1
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
KHANGEMBAM CHERITADEVI, SINGH SAMARPAL, CHAKRABARTI RINA, SHARMA JAIGOPAL. Study of effect of various temperatures on the abundance of ammonia oxidizing archaea and bacteria. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v88i5.80023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Temperature plays significant role in the oxidation of ammonia in filtration units of recirculating aquaculture system. The impact of temperature on the abundance of ammonia oxidizing archaea and bacteria, and the expression of ammonia oxidizing gene (amoA) at specific temperature was evaluated. The broken earthen pot pieces used as filter bed materials of recirculating system, showing the presence of microorganisms were introduced in glass containers (5 pieces/5l) filled with synthetic wastewater and exposed to four different temperatures of 10, 20, 30 and 40°C for 40 days. The ammonia oxidation rate was minimum at 10°C. In 20, 30 and 40°C treatments, 99% ammonia was reduced on day-18, 8 and 18, respectively compared to the initial day. Fresh ammonium chloride (2 mM) was added twice to maintain the ammonia concentration in all treatments, except 10°C one. Nitrite-N level was < 1 mg/l at 10°C. The level was highest on day-22 at 20° and 40°C and on day-12 at 30°C. The nitrification was 10 days delayed at 20°C and 40°C compared to 30°C treatment. Concentration of nitrate-N was lowest at 10°C. Highest concentration of nitrate-N was observed on day-40 at 20°C and 40°C and day-26 at 30°C. Highest copy number of bacterial amoA was recorded at 30°C (2.59×107) followed by 20°C (4.08×106), 40°C (1.45×106) and 10°C (5.664×103). Archaeal amoA was highest at 30°C (7.47×103) followed by 40°C (2.98×102) and 20°C (46.8) treatments. Hence it may be concluded that 30°C temperature was optimum for the efficient and faster oxidation of ammonia in the present recirculating system.
Collapse
|
3
|
Zhou R, Li Y, Xiao S, Liu X, Liu C, Cheng G, Zhang W, Lu S. Ecophysiological characterization of a nitrite-oxidizing bacterial culture from a freshwater aquaculture pond. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2144448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Runfeng Zhou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Yayuan Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Shuwen Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Chong Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Wang Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| | - Shimin Lu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs , Shanghai, PR China
| |
Collapse
|
4
|
Sun W, Jiao L, Wu J, Ye J, Wei M, Hong Y. Existence and distribution of novel phylotypes of Nitrospira in water columnsof the South China Sea. iScience 2022; 25:104895. [PMID: 36039301 PMCID: PMC9418846 DOI: 10.1016/j.isci.2022.104895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
In the biological nitrogen cycle, nitrite oxidation is performed by nitrite oxidation bacteria, of which Nitrospira is widespread and diverse. Communities of Nitrospira were collected at 25-1500 m depths in the South China Sea. Phylogenetic diversity, community composition, and environmental factors were investigated using high-throughput sequencing targeting the nxrB gene and statistical analyses. The community composition of Nitrospira varied spatially and by depth. Among the 24 OTUs with relatively high abundance, 70% were unclassified and not affiliated with the known Nitrospira genus, suggesting a previously unrecognized high diversity of marine Nitrospira. Five known Nitrospira genera were detected, of which the common marine Nitrospira marina was not the dominant species, whereas Candidatus Nitrospira lenta and Candidatus Nitrospira defluvii dominated in shallow habitats. Comammox Candidatus Nitrospira nitrosa was discovered in the marine ecosystem. The niche differentiation of versatile Nitrospira species was mainly shaped by nitrate, temperature, and DO.
Collapse
Affiliation(s)
- Wei Sun
- Guangdong University of Petrochemical Technology, Maoming 525000, P.R.China.,Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Lijing Jiao
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong University of Petrochemical Technology, Maoming 525000, P.R.China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
5
|
Taylor AE, Mellbye BL. Differential Responses of the Catalytic Efficiency of Ammonia and Nitrite Oxidation to Changes in Temperature. Front Microbiol 2022; 13:817986. [PMID: 35620102 PMCID: PMC9127996 DOI: 10.3389/fmicb.2022.817986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microbially mediated nitrification plays an important role in the nitrogen (N) cycle, and rates of activity have been shown to change significantly with temperature. Despite this, the substrate affinities of nitrifying bacteria and archaea have not been comprehensively measured and are often assumed to be static in mathematical models of environmental systems. In this study, we measured the oxidation kinetics of ammonia- (NH3) oxidizing archaea (AOA), NH3-oxidizing bacteria (AOB), and two distinct groups of nitrite (NO2 -)-oxidizing bacteria (NOB), of the genera Nitrobacter and Nitrospira, by measuring the maximum rates of apparent activity (V max(app)), the apparent half-saturation constant (K m(app)), and the overall catalytic efficiency (V max(app) /K m(app)) over a range of temperatures. Changes in V max(app) and K m(app) with temperature were different between groups, with V max(app) and catalytic efficiency increasing with temperature in AOA, while V max(app) , K m(app), and catalytic efficiency increased in AOB. In Nitrobacter NOB, V max(app) and K m(app) increased, but catalytic efficiency decreased significantly with temperature. Nitrospira NOB were variable, but V max(app) increased while catalytic efficiency and K m(app) remained relatively unchanged. Michaelis-Menten (MM) and Haldane (H) kinetic models of NH3 oxidation and NO2 - oxidation based on the collected data correctly predict nitrification potential in some soil incubation experiments, but not others. Despite previous observations of coupled nitrification in many natural systems, our results demonstrate significant differences in response to temperature strategies between the different groups of nitrifiers; and indicate the need to further investigate the response of nitrifiers to environmental changes.
Collapse
Affiliation(s)
- Anne E. Taylor
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Brett L. Mellbye
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Neissi A, Rafiee G, Rahimi S, Farahmand H, Pandit S, Mijakovic I. Enriched microbial communities for ammonium and nitrite removal from recirculating aquaculture systems. CHEMOSPHERE 2022; 295:133811. [PMID: 35124092 DOI: 10.1016/j.chemosphere.2022.133811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was the enrichment of high-performance microbial communities in biofilters for removal of ammonium and nitrite from aquaculture water. Ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were enriched from different environmental water samples. The microbial communities with higher ammonium and nitrite removal activity were selected and adapted to different temperatures [9 °C, 15 °C, room temperature (25 °C), and 30 °C]. The expression of genes involved in nitrification including ammonia monooxygenase (AMO) and nitrite oxidoreductase (NXR) were measured in temperature-adapted AOB and NOB microbiomes. The microbial species present in the selected microbiomes were identified via 16s rRNA sequencing. The microbial communities containing Nitrosomonas oligotropha and Nitrobacter winogradskyi showed the highest ammonium and nitrite removal activity at all temperatures used for adaptation. Furthermore, the microbial communities do not contain any pathogenic bacteria. They also exhibited the highest expression of AMO and NXR genes. Using the enriched microbial communities, we achieved a 288% and 181% improvement in ammonium and nitrite removal over the commonly used communities in biofilters at 9 °C, respectively. These results suggest that the selected microbiomes allowed for a significant improvement of water quality in a recirculating aquaculture system (RAS).
