lily M Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
16
|
Nazarov O, Li G. Trends in alcohol and marijuana detected in homicide victims in 9 US states: 2004-2016. Inj Epidemiol 2020; 7:2. [PMID: 32127050 PMCID: PMC6943884 DOI: 10.1186/s40621-019-0229-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 11/12/2022] Open
Abstract
Background Use of alcohol and other drugs is a major risk factor for assaultive injuries and violent deaths. The purpose of this study was to examine the time trends in the prevalence of alcohol and marijuana detected in homicide victims. Methods We analyzed toxicological testing data for homicide victims (n = 12,638) from the 2004–2016 National Violent Death Reporting System in 9 US states (Colorado, Georgia, Massachusetts, New Jersey, Oregon, Rhode Island, South Carolina, Virginia, and Wisconsin). We used the Cochran-Armitage test for trend to assess the statistical significance of changes in the prevalence of alcohol and marijuana detected in these homicide victims during the study period. Results Overall, 37.5% of the homicide victims tested positive for alcohol, 31.0% positive for marijuana, and 11.4% positive for both substances. During the study period, the prevalence of marijuana increased from 22.3% (95% confidence interval [CI] = 19.6, 25.0) in 2004 to 42.1% (95% CI = 39.2, 44.9) in 2016 (Z = -15.7; P < .001) while the prevalence of alcohol declined slightly (Z = 1.5; P = 0.143). Marked increases in the prevalence of marijuana were observed in both sexes and across age and racial groups. Conclusions Marijuana is increasingly detected in homicide victims irrespective of demographic characteristics. Further research is needed to assess the causal role of marijuana use and concurrent use of marijuana and alcohol in homicide victimization.
Collapse
Affiliation(s)
- Oybek Nazarov
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Guohua Li
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA. .,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
17
|
Morandini L, Ramallo MR, Scaia MF, Höcht C, Somoza GM, Pandolfi M. Dietary L-tryptophan modulates agonistic behavior and brain serotonin in male dyadic contests of a cichlid fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:867-880. [PMID: 31691094 DOI: 10.1007/s00359-019-01373-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 02/03/2023]
Abstract
Although some studies have investigated the effects of dietary L-tryptophan on agonistic behavior, research on adult fish specimens is still lacking. Moreover, submissive behaviors have been generally overlooked. We focused on agonistic behavior between males of the cichlid fish Cichlasoma dimerus, in dyadic encounters held in a novel context after being fed or not with an L-tryptophan enriched diet (TRP) for 2 weeks. We arranged three different dyads: control/control (control conditions: not TRP enriched), control/TRP, and TRP/TRP. We also registered the response of the brain serotonergic system in four brain regions. TRP/TRP dyads showed higher latencies to first attack, lower overall aggression, and lower proportions of bites and passive copings (submissive display) compared to control/control. TRP dominant males performed fewer bites with respect to controls, and subordinate males opposed to TRP males showed fewer passive copings. Higher serotonergic activities were found in subordinates' optic tectum and in the telencephalon and preoptic area/hypothalamus of TRP males. Altogether, results point out that dietary L-tryptophan reduced males' motivation to attack and dominant aggression, which consequently influenced subordinate agonistic repertory. In addition, males within TRP/TRP dyads showed a switch in their behavioral agonistic repertory. These behavioral outcomes were probably due to modifications at brain serotonergic functioning.
Collapse
Affiliation(s)
- L Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - M R Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - M F Scaia
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - C Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2 (B 7130IWA), Chascomús, Buenos Aires, Argentina
| | - M Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Connor DF, Newcorn JH, Saylor KE, Amann BH, Scahill L, Robb AS, Jensen PS, Vitiello B, Findling RL, Buitelaar JK. Maladaptive Aggression: With a Focus on Impulsive Aggression in Children and Adolescents. J Child Adolesc Psychopharmacol 2019; 29:576-591. [PMID: 31453715 PMCID: PMC6786344 DOI: 10.1089/cap.2019.0039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Aggressive behavior is among the most common reasons for referral to psychiatric clinics and confers significant burden on individuals. Aggression remains poorly defined; there is currently no consensus on the best ways to recognize, diagnose, and treat aggression in clinical settings. In this review, we synthesize the available literature on aggression in children and adolescents and propose the concept of impulsive aggression (IA) as an important construct associated with diverse and enduring psychopathology. Methods: Articles were identified and screened from online repositories, including PubMed, PsychInfo, the Cochrane Database, EMBase, and relevant book chapters, using combinations of search terms such as "aggression," "aggressive behavio(u)r," "maladaptive aggression," "juvenile," and "developmental trajectory." These were evaluated for quality of research before being incorporated into the article. The final report references 142 sources, published from 1987 to 2019. Results: Aggression can be either adaptive or maladaptive in nature, and the latter may require psychosocial and biomedical interventions when it occurs in the context of central nervous system psychopathology. Aggression can be categorized into various subtypes, including reactive/proactive, overt/covert, relational, and IA. IA in psychiatric or neurological disorders is reviewed along with current treatments, and an algorithm for systematic evaluation of aggression in the clinical setting is proposed. Conclusions: IA is a treatable form of maladaptive aggression that is distinct from other aggression subtypes. It occurs across diverse psychiatric and neurological diagnoses and affects a substantial subpopulation. IA can serve as an important construct in clinical practice and has considerable potential to advance research.