Collapse
Affiliation(s)
- Alireza Neissi
- Nuclear Agricultural School, Nuclear Science and Technology Research Institute, 31465/1498, Karaj, Iran
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, 331585-4314, Karaj, Iran.
| | - Shadi Rahimi
- Chalmers University of Technology, Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Kemivägen 10, 41296, Gothenburg, Sweden.
| | - Hamid Farahmand
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, 331585-4314, Karaj, Iran
| | - Santosh Pandit
- Chalmers University of Technology, Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Ivan Mijakovic
- Chalmers University of Technology, Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Kemivägen 10, 41296, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
8
|
Elling FJ, Evans TW, Nathan V, Hemingway JD, Kharbush JJ, Bayer B, Spieck E, Husain F, Summons RE, Pearson A. Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols. GEOBIOLOGY 2022; 20:399-420. [PMID: 35060273 DOI: 10.1111/gbi.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia- and nitrite-oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia-oxidizing (AOB), nitrite-oxidizing (NOB), and complete ammonia-oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen-containing bacteriohopanepolyols were tentatively identified, of which the so called BHP-743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin-Benson-Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
Collapse
Affiliation(s)
- Felix J Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas W Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jordon D Hemingway
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jenan J Kharbush
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Barbara Bayer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Fatima Husain
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Determination of 15N/ 14N of Ammonium, Nitrite, Nitrate, Hydroxylamine, and Hydrazine Using Colorimetric Reagents and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Appl Environ Microbiol 2022; 88:e0241621. [PMID: 35285242 DOI: 10.1128/aem.02416-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the nitrogen (N) cycle, nitrogenous compounds are chemically and biologically converted to various aqueous and gaseous N species. The 15N-labeling approach is a powerful culture-dependent technique to obtain insights into the complex nitrogen transformation reactions that occur in cultures. In the 15N-labeling approach, the fates of supplemented 15N- and/or unlabeled gaseous and aqueous compounds are tracked by mass spectrometry (MS) analysis, whereas MS analysis of aqueous N species requires laborious sample preparation steps and is performed using isotope-ratio mass spectrometry, which requires an expensive mass spectrometer. We developed a simple and high-throughput MS method for determining the 15N atoms percent of NH4+, NO2-, NO3-, NH2OH, and N2H4, where liquid samples (<0.5 mL) were mixed with colorimetric reagents (naphthylethylenediamine for NO2-, indophenol for NH4+, and p-aminobenzaldehyde for N2H4), and the mass spectra of the formed N complex dyes were obtained by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) MS. NH2OH and NO3- were chemically converted to NO2- by iodine oxidation and copper/hydrazine reduction reaction, respectively, prior to the above colorimetric reaction. The intensity of the isotope peak (M + 1 or M + 2) increased when the N complex dye was formed by coupling with a 15N-labeled compound, and a linear relationship was found between the determined 15N/14N peak ratio and 15N atom% for the tested N species. The developed method was applied to bacterial cultures to examine their N-transformation reactions, enabling us to observe the occurrence of NO2- oxidation and NO3- reduction in a hypoxic Nitrobacter winogradskyi culture. IMPORTANCE 15N/14N analysis for aqueous N species is a powerful tool for obtaining insights into the global N cycle, but the procedure is cumbersome and laborious. The combined use of colorimetric reagents and MALDI-TOF MS, designated color MALDI-TOF MS, enabled us to determine the 15N atom% of common aqueous N species without laborious sample preparation and chromatographic separation steps; for instance, the 15N atom% of NO2- can be determined from >1,000 liquid samples daily at <$1 (U.S.) per 384 samples for routine analysis. This convenient MS method is a powerful tool that will advance our ability to explore the N-transformation reactions that occur in various environments and biological samples.
Collapse
|
10
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
11
|
Evaluating acute toxicity in enriched nitrifying cultures: Lessons learned. J Microbiol Methods 2021; 192:106377. [PMID: 34798174 DOI: 10.1016/j.mimet.2021.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Toxicological batch assays are essential to assess a compound's acute effect on microorganisms. This methodology is frequently employed to evaluate the effect of contaminants in sensitive microbial communities from wastewater treatment plants (WWTPs), such as autotrophic nitrifying populations. However, despite nitrifying batch assays being commonly mentioned in the literature, their experimental design criteria are rarely reported or overlooked. Here, we found that slight deviations in culture preparations and conditions impacted bacterial community performance and could skew assay results. From pre-experimental trials and experience, we determined how mishandling and treatment of cultures could affect nitrification activity. While media and biomass preparations are needed to establish baseline conditions (e.g., biomass washing), we found extensive centrifugation selectively destabilised nitrification activities. Further, it is paramount that the air supply is adjusted to minimise nitrite build-up in the culture and maintain suitable aeration levels without sparging ammonia. DMSO and acetone up to 0.03% (v/v) were suitable organic solvents with minimal impact on nitrification activity. In the nitrification assays with allylthiourea (ATU), dilute cultures exhibited more significant inhibition than concentrated cultures. So there were biomass-related effects; however, these differences minimally impacted the EC50 values. Using different nutrient-media compositions had a minimal effect; however, switching mineral media for the toxicity test from the original cultivation media is not recommended because it reduced the original biomass nitrification capacity. Our results demonstrated that these factors substantially impact the performance of the nitrifying inoculum used in acute bioassays, and consequently, affect the response of AOB-NOB populations during the toxicant exposure. These are not highlighted in operation standards, and unfortunately, they can have significant consequential impacts on the determinations of toxicological endpoints. Moreover, the practical procedures tested here could support other authors in developing testing methodologies, adding quality checks in the experimental framework with minimal waste of time and resources.
Collapse
|
12
|
Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and 13C-Tracer Analysis. mSystems 2021; 6:e0017321. [PMID: 34402644 PMCID: PMC8407350 DOI: 10.1128/msystems.00173-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCENitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.
Collapse
|
13
|
Sakoula D, Koch H, Frank J, Jetten MSM, van Kessel MAHJ, Lücker S. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. THE ISME JOURNAL 2021; 15:1010-1024. [PMID: 33188298 PMCID: PMC8115096 DOI: 10.1038/s41396-020-00827-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023]
Abstract
The recent discovery of bacteria within the genus Nitrospira capable of complete ammonia oxidation (comammox) demonstrated that the sequential oxidation of ammonia to nitrate via nitrite can also be performed within a single bacterial cell. Although comammox Nitrospira exhibit a wide distribution in natural and engineered ecosystems, information on their physiological properties is scarce due to the limited number of cultured representatives. Additionally, most available genomic information is derived from metagenomic sequencing and high-quality genomes of Nitrospira in general are limited. In this study, we obtained a high (90%) enrichment of a novel comammox species, tentatively named "Candidatus Nitrospira kreftii", and performed a detailed genomic and physiological characterization. The complete genome of "Ca. N. kreftii" allowed reconstruction of its basic metabolic traits. Similar to Nitrospira inopinata, the enrichment culture exhibited a very high ammonia affinity (Km(app)_NH3 ≈ 0.040 ± 0.01 µM), but a higher nitrite affinity (Km(app)_NO2- = 12.5 ± 4.0 µM), indicating an adaptation to highly oligotrophic environments. Furthermore, we observed partial inhibition of ammonia oxidation at ammonium concentrations as low as 25 µM. This inhibition of "Ca. N. kreftii" indicates that differences in ammonium tolerance rather than affinity could potentially be a niche determining factor for different comammox Nitrospira.