Collapse
Affiliation(s)
- Daniel F. Connor
- Department of Psychiatry, Division of Child & Adolescent Psychiatry, University of Connecticut Medical School, Farmington, Connecticut.,Address correspondence to: Daniel F. Connor, MD, Department of Psychiatry, Division of Child & Adolescent Psychiatry, University of Connecticut Medical School, 263 Farmington Avenue, MC 1410, Farmington, CT 06030-1410
| | - Jeffrey H. Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Lawrence Scahill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Adelaide S. Robb
- Department of Psychiatry and Behavioral Sciences, Children's National Medical Center, Washington, District of Columbia.,Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, District of Columbia
| | - Peter S. Jensen
- Department of Psychiatry, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Benedetto Vitiello
- Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| | - Robert L. Findling
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland.,Department of Psychiatry and Behavioral Sciences, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Wang Y, Wang X, Chen J, Li S, Zhai H, Wang Z. Melatonin pretreatment attenuates acute methamphetamine-induced aggression in male ICR mice. Brain Res 2019; 1715:196-202. [PMID: 30953606 DOI: 10.1016/j.brainres.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Aggression is one of the symptoms of methamphetamine (MA) use and withdrawal, which can exacerbate MA addiction and relapse. Many studies have demonstrated that poor sleep is significantly associated with aggression. Melatonin has been indicated to be effective in treating sleep disorders induced by MA, and it can also protect neuronal cells against MA-induced neurotoxicity. However, the underlying effects of melatonin on MA-reduced aggression remain unclarified. This study was designed to evaluate the effects of melatonin on acute MA-induced aggressive behavior in male ICR mice and the effects on neurotransmitters related to aggression. Fifty male ICR mice were randomly assigned to control and treatment groups pretreated with MA (3 mg/kg) or melatonin (2.5, 5, 10 mg/kg) plus MA. Aggressive behaviors were observed through isolation-induced aggression in the resident-intruder model. High-performance liquid chromatography combined with electrochemical detection (HPLC-ECD) was used to anatomize the levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA), and the concentrations of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in the hippocampus involved in behavior processing. The results showed that acute MA administration decreased latency to initial attacks and thereby increased the number and total duration of attacks. Furthermore, HVA level as well as 5-HIAA and 5-HT turnover estimated by 5-HIAA/5-HT ratios declined compared to those in the vehicle group. The medium melatonin pretreatment dose (5 mg/kg) could significantly reverse acute MA-induced aggressive behavior in the form of prolonging latency to initial attacks and thereby attenuating the number of attacks and total duration of attacks. HVA and 5-HIAA levels, 5-HT turnover estimated by 5-HIAA/5-HT ratios, and DA turnover estimated by HVA/DA ratios and (DOPAC + HVA)/DA ratios were elevated compared to those in the MA group. These results indicate that the DA and 5-HT systems are involved in the processes of MA-induced aggressive behaviors and that melatonin has the capacity to reverse MA-induced aggressive behaviors.
Collapse
Affiliation(s)
- Yuncui Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; School of Nursing, Hubei University of Chinese Medicine, No. 1 West Huangjia Lake Road, Hong Shan District, Wuhan 430065, China.
| | - Xiaohong Wang
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, China.
| | - Jiayan Chen
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shuaiqi Li
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Haifeng Zhai
- National Institute on Drug Dependence, Peking University, 38#, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Zengzhen Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
20
|
Single nucleotide polymorphisms, variable number tandem repeats and allele influence on serotonergic enzyme modulators for aggressive and suicidal behaviors: A review. Pharmacol Biochem Behav 2019; 180:74-82. [PMID: 30928299 DOI: 10.1016/j.pbb.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/22/2022]
Abstract
The serotonergic system plays key regulatory roles in cognition and emotion. Several lines of evidence suggest that genetic variation is associated with aggressive and suicidal behaviors. Genetic studies have largely focused on three types of variations: single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs), and alleles. 95 published papers (49 papers for aggression and 46 for suicide) were reviewed to summarize the impact of SNPs, VNTRs, and alleles of tryptophan hydroxylase (TPH, the rate-limiting enzyme in serotonin [5-HT] synthesis), 5-HT transporter (5-HTT), serotonergic receptors, monoamine oxidase (an enzyme that catalyzes 5-HT degradation) on aggression and suicidal behaviors. These study samples include healthy controls, psychiatric disease patients, and animal models. This article mainly reviews studies on the relationship between 5-HT transmissions and genetic variations involved in aggression (particularly impulsive aggression) or suicide in people with different ethnicities and psychiatric disorders. We found that most SNPs, VNTRs, and alleles exerted influences on aggression or suicide. Only A128C in TPH1, A138G in 5-HT2A, and L type in the VNTR of monoamine oxidase A (MAOA) affected both aggression and suicide. The associations between some genetic variations and aggression/suicide may be influenced by gender, age, ethnicity, psychiatric disease, and even parenting or prenatal stress. These findings may help clarify how genetic and environmental factors influence the development of aggressive and suicidal behaviors.
Collapse
|
21
|
Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. Proc Natl Acad Sci U S A 2019; 116:3805-3810. [PMID: 30808766 DOI: 10.1073/pnas.1813554116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In Drosophila larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyraminehonoka receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-β-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.
Collapse
|
22
|
Oxytocin and vasopressin increase male-directed threats and vocalizations in female macaques. Sci Rep 2018; 8:18011. [PMID: 30573736 PMCID: PMC6301990 DOI: 10.1038/s41598-018-36332-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
In a previous study, we reported that intranasal delivery of both oxytocin (OT) and arginine vasopressin (AVP) to male macaques relaxes spontaneous social interactions, flattens the existing dominance hierarchy, and increases behavioral synchrony with other monkeys. Here we report that intranasal OT and AVP administration modulates the behaviors of female macaque monkeys, but in robustly different ways from males. Most notably, both neuropeptides increase threatening and vocalization behaviors of females when they encounter males, and these behaviors effectively increase the social status of females over males. While OT and AVP heighten the confrontational nature of intersexual encounters, both peptides relax interactions between females. Finally, as previously reported for males, treating an individual female monkey with OT or AVP significantly modulates the behavior of her non-treated partner. Together, these findings show that OT and AVP can either inhibit or promote aggression, depending on sex and behavioral context, and call for a more careful, systematic examination of the functions of these neuropeptides in both sexes, especially in the context of therapeutics for human social disorders.
Collapse
|
23
|
Toshchakova VA, Bakhtiari Y, Kulikov AV, Gusev SI, Trofimova MV, Fedorenko OY, Mikhalitskaya EV, Popova NK, Bokhan NA, Hovens JE, Loonen AJ, Wilffert B, Ivanova SA. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders. Neuropsychobiology 2018; 75:200-210. [PMID: 29621775 PMCID: PMC5981829 DOI: 10.1159/000487484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. METHODS Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. RESULTS No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. CONCLUSIONS The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed.
Collapse
Affiliation(s)
- Valentina A. Toshchakova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yalda Bakhtiari
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands
| | - Alexander V. Kulikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey I. Gusev
- Federal State Educational Institution of Higher Education “Kemerovo State Institute of Culture”, Kemerovo, Russian Federation
| | - Marina V. Trofimova
- Psychology Department, Federal State Institution “Correctional Facility No. 43”, Penitentiary Service of Russia for the Kemerovo Region, Kemerovo, Russian Federation
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Ekaterina V. Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nina K. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk State University, Tomsk, Russian Federation
| | - Johannes E. Hovens
- Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J.M. Loonen
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands,GGZ Westelijk Noord-Brabant, Bergen op Zoom, The Netherlands,*Prof. Anton J.M. Loonen, MD, PharmD, PhD, Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, NL-9713AV Groningen (The Netherlands), E-Mail
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| |
Collapse
|
24
|
Psicobiología de la agresión y la violencia. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2017. [DOI: 10.33881/2027-1786.rip.10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
El presente trabajo expone la revisión y análisis de distintas investigaciones realizadas por múltiples autores quienes han aportado valiosos descubrimientos para la comprensión de las conductas agresivas y los comportamientos violentos de los seres humanos. La agresión y la violencia son conductas bastante complejas que, en dosis moderadas, pueden tener unafunción adaptativa en entornos ambientales exigentes que supongan retos para la supervivencia del individuo. De este modo, la agresión y la violencia podrían considerarse como parte de una misma dimensión continua (Vassos, 2014). Diversos factores psicobiológicos convergen e interactúan en el marco de las causas y consecuencias de la agresión y la violencia, como las bases genéticas (genes y herencia), la neuroquímica del cerebro (neurotransmisores y hormonas), las estructuras subcorticales (hipotálamo, amígdala, corteza cingulada anterior, fascículo uncinado), el desempeño de la corteza prefrontal y las funciones ejecutivas (corteza orbitofrontal, corteza ventromedial, corteza dorsolateral). No podemos olvidar la interacción de los factores anteriormente mencionados con la interacción e influencia de los factores ambientales, psicosociales y culturales en la manifestación de actos violentos por parte de los seres humanos
Collapse
|
25
|
Pinna M, Manchia M. Preventing aggressive/violent behavior: a role for biomarkers? Biomark Med 2017; 11:701-704. [PMID: 30669857 DOI: 10.2217/bmm-2017-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Martina Pinna
- Unit of Psychiatry, Department of Mental Health & Addiction Services, Regional Health Agency, Oristano, Italy.,Section of Neurosciences & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Section of Psychiatry, Department of Medical Sciences & Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
27
|
Dipeptidyl Peptidase 4 Inhibitors Diprotin A and Sitagliptin Administered on Weeks 2-3 of Postnatal Development Modulate Monoamine Metabolism in the Striatum of Adult Rats. Bull Exp Biol Med 2017; 163:190-194. [PMID: 28726205 DOI: 10.1007/s10517-017-3763-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 10/19/2022]
Abstract
The levels of monoamines and their metabolites in brain structures of adult (3-month-old) rats with emotional and motivational disorders induced by inhibitors of dipeptidyl peptidase 4 (DPP-4; EC 3.4.14.5) diprotin A and sitagliptin on weeks 2-3 of postnatal development (postnatal days 5-18) were studied by HPLC with electrochemical detection. A significant decrease in the level of serotonin metabolite, 5-hydroxyindoleacetic acid, and a pronounced tendency towards reduced serotonin level were detected in the striatum of rats in both study groups. In adult rats treated with diprotin A during the neonatal period, a tendency towards activation of dopamine metabolism was observed (judging from DOPAC/DA ratio). The levels of monoamines and their metabolites in the frontal cortex, hypothalamus, and amygdala remained unchanged. The findings suggest that administration of DPP-4 inhibitors during the neonatal period induces long-term dysfunction of the serotonergic and dopaminergic systems of the brain.