Collapse
Affiliation(s)
- Dimitra Sakoula
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands ,grid.10420.370000 0001 2286 1424Present Address: Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Hanna Koch
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Jeroen Frank
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands ,grid.5590.90000000122931605Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Mike S. M. Jetten
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands ,grid.5590.90000000122931605Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maartje A. H. J. van Kessel
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
14
|
Göbbels L, Poehlein A, Dumnitch A, Egelkamp R, Kröger C, Haerdter J, Hackl T, Feld A, Weller H, Daniel R, Streit WR, Schoelmerich MC. Cysteine: an overlooked energy and carbon source. Sci Rep 2021; 11:2139. [PMID: 33495538 PMCID: PMC7835215 DOI: 10.1038/s41598-021-81103-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Biohybrids composed of microorganisms and nanoparticles have emerged as potential systems for bioenergy and high-value compound production from CO2 and light energy, yet the cellular and metabolic processes within the biological component of this system are still elusive. Here we dissect the biohybrid composed of the anaerobic acetogenic bacterium Moorella thermoacetica and cadmium sulphide nanoparticles (CdS) in terms of physiology, metabolism, enzymatics and transcriptomic profiling. Our analyses show that while the organism does not grow on l-cysteine, it is metabolized to acetate in the biohybrid system and this metabolism is independent of CdS or light. CdS cells have higher metabolic activity, despite an inhibitory effect of Cd2+ on key enzymes, because of an intracellular storage compound linked to arginine metabolism. We identify different routes how cysteine and its oxidized form can be innately metabolized by the model acetogen and what intracellular mechanisms are triggered by cysteine, cadmium or blue light.
Collapse
Affiliation(s)
- Luise Göbbels
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Albert Dumnitch
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Cathrin Kröger
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Johanna Haerdter
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
15
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
16
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Mooshammer M, Kitzinger K, Schintlmeister A, Ahmerkamp S, Nielsen JL, Nielsen PH, Wagner M. Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. THE ISME JOURNAL 2021; 15:348-353. [PMID: 32879458 PMCID: PMC7852690 DOI: 10.1038/s41396-020-00761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022]
Abstract
Stable isotope probing (SIP) is a key tool for identifying the microorganisms catalyzing the turnover of specific substrates in the environment and to quantify their relative contributions to biogeochemical processes. However, SIP-based studies are subject to the uncertainties posed by cross-feeding, where microorganisms release isotopically labeled products, which are then used by other microorganisms, instead of incorporating the added tracer directly. Here, we introduce a SIP approach that has the potential to strongly reduce cross-feeding in complex microbial communities. In this approach, the microbial cells are exposed on a membrane filter to a continuous flow of medium containing isotopically labeled substrate. Thereby, metabolites and degradation products are constantly removed, preventing consumption of these secondary substrates. A nanoSIMS-based proof-of-concept experiment using nitrifiers in activated sludge and 13C-bicarbonate as an activity tracer showed that Flow-SIP significantly reduces cross-feeding and thus allows distinguishing primary consumers from other members of microbial food webs.
Collapse
Affiliation(s)
- Maria Mooshammer
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Arno Schintlmeister
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Soeren Ahmerkamp
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM-Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
18
|
He M, Xiong Y, Cheng K. Characters of a nitrobacter enrichment culture from a freshwater aquaculture pond. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1974944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Mengying He
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| | - Ying Xiong
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| | - Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| |
Collapse
|
19
|
Fujitani H, Momiuchi K, Ishii K, Nomachi M, Kikuchi S, Ushiki N, Sekiguchi Y, Tsuneda S. Genomic and Physiological Characteristics of a Novel Nitrite-Oxidizing Nitrospira Strain Isolated From a Drinking Water Treatment Plant. Front Microbiol 2020; 11:545190. [PMID: 33042056 PMCID: PMC7522533 DOI: 10.3389/fmicb.2020.545190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, which is an important process of the biogeochemical nitrogen cycle and is exploited extensively as a biological nitrogen removal process. Members of the genus Nitrospira are often identified as the dominant NOB in a diverse range of natural and artificial environments. Additionally, a number of studies examining the distribution, abundance, and characterization of complete ammonia oxidation (comammox) Nitrospira support the ecological importance of the genus Nitrospira. However, niche differentiation between nitrite-oxidizing Nitrospira and comammox Nitrospira remains unknown due to a lack of pure cultures. In this study, we report the isolation, physiology, and genome of a novel nitrite-oxidizing Nitrospira strain isolated from a fixed-bed column at a drinking water treatment plant. Continuous feeding of ammonia led to the enrichment of Nitrospira-like cells, as well as members of ammonia-oxidizing genus Nitrosomonas. Subsequently, a microcolony sorting technique was used to isolate a novel nitrite-oxidizing Nitrospira strain. Sequences of strains showing the growth of microcolonies in microtiter plates were checked. Consequently, the most abundant operational taxonomic unit (OTU) exhibited high sequence similarity with Nitrospira japonica (98%) at the 16S rRNA gene level. The two other Nitrospira OTUs shared over 99% sequence similarities with N. japonica and Nitrospira sp. strain GC86. Only one strain identified as Nitrospira was successfully subcultivated and designated as Nitrospira sp. strain KM1 with high sequence similarity with N. japonica (98%). The half saturation constant for nitrite and the maximum nitrite oxidation rate of strain KM1 were orders of magnitude lower than the published data of other known Nitrospira strains; moreover, strain KM1 was more sensitive to free ammonia compared with previously isolated Nitrospira strains. Therefore, the new Nitrospira strain appears to be better adapted to oligotrophic environments compared with other known non-marine nitrite oxidizers. The complete genome of strain KM1 was 4,509,223 bp in length and contained 4,318 predicted coding sequences. Average nucleotide identities between strain KM1 and known cultured Nitrospira genome sequences are 76.7-78.4%, suggesting at least species-level novelty of the strain in the Nitrospira lineage II. These findings broaden knowledge of the ecophysiological diversity of nitrite-oxidizing Nitrospira.
Collapse
Affiliation(s)
- Hirotsugu Fujitani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kengo Momiuchi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Kento Ishii
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Manami Nomachi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Shuta Kikuchi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Norisuke Ushiki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Satoshi Tsuneda
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
20
|
Neissi A, Rafiee G, Farahmand H, Rahimi S, Mijakovic I. Cold-Resistant Heterotrophic Ammonium and Nitrite-Removing Bacteria Improve Aquaculture Conditions of Rainbow Trout (Oncorhynchus mykiss). MICROBIAL ECOLOGY 2020; 80:266-277. [PMID: 32162039 PMCID: PMC7371659 DOI: 10.1007/s00248-020-01498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/19/2020] [Indexed: 05/31/2023]
Abstract
The aim of this study was isolation and characterization of heterotrophic bacteria capable of ammonium and nitrite removal at 15 °C (optimal temperature for growing rainbow trout Oncorhynchus mykiss). Environmental isolates were grown in liquid media containing ammonium or nitrite, and best strains in terms of growth and ammonium or nitrite removal were identified via 16S rRNA sequencing. Dyadobacter sp. (no. 68) and Janthinobacterium sp. (no. 100) were selected for optimal adaptation to growth at 15 °C and best ammonium and nitrite removal (P < 0.05), respectively. A heterotrophic ammonium and nitrite removal (HAN) microbial complex, containing selected strains, was prepared and applied in a trout culture system. After 10 days, the effect of microbial HAN complex was investigated in terms of ammonium and nitrite removal, as well as stress and immune indices present in the plasma of cultivated trout. Compared to a standard cultivation setup, addition of the HAN complex had a clear beneficial effect on keeping the un-ionized ammonia and nitrite level below prescribed standards (P < 0.05). This resulted in reduction of stress and immune reactions of cultivated fish (P < 0.05), leading to an augmentation of final weight and survival. Application of the selected microbial complex resulted in a significant improvement of the aquaculture ecosystem.