Collapse
|
28
|
Johnson RM, LaValley M, Schneider KE, Musci RJ, Pettoruto K, Rothman EF. Marijuana use and physical dating violence among adolescents and emerging adults: A systematic review and meta-analysis. Drug Alcohol Depend 2017; 174:47-57. [PMID: 28314193 PMCID: PMC5521998 DOI: 10.1016/j.drugalcdep.2017.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/09/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND As restrictions on marijuana are loosened, there is concern of a coming increase in marijuana use among adolescents and emerging adults, which could be coupled with commensurate increases in behavioral problems associated with use, such as physical dating violence (PDV). To summarize what is known about the association between marijuana use and PDV victimization and perpetration among 11-21year olds, we conducted a systematic review and meta-analysis of the relevant literature published between 2003 and 2015. METHODS Candidate articles were identified with a systematic search, and we used inclusion and exclusion criteria to review titles, abstracts, and the full text of studies for consideration. There were 13 articles examining marijuana in association with PDV; five addressed victimization and 11 addressed perpetration. RESULTS Findings suggest that marijuana use is associated with a 54% increase in the odds PDV victimization, and a 45% increase in the odds of perpetration. CONCLUSIONS Findings suggest that dating violence is a correlate of marijuana use, and that association is strongest among adolescents (vs. emerging adults) and girls (vs. boys). Therefore, it should be routinely included as a core data item in marijuana surveillance systems, so as to allow for behavioral monitoring.
Collapse
Affiliation(s)
- Renee M Johnson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| | - Michael LaValley
- Boston University School of Public Health, Boston, MA, United States
| | - Kristin E Schneider
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rashelle J Musci
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kayley Pettoruto
- Boston University School of Public Health, Boston, MA, United States
| | - Emily F Rothman
- Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
29
|
Marini S, Vellante F, Matarazzo I, De Berardis D, Serroni N, Gianfelice D, Olivieri L, Di Renzo F, Di Marco A, Fornaro M, Orsolini L, Valchera A, Iasevoli F, Mazza M, Perna G, Martinotti G, Di Giannantonio M. Inflammatory markers and suicidal attempts in depressed patients: A review. Int J Immunopathol Pharmacol 2016; 29:583-594. [PMID: 26729403 PMCID: PMC5806831 DOI: 10.1177/0394632015623793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder is a chronic and invalidating psychiatric illness and is associated with a greater risk of suicidal behaviors. In recent decades many data have supported a biological link between depressive states and inflammation. Pro-inflammatory cytokines have been found to rise, first of all TNF-α and IL-6. Suicidal behaviors have been consistently associated with increased levels of IL-6 and decreased levels of IL-2. The aim of this review is to investigate the relationship between inflammatory markers in depressed patients with or without suicidal attempts compared to healthy controls.
Collapse
Affiliation(s)
- Stefano Marini
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
| | - Federica Vellante
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
| | - Ilaria Matarazzo
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
| | - Domenico De Berardis
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Nicola Serroni
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Daniela Gianfelice
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Luigi Olivieri
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Fulvia Di Renzo
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Anna Di Marco
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy
| | - Michele Fornaro
- Department of "Scienze della Formazione", University of Catania, Italy
| | - Laura Orsolini
- United Hospitals, Academic Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, UK
| | | | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapeutics, Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Monica Mazza
- Department of Health Science, University of L'Aquila, L'Aquila, Italy
| | - Giampaolo Perna
- Hermanas Hospitalarias, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, Como, Italy
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Florida, USA
- Department of Psychiatry and Neuropsychology, University of Maastricht, The Netherlands
| | - Giovanni Martinotti
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
| | - Massimo Di Giannantonio
- Department of Neurosciences and Imaging, Chair of Psychiatry, University "G. D'Annunzio", Chieti, Italy
| |
Collapse
|
30
|
Abstract
Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans.
Collapse
|
31
|
Kalbitzer U, Roos C, Kopp GH, Butynski TM, Knauf S, Zinner D, Fischer J. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini. BMC Evol Biol 2016; 16:121. [PMID: 27287312 PMCID: PMC4901440 DOI: 10.1186/s12862-016-0693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aggressive behaviors are an integral part of competitive interactions. There is considerable variation in aggressiveness among individuals both within and among species. Aggressiveness is a quantitative trait that is highly heritable. In modern humans and macaques (Macaca spp.), variation in aggressiveness among individuals is associated with polymorphisms in the serotonergic (5-HT) neurotransmitter system. To further investigate the genetics underlying interspecific variation in aggressiveness, 123 wild individuals from five baboon species (Papio papio, P. hamadryas, P. anubis, P. cynocephalus, and P. ursinus) were screened for two polymorphisms in promoter regions of genes relevant for the 5-HT system (5-HTTLPR and MAOALPR). RESULTS Surprisingly, despite considerable interspecific variation in aggressiveness, baboons are monomorphic in 5-HTTLPR, except for P. hamadryas, which carries one additional allele. Accordingly, this locus cannot be linked to behavioral variation among species. A comparison among 19 papionin species, including nine species of macaques, shows that the most common baboon allele is similar to the one described for Barbary macaques (Macaca sylvanus), probably representing the ancestral allele in this tribe. It should be noted that (almost) all baboons live in Africa, but within Macaca only M. sylvanus lives on this continent. Baboons are, however, highly polymorphic in the so-called 'warrior gene' MAOALPR, carrying three alleles. Due to considerable variation in allele frequencies among populations of the same species, this genotype cannot be invoked to explain variation in aggressiveness at the species level. CONCLUSIONS This study provides another indication that 5-HTTLPR is not related to aggressiveness in primates per se, but may have been under differential selective pressures among taxa and potentially among populations in different geographic regions. The results on MAOALPR alleles in Papio indicate that variation in the metabolism of monoamine neurotransmitters and associated behaviors is more important among populations than among species. We, therefore, propose to compile behavioral data from additional populations of Papio to obtain further insight into the genetics underlying behavioral differences among primate species.