Collapse
Affiliation(s)
- Alireza Neissi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, 331585-4314, Iran
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, 331585-4314, Iran.
| | - Hamid Farahmand
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, 331585-4314, Iran
| | - Shadi Rahimi
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
21
|
Spieck E, Sass K, Keuter S, Hirschmann S, Spohn M, Indenbirken D, Kop LFM, Lücker S, Giaveno A. Defining Culture Conditions for the Hidden Nitrite-Oxidizing Bacterium Nitrolancea. Front Microbiol 2020; 11:1522. [PMID: 32849321 PMCID: PMC7365893 DOI: 10.3389/fmicb.2020.01522] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Nitrification is a key process for N-removal in engineered and natural environments, but recent findings of novel nitrifying microorganisms with surprising features revealed that our knowledge of this functional guild is still incomplete. Especially nitrite oxidation - the second step of nitrification - is catalyzed by a phylogenetically diverse bacterial group, and only recently bacteria of the phylum Chloroflexi have been identified as thermophilic nitrite-oxidizing bacteria (NOB). Among these, Nitrolancea hollandica was isolated from a laboratory-scale nitrifying bioreactor operated at 35°C with a high load of ammonium bicarbonate. However, its distribution remains cryptic as very few closely related environmental 16S rRNA gene sequences have been retrieved so far. In this study, we demonstrate how such thermophilic NOB can be enriched using modified mineral media inoculated with samples from a wastewater side-stream reactor operated at 39.5°C. Distinct cultivation conditions resulted in quick and reproducible high enrichment of two different strains of Nitrolancea, closely related to Nl. hollandica. The same cultivation approach was applied to a complex nitrite-oxidizing pre-enrichment at 42°C inoculated with biomass from a geothermal spring in the Copahue volcano area in Neuquen, Argentina. Here, an additional distinct representative of the genus Nitrolancea was obtained. This novel species had 16S rRNA and nitrite oxidoreductase alpha subunit (nxrA) gene sequence identities to Nl. hollandica of 98.5% and 97.2%, respectively. A genomic average nucleotide identity between the Argentinian strain and Nl. hollandica of 91.9% indicates that it indeed represents a distinct species. All Nitrolancea cultures formed lancet-shaped cells identical to Nl. hollandica and revealed similar physiological features, including the capability to grow at high nitrite concentrations. Growth was optimal at temperatures of 35-37°C and was strongly enhanced by ammonium supplementation. Genomic comparisons revealed that the four Nitrolancea strains share 2399 out of 3387 orthologous gene clusters and encode similar key functions. Our results define general growth conditions that enable the selective enrichment of Nitrolancea from artificial and natural environments. In most natural habitats these NOB apparently are of low abundance and their proliferation depends on the balanced presence of nitrite and ammonium, with an optimal incubation temperature of 37°C.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Katharina Sass
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sophia Hirschmann
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Linnea F. M. Kop
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Alejandra Giaveno
- PROBIEN (CONICET-UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| |
Collapse
|
22
|
Wang Z, Gao X, Zeng R, Wu Q, Sun H, Wu W, Zhang X, Sun G, Yan B, Wu L, Ren R, Guo M, Peng L, Yang Y. Changes of the Gastric Mucosal Microbiome Associated With Histological Stages of Gastric Carcinogenesis. Front Microbiol 2020; 11:997. [PMID: 32547510 PMCID: PMC7272699 DOI: 10.3389/fmicb.2020.00997] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The changes of gastric microbiome across stages of neoplastic progression remain poorly understood, especially for intraepithelial neoplasia (IN) which has been recognized as a phenotypic bridge between atrophic/intestinal metaplastic lesions and invasive cancer. The gastric microbiota was investigated in 30 healthy controls (HC), 21 non-atrophic chronic gastritis (CG), 27 gastric intestinal metaplasia (IM), 25 IN, and 29 gastric cancer (GC) patients by 16S rRNA gene profiling. The bacterial diversity, and abundances of phyla Armatimonadetes, Chloroflexi, Elusimicrobia, Nitrospirae, Planctomycetes, Verrucomicrobia, and WS3 reduced progressively from CG, through IM, IN to GC. Actinobacteria, Bacteriodes, Firmicutes, Fusobacteria, SR1, and TM7 were enriched in the IN and GC. At the community level, the proportions of Gram-positive and anaerobic bacteria increased in the IN and GC compared to other histological types, whereas the aerobic and facultatively anaerobic bacteria taxa were significantly reduced in GC. Remarkable changes in the gastric microbiota functions were detected after the formation of IN. The reduced nitrite-oxidizing phylum Nitrospirae together with a decreased nitrate/nitrite reductase functions indicated nitrate accumulation during neoplastic progression. We constructed a random forest model, which had a very high accuracy (AUC > 0.95) in predicating the histological types with as low as five gastric bacterial taxa. In summary, the changing patterns of the gastric microbiota composition and function are highly indicative of stages of neoplastic progression.
Collapse
Affiliation(s)
- Zikai Wang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Ranran Zeng
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huaibo Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenming Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lili Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Spieck E, Spohn M, Wendt K, Bock E, Shively J, Frank J, Indenbirken D, Alawi M, Lücker S, Hüpeden J. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. THE ISME JOURNAL 2020; 14:364-379. [PMID: 31624340 PMCID: PMC6976673 DOI: 10.1038/s41396-019-0530-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Nitrifying microorganisms occur across a wide temperature range from 4 to 84 °C and previous studies in geothermal systems revealed their activity under extreme conditions. Archaea were detected to be responsible for the first step of nitrification, but it is still a challenging issue to clarify the identity of heat-tolerant nitrite oxidizers. In a long-term cultivation approach, we inoculated mineral media containing ammonium and nitrite as substrates with biofilms and sediments of two hot springs in Yellowstone National Park (USA). The nitrifying consortia obtained at 70 °C consisted mostly of novel Chloroflexi as revealed by metagenomic sequencing. Among these, two deep-branching novel Chloroflexi were identified as putative nitrite-oxidizing bacteria (NOB) by the presence of nitrite oxidoreductase encoding genes in their genomes. Stoichiometric oxidation of nitrite to nitrate occurred under lithoautotrophic conditions, but was stimulated by organic matter. Both NOB candidates survived long periods of starvation and the more abundant one formed miniaturized cells and was heat resistant. This detection of novel thermophilic NOB exemplifies our still incomplete knowledge of nitrification, and indicates that nitrite oxidation might be an ancient and wide-spread form of energy conservation.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Katja Wendt
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Eberhard Bock
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Jessup Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jeroen Frank
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
| | - Jennifer Hüpeden
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Wang X, Zhu H, Shutes B, Fu B, Yan B, Yu X, Wen H, Chen X. Identification and denitrification characteristics of a salt-tolerant denitrifying bacterium Pannonibacter phragmitetus F1. AMB Express 2019; 9:193. [PMID: 31797109 PMCID: PMC6890923 DOI: 10.1186/s13568-019-0918-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
A salt-tolerant denitrifying bacterium F1 was isolated in this study, which has high nitrite (NO2--N) and nitrate (NO3--N) removal abilities. The salt tolerance capacity of strain F1 was further verified and the effects of initial pH, initial NaNO2 concentration and inoculation size on the denitrification capacity of strain F1 under saline conditions were evaluated. Strain F1 was identified as Pannonibacter phragmitetus and named Pannonibacter phragmitetus F1. This strain can tolerate NaCl concentrations up to 70 g/L, and its most efficient denitrification capacity was observed at NaCl concentrations of 0-10 g/L. Under non-saline condition, the removal percentages of NO2--N and NO3--N by strain Pannonibacter phragmitetus F1 at pH of 10 and inoculation size of 5% were 100% and 83%, respectively, after cultivation for 5 days. Gas generation was observed during the cultivation, indicating that an efficient denitrification performance was achieved. When pH was 10 and the inoculation size was 5%, both the highest removal percentages of NO2--N (99%) and NO3--N (95%) by strain Pannonibacter phragmitetus F1 were observed at NaCl concentration of 10 g/L. When the NaCl concentration was 10 g/L, strain Pannonibacter phragmitetus F1 can adapt to a wide range of neutral and alkaline environments (pH of 7-10) and is highly tolerant of NaNO2 concentration (0.4-1.6 g/L). In conclusion, strain Pannonibacter phragmitetus F1 has a great potential to be applied in the treatment of saline wastewater containing high nitrogen concentrations, e.g. coastal aquaculture wastewater.
Collapse
|
25
|
Mundinger AB, Lawson CE, Jetten MSM, Koch H, Lücker S. Cultivation and Transcriptional Analysis of a Canonical Nitrospira Under Stable Growth Conditions. Front Microbiol 2019; 10:1325. [PMID: 31333593 PMCID: PMC6606698 DOI: 10.3389/fmicb.2019.01325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are vital players in the global nitrogen cycle that convert nitrite to nitrate during the second step of nitrification. Within this functional guild, members of the genus Nitrospira are most widespread, phylogenetically diverse, and physiologically versatile, and they drive nitrite oxidation in many natural and engineered ecosystems. Despite their ecological and biotechnological importance, our understanding of their energy metabolism is still limited. A major bottleneck for a detailed biochemical characterization of Nitrospira is biomass production, since they are slow-growing and fastidious microorganisms. In this study, we cultivated Nitrospira moscoviensis under nitrite-oxidizing conditions in a continuous stirred tank reactor (CSTR) system. This cultivation setup enabled accurate control of physicochemical parameters and avoided fluctuating levels of their energy substrate nitrite, thus ensuring constant growth conditions and furthermore allowing continuous biomass harvesting. Transcriptomic analyses under these conditions supported the predicted core metabolism of N. moscoviensis, including expression of all proteins required for carbon fixation via the reductive tricarboxylic acid cycle, assimilatory nitrite reduction, and the complete respiratory chain. Here, simultaneous expression of multiple copies of respiratory complexes I and III suggested functional differentiation. The transcriptome also indicated that the previously assumed membrane-bound nitrite oxidoreductase (NXR), the enzyme catalyzing nitrite oxidation, is formed by three soluble subunits. Overall, the transcriptomic data greatly refined our understanding of the metabolism of Nitrospira. Moreover, the application of a CSTR to cultivate Nitrospira is an important foundation for future proteomic and biochemical characterizations, which are crucial for a better understanding of these fascinating microorganisms.
Collapse
Affiliation(s)
- Aniela B Mundinger
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Christopher E Lawson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Hanna Koch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
26
|
Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M, Romano S, Leisch N, Karst SM, Kirkegaard R, Albertsen M, Nielsen PH, Wagner M, Daims H. Characterization of the First " Candidatus Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. mBio 2018; 9:e01186-18. [PMID: 29991589 PMCID: PMC6050957 DOI: 10.1128/mbio.01186-18] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.
Collapse
Affiliation(s)
- Katharina Kitzinger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Hanna Koch
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Christopher J Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Jasmin Schwarz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Michael Lukumbuzya
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Stefano Romano
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Nikolaus Leisch
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Søren Michael Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, Mathyer ME, Hallam SJ, Lopez-Garcia P, Takaki Y, Nunoura T, Woyke T, Herndl GJ, Stepanauskas R. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 2018; 358:1046-1051. [PMID: 29170234 DOI: 10.1126/science.aan8260] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.
Collapse
Affiliation(s)
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography, University of Vienna, 1090 Vienna, Austria
| | - Kristin Bergauer
- Department of Limnology and Bio-Oceanography, University of Vienna, 1090 Vienna, Austria
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | | | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA.,National Biodefense Analysis and Countermeasures Center, Frederick, MD 21702, USA
| | - Mary Elizabeth Mathyer
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA.,Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, and Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Yoshihiro Takaki
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.,Department of Subsurface Geobiology Analysis and Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, 1090 Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Netherlands
| | | |
Collapse
|
28
|
Acyl-Homoserine Lactone Production in Nitrifying Bacteria of the Genera Nitrosospira, Nitrobacter, and Nitrospira Identified via a Survey of Putative Quorum-Sensing Genes. Appl Environ Microbiol 2017; 83:AEM.01540-17. [PMID: 28887424 DOI: 10.1128/aem.01540-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus, Nitrobacter, and Nitrospira Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N-decanoyl-l-homoserine lactone (C10-HSL), N-3-hydroxy-tetradecanoyl-l-homoserine lactone (3-OH-C14-HSL), a monounsaturated AHL (C10:1-HSL), and N-octanoyl-l-homoserine lactone (C8-HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria.IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with bacterial cell-cell signaling or quorum sensing (QS). QS is a method of bacterial communication and gene regulation that is well studied in bacterial pathogens, but less is known about QS in environmental systems. Our previous work suggested that QS might be involved in the regulation of nitrogen oxide gas production during nitrite metabolism. This study characterized putative QS signals produced by different genera and species of nitrifiers. Our work lays the foundation for future experiments investigating communication between nitrifying bacteria, the purpose of QS in these microorganisms, and the manipulation of QS during nitrification.
Collapse
|
29
|
Eva S. Longterm Monitoring of Nitrification and Nitrifying Communities during Biofilter Activation of Two Marine Recirculation Aquaculture Systems (RAS). ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-8400.000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Winkler MKH, Boets P, Hahne B, Goethals P, Volcke EIP. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration. PLoS One 2017; 12:e0172785. [PMID: 28333960 PMCID: PMC5363889 DOI: 10.1371/journal.pone.0172785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/09/2017] [Indexed: 11/18/2022] Open
Abstract
The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.