Collapse
Affiliation(s)
- Urs Kalbitzer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Gisela H Kopp
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Biology, University of Konstanz, 78457, Constance, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Thomas M Butynski
- Lolldaiga Hills Research Programme, Sustainability Centre Eastern Africa, P. O. Box 149, Nanyuki, 10400, Kenya
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
32
|
5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence. Behav Brain Res 2016; 310:20-5. [PMID: 27150226 DOI: 10.1016/j.bbr.2016.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested.
Collapse
|
33
|
Oxytocin-Induced Changes in Monoamine Level in Symmetric Brain Structures of Isolated Aggressive C57Bl/6 Mice. Bull Exp Biol Med 2016; 160:605-9. [DOI: 10.1007/s10517-016-3228-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/26/2022]
|
34
|
Franke SK, van Kesteren RE, Hofman S, Wubben JAM, Smit AB, Philippens IHCHM. Individual and Familial Susceptibility to MPTP in a Common Marmoset Model for Parkinson's Disease. NEURODEGENER DIS 2016; 16:293-303. [PMID: 26999593 DOI: 10.1159/000442574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Insight into susceptibility mechanisms underlying Parkinson's disease (PD) would aid the understanding of disease etiology, enable target finding and benefit the development of more refined disease-modifying strategies. METHODS We used intermittent low-dose MPTP (0.5 mg/kg/week) injections in marmosets and measured multiple behavioral and neurochemical parameters. Genetically diverse monkeys from different breeding families were selected to investigate inter- and intrafamily differences in susceptibility to MPTP treatment. RESULTS We show that such differences exist in clinical signs, in particular nonmotor PD-related behaviors, and that they are accompanied by differences in neurotransmitter levels. In line with the contribution of a genetic component, different susceptibility phenotypes could be traced back through genealogy to individuals of the different families. CONCLUSION Our findings show that low-dose MPTP treatment in marmosets represents a clinically relevant PD model, with a window of opportunity to examine the onset of the disease, allowing the detection of individual variability in disease susceptibility, which may be of relevance for the diagnosis and treatment of PD in humans.
Collapse
Affiliation(s)
- Sigrid K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Suicide is a complex public health problem of global importance. Suicidal behaviour differs between sexes, age groups, geographic regions, and sociopolitical settings, and variably associates with different risk factors, suggesting aetiological heterogeneity. Although there is no effective algorithm to predict suicide in clinical practice, improved recognition and understanding of clinical, psychological, sociological, and biological factors might help the detection of high-risk individuals and assist in treatment selection. Psychotherapeutic, pharmacological, or neuromodulatory treatments of mental disorders can often prevent suicidal behaviour; additionally, regular follow-up of people who attempt suicide by mental health services is key to prevent future suicidal behaviour.
Collapse
Affiliation(s)
- Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - David A Brent
- Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| |
Collapse
|
36
|
|
37
|
Krupina NA, Khlebnikova NN. Neonatal Exposure to the Dipeptidyl Peptidase-IV Inhibitors Diprotin A and Sitagliptin Induces Depression-Like Behavior, Anxiety, and Latent Aggression in Adolescent and Adult Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbbs.2016.64018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Cremers H, Lee R, Keedy S, Phan KL, Coccaro E. Effects of Escitalopram Administration on Face Processing in Intermittent Explosive Disorder: An fMRI Study. Neuropsychopharmacology 2016; 41:590-7. [PMID: 26105140 PMCID: PMC5130134 DOI: 10.1038/npp.2015.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/09/2022]
Abstract
The neurobiological underpinnings of intermittent explosive disorder (IED) are traditionally linked to deficiencies in the serotonergic system. In this study, we investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on brain activation during face processing. We expected that escitalopram would reduce amygdala activity in IED and in addition, we explored the effect in other social-emotional-related brain regions. A total of 17 subjects with current IED and 14 healthy controls participated in a randomized, double-blind, placebo-controlled, counterbalanced fMRI face processing study. The analysis focused on the faces compared to a fixation baseline contrast, and a factorial model with Group as between-subject and Drug as within-subject factor was tested. Group × Drug interaction effects were found in the amygdala (small volume corrected) and the left temporal parietal junction (TPJ; whole-brain corrected). Escitalopram increased amygdala activation in controls, but surprisingly not in IED. However, the TPJ showed increased activity in IED on escitalopram compared with placebo. The TPJ is associated with social-cognitive processes, such as perspective taking and empathy. The TPJ findings suggest that SSRI administration may reduce aggressive tendencies towards other people by enhancing these social-cognitive processes. Future research should further elucidate the long-term effects of SSRIs on various social-emotional tasks in IED.
Collapse
Affiliation(s)
- Henk Cremers
- Biological Science Division, Department of Psychiatry, University of Chicago, Chicago, IL, USA,Department of Psychiatry, University of Chicago, MC 3077, 5841 South Maryland Avenue, L-602, Chicago, IL 60637, USA, Tel: +1 773 834 4645, E-mail:
| | - Royce Lee
- Biological Science Division, Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Sarah Keedy
- Biological Science Division, Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Emil Coccaro
- Biological Science Division, Department of Psychiatry, University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Lewis AS, Mineur YS, Smith PH, Cahuzac ELM, Picciotto MR. Modulation of aggressive behavior in mice by nicotinic receptor subtypes. Biochem Pharmacol 2015. [PMID: 26212554 DOI: 10.1016/j.bcp.2015.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aggression is frequently comorbid with neuropsychiatric conditions and is a predictor of worse outcomes, yet current pharmacotherapies are insufficient and have debilitating side effects, precluding broad use. Multiple models of aggression across species suggest that the nicotinic acetylcholine receptor (nAChR) agonist nicotine has anti-aggressive (serenic) properties. Here we demonstrate dose-dependent serenic effects of acute nicotine administration in three distinct mouse strains: C57BL/6, BALB/c, and CD1. While acute nicotine administration (0.25mg/kg) modestly reduced solitary homecage locomotion, this could not account for nicotine's serenic effects since social encounters eliminated the hypolocomotor effect, and nicotine did not alter social interaction times. Pretreatment with the homomeric (α7 subunit) nAChR antagonist methyllycaconitine (5mg/kg), but not the heteromeric (β2 or β4 subunit-containing) nAChR antagonist dihydro-β-erythroidine (DHβE, 3mg/kg), blocked the serenic effects of nicotine. By contrast, pretreatment with DHβE blocked the effect of acute nicotine administration on locomotion, uncoupling nicotine's serenic and hypolocomotor effects. Finally, the α7 nAChR partial agonist GTS-21 reduced aggression in C57BL/6 mice. These results support the idea that acute nicotine administration has serenic effects and provide evidence for specificity of this effect distinct from effects on locomotion. Furthermore, pharmacological studies suggest that activation of α7 nAChRs underlies the serenic effects of nicotine. Further studies of nAChRs could enhance understanding of the neurobiology of aggression and may lead to the development of novel, more specific treatments for pathological aggression.
Collapse
Affiliation(s)
- Alan S Lewis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Philip H Smith
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Emma L M Cahuzac
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
40
|
Bethea CL, Phu K, Kim A, Reddy AP. Androgen metabolites impact CSF amines and axonal serotonin via MAO-A and -B in male macaques. Neuroscience 2015; 301:576-89. [PMID: 26086546 DOI: 10.1016/j.neuroscience.2015.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 01/11/2023]
Abstract
A number of studies have shown that mutations or deletions of the monoamine oxidase-A (MAO-A) gene cause elevated CNS serotonin and elevated impulsive aggression in humans and animal models. In addition, low cerebrospinal fluid (CSF) 5-hydroxyindole acetic acid (5HIAA) has been documented in a limited number of violent criminal populations and in macaques that exhibit impulsive aggression. To reconcile these different analyses, we hypothesized that CSF 5HIAA reflected degradation of serotonin by the activity of MAO-A; and that low MAO-A activity would result in lower CSF 5HIAA, but overall higher serotonin in the CNS. To test this hypothesis, male Japanese macaques (Macaca fuscata) were castrated, rested for 5-7months, and then treated for 3months with [1] placebo, [2] testosterone (T), [3] dihydrotestosterone (DHT; non-aromatizable androgen) and 1,4,6-androstatriene-3,17-dione (ATD) (steroidal aromatase inhibitor), or [4] flutamide (FLUT; androgen antagonist) and ATD (n=5/group). These treatments enable isolation of androgen and estrogen activities. In the dorsal raphe, MAO-A and MAO-B expressions were determined with in situ hybridization (ISH) and protein expression of aromatase was determined with immunohistochemistry (IHC). CSF concentrations of 5HIAA, 3-methoxy-4-hydroxyphenylglycol (MHPG), and homovanillic acid (HVA) were determined with liquid chromatography/mass spectrometry (LC/MS). From the same animals, previously published data on serotonin axon density were used as a proxy for CNS serotonin. Aromatase conversion of T to estrogen (E) suppressed MAO-A (positive pixel area, p=0.0045), but androgens increased MAO-B (positive pixel area, p=0.014). CSF 5HIAA was suppressed by conversion of T to E (Cohen's d=0.6). CSF 5HIAA was positively correlated with MAO-A-positive pixel area (r(2)=0.78). CSF 5HIAA was inversely correlated with serotonin axon-positive pixel area (r(2)=0.69). In summary, CSF 5HIAA reflects MAO-A activity rather than global serotonin. Low CSF 5HIAA may, in this paradigm, reflect higher serotonin activity. Androgens lower MAO-A activity via metabolism to E, thus elevating CNS serotonin and decreasing CSF 5HIAA. Since androgens increase certain types of aggression, these data are consistent with studies demonstrating that lower MAO-A activity is associated with elevated serotonin and increased aggression.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive and Development Science, Oregon National Primate Research Center, Beaverton, OR 97006, United States; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, United States; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, United States.
| | - K Phu
- Division of Reproductive and Development Science, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - A Kim
- Division of Reproductive and Development Science, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - A P Reddy
- Division of Reproductive and Development Science, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| |
Collapse
|
41
|
Abstract
Aggression is a behavior with evolutionary origins, but is often both destructive and maladaptive in today's society. Research over the past several decades has confirmed the involvement of neurotransmitter function in aggressive behavior. This research has centered around the "serotonin hypothesis." As this literature continues to grow, guided by pre-clinical research and aided by the application of increasingly sophisticated neuroimaging methodology, a more complex picture has emerged. As current pharmacological and therapeutic interventions are effective but imperfect, it is hoped that new insights into the neurobiology of aggression will reveal novel avenues for treatment of this destructive and costly behavior.