Collapse
Affiliation(s)
- Mari.-K. H. Winkler
- Department of Biosystems Engineering, Ghent University, Gent, Belgium
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Pieter Boets
- Department of Applied Ecology and Biotechnology, Ghent University, Gent, Belgium
| | - Birk Hahne
- Department of Biosystems Engineering, Ghent University, Gent, Belgium
- Department of Applied Ecology and Biotechnology, Ghent University, Gent, Belgium
| | - Peter Goethals
- Department of Applied Ecology and Biotechnology, Ghent University, Gent, Belgium
| | | |
Collapse
|
31
|
Velázquez YF, Nacheva PM. Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6779-6793. [PMID: 28091995 DOI: 10.1007/s11356-017-8413-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
The biodegradation of fluoxetine, mefenamic acid, and metoprolol using ammonium-nitrite-oxidizing consortium, nitrite-oxidizing consortium, and heterotrophic biomass was evaluated in batch tests applying different retention times. The ammonium-nitrite-oxidizing consortium presented the highest biodegradation percentages for mefenamic acid and metoprolol, of 85 and 64% respectively. This consortium was also capable to biodegrade 79% of fluoxetine. The heterotrophic consortium showed the highest ability to biodegrade fluoxetine reaching 85%, and it also had a high potential for biodegrading mefenamic acid and metoprolol, of 66 and 58% respectively. The nitrite-oxidizing consortium presented the lowest biodegradation of the three pharmaceuticals, of less than 48%. The determination of the selected pharmaceuticals in the dissolved phase and in the biomass indicated that biodegradation was the major removal mechanism of the three compounds. Based on the obtained results, the biodegradation kinetics was adjusted to pseudo-first-order for the three pharmaceuticals. The values of k biol for fluoxetine, mefenamic acid, and metoprolol determined with the three consortiums indicated that ammonium-nitrite-oxidizing and heterotrophic biomass allow a partial biodegradation of the compounds, while no substantial biodegradation can be expected using nitrite-oxidizing consortium. Metoprolol was the less biodegradable compound. The sorption of fluoxetine and mefenamic acid onto biomass had a significant contribution for their removal (6-14%). The lowest sorption coefficients were obtained for metoprolol indicating that the sorption onto biomass is poor (3-4%), and the contribution of this process to the global removal can be neglected.
Collapse
Affiliation(s)
- Yolanda Flores Velázquez
- National Autonomous University of Mexico, Campus IMTA, Paseo Cuauhnáhuac 8532, Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Petia Mijaylova Nacheva
- Mexican Institute of Water Technology, Paseo Cuauhnáhuac 8532, Progreso, 62550, Jiutepec, Morelos, Mexico.
| |
Collapse
|
32
|
Liu F, Fiencke C, Guo J, Rieth R, Dong R, Pfeiffer EM. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:694-701. [PMID: 27842966 DOI: 10.1016/j.scitotenv.2016.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
The treatment of exhaust air from three intensive pig houses in northern Germany by field-scale bioscrubbers (BS.1, BS.2, and BS.3) were evaluated monthly in 2015. The simultaneous removal of NH3 and CH4 was investigated by connecting a second bioscrubber (BS.2-2) to one of the three bioscrubbers (BS.2) to create a two-series connected bioscrubber (BS.2+BS.2-2). Additionally, whether isolated methanotrophic bacterial inoculation in BS.2-2 intensified CH4 removal was examined. Average NH3 removal efficiencies of 86%, 80%, and 77% were observed for BS.1, BS.2, and BS.3, respectively, under fluctuate NH3 inlet concentrations (variation of 22%-54%) throughout the study year. However, average CH4 removal efficiencies were lower than 10% in the three bioscrubbers. The pH of the recirculation water, which ranged from 5.7 to 8.1, was demonstrated to be an important factor for NH3 removal and negatively correlated with NH3 removal and NH4+-N concentration in the recirculation water. The dominant NH3-oxidizing and methanotrophic bacteria in the bioscrubbers, analysed by transmission electron microscopy, were Nitrosomonas sp. and Type I methanotrophs, respectively. NH3 removal efficiency reached 100% in the two-series connected bioscrubber, however, CH4 removal was still low (average of 2%). After inoculating isolated methanotrophic bacteria into BS.2-2, the average CH4 removal was enhanced to 35%, offering a great option for bioscrubbers application to intensify CH4 removal. Therefore, a two-series connected bioscrubber inoculated with methanotrophic bacteria would be an option for simultaneous removal of NH3 and CH4 from the exhaust air of animal houses.
Collapse
Affiliation(s)
- Fang Liu
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany.
| | - Claudia Fiencke
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Qinghua East Road 17, 100083 Beijing, China.
| | - Robert Rieth
- RIMU Agrartechnologie GmbH, Harrenstetter Straße 29, 49757 Werlte, Germany
| | - Renjie Dong
- College of Engineering, China Agricultural University, Qinghua East Road 17, 100083 Beijing, China
| | - Eva-Maria Pfeiffer
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| |
Collapse
|
33
|
Liu F, Fiencke C, Guo J, Rieth R, Cuhls C, Dong R, Pfeiffer EM. Bioscrubber treatment of exhaust air from intensive pig production: Case study in northern Germany at mild climate condition. Eng Life Sci 2016; 17:458-466. [PMID: 32624791 DOI: 10.1002/elsc.201600169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/25/2016] [Accepted: 10/12/2016] [Indexed: 11/05/2022] Open
Abstract
Treatment by field-scale bioscrubber of exhaust air, including ammonia (NH3) and the greenhouse gases methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), from 13 intensive pig production houses located in northern Germany were investigated in 2013 and 2015. NH3 removal efficiencies varied between 35 and 100% with an overall average value of 79% under the NH3 inlet fluctuations from 34 to 755 g d-1 m-3 in both 2013 and 2015. Results of the electron microscopic analyses demonstrated that the bacteria Nitrosomonas sp. and methanotrophs type I were the dominant NH3 and CH4 oxidizers, respectively. However, overall average removal efficiencies of CH4 was approximately zero, which means CH4 is hard to remove in bioscrubbers under normal operation. The pH of recirculation water in the bioscrubber varied from 6.1 to 8.1, and the bioscrubbers with low pH values (<7.0) had high NH3 removal efficiencies (>79%). Electrical conductivity was commonly used to diagnose the bioscrubbers' performance; in the present study, electrical conductivity presented a significant linear relationship with dissolved inorganic nitrogen, which indicates the performance stability of the 13 selected bioscrubbers.