Collapse
|
42
|
Genetic background of extreme violent behavior. Mol Psychiatry 2015; 20:786-92. [PMID: 25349169 PMCID: PMC4776744 DOI: 10.1038/mp.2014.130] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
Abstract
In developed countries, the majority of all violent crime is committed by a small group of antisocial recidivistic offenders, but no genes have been shown to contribute to recidivistic violent offending or severe violent behavior, such as homicide. Our results, from two independent cohorts of Finnish prisoners, revealed that a monoamine oxidase A (MAOA) low-activity genotype (contributing to low dopamine turnover rate) as well as the CDH13 gene (coding for neuronal membrane adhesion protein) are associated with extremely violent behavior (at least 10 committed homicides, attempted homicides or batteries). No substantial signal was observed for either MAOA or CDH13 among non-violent offenders, indicating that findings were specific for violent offending, and not largely attributable to substance abuse or antisocial personality disorder. These results indicate both low monoamine metabolism and neuronal membrane dysfunction as plausible factors in the etiology of extreme criminal violent behavior, and imply that at least about 5-10% of all severe violent crime in Finland is attributable to the aforementioned MAOA and CDH13 genotypes.
Collapse
|
43
|
Glick AR. The role of serotonin in impulsive aggression, suicide, and homicide in adolescents and adults: a literature review. Int J Adolesc Med Health 2015; 27:143-150. [PMID: 25924230 DOI: 10.1515/ijamh-2015-5005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/13/2014] [Indexed: 06/04/2023]
Abstract
This is a literature review discussing previous studies on the associations between impulsive aggression and the serotonergic system in adults, adolescents, and children. The review demonstrates that there is a clear association between low cerebrospinal fluid serotonin and impulsive aggression. However, studies on neurotransmitter receptor profiles, functional imaging, genetics, and epigenetics reviewed in this article suggest a more complicated picture that includes consideration of gene vs. environment in the evaluation of risk. Serotonin supplementation studies suggest that selective serotonin reuptake inhibitors may reduce impulsive aggression in some adults but are less effective in adults with pathological aggression and also in children and adolescents. Child and adolescent studies are less conclusive, in part due to the heterogeneous physiologic and psychosocial changes occurring over the course of development. The author thus concludes that psychiatrists can reduce risk in these special patient populations by creating safer environments in the form of changes in policy and increased support services.
Collapse
|
44
|
Pagani JH, Williams Avram SK, Cui Z, Song J, Mezey É, Senerth JM, Baumann MH, Young WS. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. GENES BRAIN AND BEHAVIOR 2015; 14:167-76. [PMID: 25677455 DOI: 10.1111/gbb.12202] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 01/10/2023]
Abstract
Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care.
Collapse
Affiliation(s)
- J H Pagani
- Section on Neural Gene Regulation, National Institute of Mental Health, National Institutes of Health, DHHS, Bethesda
| | | | | | | | | | | | | | | |
Collapse
|
45
|
An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. J Anxiety Disord 2015; 30:41-7. [PMID: 25594371 PMCID: PMC4355301 DOI: 10.1016/j.janxdis.2014.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/30/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
Posttraumatic stress disorder (PTSD) often precedes comorbid substance use disorder and has been associated with aggression. Prior research has evidenced that alcohol use and other externalizing behaviors share genetic factors with PTSD; however, few studies have examined if specific genes are associated with externalizing behaviors in PTSD. The purpose of the current study was to investigate whether an α-synuclein gene polymorphism (SNCA rs356195) moderates the association of PTSD symptomatology with externalizing behaviors. We examined the separate and combined effects of PTSD symptomatology and SNCA rs356195 on alcohol- and aggression-related measures in nonclinical participants (N=138 European Americans; 15 diagnosed with probable PTSD). Probable PTSD status and SNCA were both associated with externalizing measures. SNCA also moderated the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. Current findings suggest that variations in SNCA may increase the likelihood that PTSD symptomatology results in excessive alcohol use.
Collapse
|
46
|
Picciotto MR, Lewis AS, van Schalkwyk GI, Mineur YS. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology 2015; 96:235-43. [PMID: 25582289 DOI: 10.1016/j.neuropharm.2014.12.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
| | - Alan S Lewis
- Department of Psychiatry, Yale University, New Haven, CT 06508, USA
| | | | - Yann S Mineur
- Department of Psychiatry, Yale University, New Haven, CT 06508, USA
| |
Collapse
|
47
|
Olivier B. Serotonin: a never-ending story. Eur J Pharmacol 2014; 753:2-18. [PMID: 25446560 DOI: 10.1016/j.ejphar.2014.10.031] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The neurotransmitter serotonin is an evolutionary ancient molecule that has remarkable modulatory effects in almost all central nervous system integrative functions, such as mood, anxiety, stress, aggression, feeding, cognition and sexual behavior. After giving a short outline of the serotonergic system (anatomy, receptors, transporter) the author's contributions over the last 40 years in the role of serotonin in depression, aggression, anxiety, stress and sexual behavior is outlined. Each area delineates the work performed on animal model development, drug discovery and development. Most of the research work described has started from an industrial perspective, aimed at developing animals models for psychiatric diseases and leading to putative new innovative psychotropic drugs, like in the cases of the SSRI fluvoxamine, the serenic eltoprazine and the anxiolytic flesinoxan. Later this research work mainly focused on developing translational animal models for psychiatric diseases and implicating them in the search for mechanisms involved in normal and diseased brains and finding new concepts for appropriate drugs.
Collapse
Affiliation(s)
- Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences & Brain Center Rudolf Magnus, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
48
|
Abstract
Suicide ranks among the leading causes of death around the world and takes a heavy emotional and public health toll on most societies. Both distal and proximal factors contribute to suicidal behaviour. Distal factors - such as familial and genetic predisposition, as well as early-life adversity - increase the lifetime risk of suicide. They alter responses to stress and other processes through epigenetic modification of genes and associated changes in gene expression, and through the regulation of emotional and behavioural traits. Proximal factors are associated with the precipitation of a suicidal event and include alterations in key neurotransmitter systems, inflammatory changes and glial dysfunction in the brain. This Review explores the key molecular changes that are associated with suicidality and discusses some promising avenues for future research.
Collapse
|
49
|
Yang C, Ba H, Gao Z, Zhao H, Yu H, Guo W. Case-control study of allele frequencies of 15 short tandem repeat loci in males with impulsive violent behavior. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 25:354-63. [PMID: 24991178 PMCID: PMC4054583 DOI: 10.3969/j.issn.1002-0829.2013.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/12/2013] [Indexed: 11/23/2022]
Abstract
Background Analysis of genetic polymorphisms in short tandem repeats (STRs) is an accepted method for detecting associations between genotype and phenotype but it has not previously been used in the study of the genetics of impulsive violent behavior. Objective Compare the prevalence of different polymorphisms in 15 STR loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) between men with a history of impulsive violence and male control subjects without a history of impulsive violence. Methods The distributions of the alleles of the 15 STR loci were compared between 407 cases with impulsive violent behavior and 415 controls using AmpFlSTR® Identifiler™ kits. Results Compared to controls, the average frequencies of the following alleles were significantly lower in individuals with a history of violent behavior: allele 10 of TH01 (OR=0.29, 95%CI=0.16-0.52, p<0.0001,), allele 8 of TPOX (OR=0.71, 95%CI=0.58-0.86, p=0.0005), allele 9 of TPOX (OR=0.65, 95%CI=0.47-0.89, p=0.0072) and allele 14 of CSF1PO (OR=0.27, 95%CI=0.11-0.68, p=0.0035). One allele was significantly higher in cases than controls: allele 11 of TPOX (OR=1.79, 95%CI=1.45-2.22, p<0.0001). Conclusions To the best of our knowledge, this is the first behavioral genetic study that clearly demonstrates a close relationship between specific genetic markers and impulsive aggression in non-psychiatric offenders. Further prospective work will be needed to determine whether or not the alleles identified can be considered risk factors for impulsive aggression and, if so, the underlying mechanisms that result in this relationship.
Collapse
Affiliation(s)
- Chun Yang
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Huajie Ba
- Public Security Bureau of Changzhou, Jiangsu Province, China
| | - Zhiqin Gao
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Hanqing Zhao
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Haiying Yu
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Wei Guo
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
50
|
Takahashi A, Shiroishi T, Koide T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes. Front Neurosci 2014; 8:156. [PMID: 24966813 PMCID: PMC4052355 DOI: 10.3389/fnins.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The Japanese wild-derived mouse strain MSM/Ms (MSM) retains a wide range of traits related to behavioral wildness, including high levels of emotionality and avoidance of humans. In this study, we observed that MSM showed a markedly higher level of aggression than the standard laboratory strain C57BL/6J. Whereas almost all MSM males showed high frequencies of attack bites and pursuit in the resident-intruder test, only a few C57BL/6J males showed aggressive behaviors, with these behaviors observed at only a low frequency. Sexually mature MSM males in their home cages killed their littermates, or sometimes female pair-mates. To study the genetic and neurobiological mechanisms that underlie the escalated aggression observed in MSM mice, we analyzed reciprocal F1 crosses and five consomic strains of MSM (Chr 4, 13, 15, X and Y) against the background of C57BL/6J. We identified two chromosomes, Chr 4 and Chr 15, which were involved in the heightened aggression observed in MSM. These chromosomes had different effects on aggression: whereas MSM Chr 15 increased agitation and initiation of aggressive events, MSM Chr 4 induced a maladaptive level of aggressive behavior. Expression analysis of mRNAs of serotonin receptors, serotonin transporter and Tph2, an enzyme involved in serotonin synthesis in seven brain areas, indicated several differences among MSM, C57BL/6J, and their consomic strains. We found that Tph2 expression in the midbrain was increased in the Chr 4 consomic strain, as well as in MSM, and that there was a strong positive genetic correlation between aggressive behavior and Tph2 expression at the mRNA level. Therefore, it is possible that increased expression of the Tph2 gene is related to escalated aggression observed in MSM.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| | - Toshihiko Shiroishi
- Department of Genetics, SOKENDAI Mishima, Japan ; Mammalian Genetics Laboratory, National Institute of Genetics (NIG) Mishima, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| |
Collapse
|