Collapse
Affiliation(s)
- Fang Liu
- Center for Earth System Research and Sustainability Institute of Soil Science Universität Hamburg Hamburg Germany
| | - Claudia Fiencke
- Center for Earth System Research and Sustainability Institute of Soil Science Universität Hamburg Hamburg Germany
| | - Jianbin Guo
- College of Engineering China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) Beijing People's Republic of China
| | | | | | - Renjie Dong
- College of Engineering China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) Beijing People's Republic of China
| | - Eva-Maria Pfeiffer
- Center for Earth System Research and Sustainability Institute of Soil Science Universität Hamburg Hamburg Germany
| |
Collapse
|
34
|
Karthikeyan S, Spain JC. Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp. JS1661 in water, soil and bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:37-44. [PMID: 27015377 DOI: 10.1016/j.jhazmat.2016.03.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
2,4-Dinitroanisole (DNAN), a low sensitivity replacement for TNT, is a key component of a new class of melt cast formulations designed for use in insensitive munitions. It is therefore essential that its fate and transport in the environment be assessed before its large scale implementation. Several recent studies have described reductive biotransformation pathways leading to dead-end products. Recently a Nocardioides strain, JS1661 was isolated based on its ability to mineralize DNAN via the 2,4-dinitrophenol (DNP) pathway. However, its potential for degrading DNAN under environmentally relevant conditions was not examined. Therefore we evaluated the aerobic biodegradation of DNAN by JS1661 in non-sterile soil, aqueous media and in a fluidized bed bioreactor over a wide range of DNAN concentrations. DNAN was completely degraded under all tested conditions with little or no accumulation of DNP and almost stoichiometric release of nitrite. Furthermore, when DNAN was used as the sole carbon and nitrogen source, the accumulation of nitrite was dramatically reduced. The results of the study revealed the robustness of the strain over a range of loading rates in various physical environments suggesting that it could provide the basis for waste treatment, bioremediation and bioaugmentation applications.
Collapse
Affiliation(s)
- Smruthi Karthikeyan
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA
| | - Jim C Spain
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA; Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL 32514-5751, USA.
| |
Collapse
|
35
|
Le Roux X, Bouskill NJ, Niboyet A, Barthes L, Dijkstra P, Field CB, Hungate BA, Lerondelle C, Pommier T, Tang J, Terada A, Tourna M, Poly F. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach. Front Microbiol 2016; 7:628. [PMID: 27242680 PMCID: PMC4868854 DOI: 10.3389/fmicb.2016.00628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the ‘High CO2+Nitrogen+Precipitation’ treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.
Collapse
Affiliation(s)
- Xavier Le Roux
- UMR INRA 1418, UMR CNRS 5557, Microbial Ecology Centre, INRA, CNRS, Université Lyon 1, Université de Lyon Villeurbanne, France
| | - Nicholas J Bouskill
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Audrey Niboyet
- UMR 8079, AgroParisTech, Ecology Systematics and Evolution Laboratory, CNRS, Université Paris-Sud 11 Orsay, France
| | - Laure Barthes
- UMR 8079, AgroParisTech, Ecology Systematics and Evolution Laboratory, CNRS, Université Paris-Sud 11 Orsay, France
| | - Paul Dijkstra
- Ecosystem Science and Society Center, Department of Biological Sciences, Northern Arizona University, Flagstaff AZ, USA
| | - Chris B Field
- Department of Global Ecology, Carnegie Institution, Stanford University, Stanford CA, USA
| | - Bruce A Hungate
- Ecosystem Science and Society Center, Department of Biological Sciences, Northern Arizona University, Flagstaff AZ, USA
| | - Catherine Lerondelle
- UMR INRA 1418, UMR CNRS 5557, Microbial Ecology Centre, INRA, CNRS, Université Lyon 1, Université de Lyon Villeurbanne, France
| | - Thomas Pommier
- UMR INRA 1418, UMR CNRS 5557, Microbial Ecology Centre, INRA, CNRS, Université Lyon 1, Université de Lyon Villeurbanne, France
| | - Jinyun Tang
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Akihiko Terada
- Department of Environmental Engineering, Technical University of Denmark Kongens Lyngby, Denmark
| | - Maria Tourna
- UMR INRA 1418, UMR CNRS 5557, Microbial Ecology Centre, INRA, CNRS, Université Lyon 1, Université de Lyon Villeurbanne, France
| | - Franck Poly
- UMR INRA 1418, UMR CNRS 5557, Microbial Ecology Centre, INRA, CNRS, Université Lyon 1, Université de Lyon Villeurbanne, France
| |
Collapse
|
36
|
Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4000-12. [PMID: 26150293 DOI: 10.1007/s11356-015-4943-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/22/2015] [Indexed: 05/12/2023]
Abstract
Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.
Collapse
Affiliation(s)
- Céline Roose-Amsaleg
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France.
| | - Anniet M Laverman
- Université de Rennes 1, UMR 6553 Ecobio, 35042, Rennes Cedex, France
| |
Collapse
|
37
|
A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME JOURNAL 2016; 10:2293-303. [PMID: 26894446 DOI: 10.1038/ismej.2016.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Abstract
The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.
Collapse
|
38
|
Hüpeden J, Wegen S, Off S, Lücker S, Bedarf Y, Daims H, Kühn C, Spieck E. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH. Appl Environ Microbiol 2016; 82:1838-45. [PMID: 26746710 PMCID: PMC4784051 DOI: 10.1128/aem.03163-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022] Open
Abstract
The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.
Collapse
Affiliation(s)
- Jennifer Hüpeden
- Biocenter Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Simone Wegen
- Biocenter Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Sandra Off
- Biocenter Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Sebastian Lücker
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, The Netherlands Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Yvonne Bedarf
- Biocenter Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Carsten Kühn
- State Research Centre of Agriculture and Fisheries Mecklenburg-Vorpommern, Institute of Fisheries, Rostock, Germany
| | - Eva Spieck
- Biocenter Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
39
|
Steen IH, Dahle H, Stokke R, Roalkvam I, Daae FL, Rapp HT, Pedersen RB, Thorseth IH. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems. Front Microbiol 2016; 6:1510. [PMID: 26779165 PMCID: PMC4703759 DOI: 10.3389/fmicb.2015.01510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/23/2023] Open
Abstract
In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field. This may be related to niche-specific physical characteristics. Altogether, the model provides a reference for future studies and illustrates the importance of systematic comparative studies of spatially closely connected niches in order to fully understand the geomicrobiology of hydrothermal systems.
Collapse
Affiliation(s)
- Ida H Steen
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Runar Stokke
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Irene Roalkvam
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Frida-Lise Daae
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Hans Tore Rapp
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Rolf B Pedersen
- Centre for Geobiology, University of BergenBergen, Norway; Department of Earth Science, University of BergenBergen, Norway
| | - Ingunn H Thorseth
- Centre for Geobiology, University of BergenBergen, Norway; Department of Earth Science, University of BergenBergen, Norway
| |
Collapse
|
40
|
Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME JOURNAL 2015; 10:1383-99. [PMID: 26657763 PMCID: PMC5029188 DOI: 10.1038/ismej.2015.214] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/05/2015] [Accepted: 10/25/2015] [Indexed: 11/22/2022]
Abstract
Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine–seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N. gracilis. Interestingly, the capacity for nitrite oxidation is also conserved in both genomes. Although both lack acidic proteomes synonymous with extreme halophiles, the pangenome of Ca. Nitromaritima RS specifically encodes enzymes with osmoregulatory and thermoprotective roles (i.e., ectoine/hydroxyectoine biosynthesis) and of thermodynamic importance (i.e., nitrate and nitrite reductases). Ca. Nitromaritima RS also possesses many hallmark traits of microaerophiles and high-affinity NOB. The abundance of the uncultured Ca. Nitromaritima lineage in marine oxyclines suggests their unrecognized ecological significance in deoxygenated areas of the global ocean.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | | | - Ulrich Stingl
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Abstract
Nitrification is a two-step process where ammonia is considered to first be oxidized to nitrite by ammonia-oxidizing bacteria (AOB) and/or archaea (AOA), and subsequently to nitrate by nitrite-oxidizing bacteria (NOB). Described by Winogradsky already in 18901, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle2. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible and it was postulated that this process could occur under conditions selecting for species with lower growth-rates but higher growth-yields than canonical ammonia-oxidizing microorganisms3. Still, organisms catalysing this process have not yet been discovered. Here, we report the enrichment and initial characterization of two Nitrospira species that encode all enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding on the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.
Collapse
|
42
|
Nowka B, Off S, Daims H, Spieck E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol Ecol 2014; 91:fiu031. [DOI: 10.1093/femsec/fiu031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Yun J, Ju Y, Deng Y, Zhang H. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. MICROBIAL ECOLOGY 2014; 68:360-369. [PMID: 24718907 DOI: 10.1007/s00248-014-0415-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.
Collapse
Affiliation(s)
- Juanli Yun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | | | | | | |
Collapse
|
44
|
Sorokin DY, Vejmelkova D, Lücker S, Streshinskaya GM, Rijpstra WIC, Sinninghe Damsté JS, Kleerbezem R, van Loosdrecht M, Muyzer G, Daims H. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. Int J Syst Evol Microbiol 2014; 64:1859-1865. [DOI: 10.1099/ijs.0.062232-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel nitrite-oxidizing bacterium (NOB), strain LbT, was isolated from a nitrifying bioreactor with a high loading of ammonium bicarbonate in a mineral medium with nitrite as the energy source. The cells were oval (lancet-shaped) rods with pointed edges, non-motile, Gram-positive (by staining and from the cell wall structure) and non-spore-forming. Strain LbT was an obligately aerobic, chemolitoautotrophic NOB, utilizing nitrite or formate as the energy source and CO2 as the carbon source. Ammonium served as the only source of assimilated nitrogen. Growth with nitrite was optimal at pH 6.8–7.5 and at 40 °C (maximum 46 °C). The membrane lipids consisted of C20 alkyl 1,2-diols with the dominant fatty acids being 10MeC18 and C18 : 1ω9. The peptidoglycan lacked meso-DAP but contained ornithine and lysine. The dominant lipoquinone was MK-8. Phylogenetic analyses of the 16s rRNA gene sequence placed strain LbT into the class
Thermomicrobia
of the phylum
Chloroflexi
with
Sphaerobacter thermophilus
as the closest relative. On the basis of physiological and phylogenetic data, it is proposed that strain LbT represents a novel species of a new genus, with the suggested name Nitrolancea hollandica gen. nov., sp. nov. The type strain of the type species is LbT ( = DSM 23161T = UNIQEM U798T).
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Department of Biotechnology, TU Delft, The Netherlands
- Winogradsky Institute of Microbiology RAS, Moscow, Russia
| | | | - Sebastian Lücker
- Department of Microbial Ecology, Ecology Centre, University of Vienna, Vienna, Austria
| | - Galina M. Streshinskaya
- Microbiology Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - W. Irene C. Rijpstra
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | | | | | - Gerard Muyzer
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Holger Daims
- Department of Microbial Ecology, Ecology Centre, University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Hoefman S, van der Ha D, Iguchi H, Yurimoto H, Sakai Y, Boon N, Vandamme P, Heylen K, De Vos P. Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int J Syst Evol Microbiol 2014; 64:2100-2107. [DOI: 10.1099/ijs.0.057760-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel methanotrophic strains, R-49797T and OS501, were isolated from pond water in South Africa and Japan, respectively. Strains R-49797T and OS501 shared 99.7 % 16S rRNA gene sequence similarity. Cells were Gram-stain-negative, non-motile cocci with a diplococcoid tendency and contained type I methanotroph intracytoplasmic membranes. The pmoA gene encoding particulate methane monooxygenase was present. Soluble methane monoooxygenase (sMMO) activity, the mmoX gene encoding sMMO and the nifH gene encoding nitrogenase were not detected. Methane and methanol were utilized as sole carbon source. The strains grew optimally at 25–33 °C (range 20–37 °C) and at pH 6.3–6.8 (range 5.8–9.0). The strains did not support growth in media supplemented with 1 % (w/v) NaCl. For both strains, the two major fatty acids were C16 : 1ω7c and C16 : 0 and the DNA G+C content was 65.6 mol%. The isolates belong to the family
Methylococcaceae
of the class
Gammaproteobacteria
and cluster most closely among the genera
Methylocaldum
,
Methylococcus
and
Methylogaea
, with a 16S rRNA gene sequence similarity of 94.2 % between strain R-49797T and its closest related type strain (
Methylocaldum gracile
VKM 14LT). Based on the low 16S rRNA gene sequence similarities with its nearest phylogenetic neighbouring genera, the formation of a separate lineage based on 16S rRNA and pmoA gene phylogenetic analysis, and the unique combination of phenotypic characteristics of the two isolated strains compared with the genera
Methylocaldum
,
Methylococcus
and
Methylogaea
, we propose to classify these strains as representing a novel species of a new genus, Methyloparacoccus murrellii gen. nov., sp. nov., within the family
Methylococcaceae
. The type strain of Methyloparacoccus murrellii is R-49797T ( = LMG 27482T = JCM 19379T).
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - David van der Ha
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Paul De Vos
- BCCM/LMG Bacteria Collection, Gent, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| |
Collapse
|
46
|
Wang LL, Yu XJ, Zhan SH, Jia SJ, Tian ZB, Dong QJ. Participation of microbiota in the development of gastric cancer. World J Gastroenterol 2014; 20:4948-4952. [PMID: 24803806 PMCID: PMC4009526 DOI: 10.3748/wjg.v20.i17.4948] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
There are a large number of bacteria inhabiting the human body, which provide benefits for the health. Alterations of microbiota participate in the pathogenesis of diseases. The gastric microbiota consists of bacteria from seven to eleven phyla, predominantly Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria. Intrusion by Helicobacter pylori (H. pylori) does not remarkably interrupt the composition and structure of the gastric microbiota. Absence of bacterial commensal from the stomach delays the onset of H. pylori-induced gastric cancer, while presence of artificial microbiota accelerates the carcinogenesis. Altered gastric microbiota may increase the production of N-nitroso compounds, promoting the development of gastric cancer. Further investigation of the carcinogenic mechanisms of microbiota would benefit for the prevention and management of gastric cancer.
Collapse
|
47
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
48
|
Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae". Syst Appl Microbiol 2014; 37:170-6. [PMID: 24581679 DOI: 10.1016/j.syapm.2013.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/06/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022]
Abstract
Nitrite oxidizing bacteria are an integral part of the nitrogen cycle in marine waters, but the knowledge about their diversity is limited. Recently, a high abundance of Nitrospina-like 16S rRNA gene sequences has been detected in oceanic habitats with low oxygen content by molecular methods. Here, we describe a new strain of Nitrospina, which was sampled in 100m depth from the Black Sea. It coexisted with a not-yet cultivated chemoorganotrophic gammaproteobacterium and could be purified by classical isolation methods including Percoll density gradient centrifugation. The new Nitrospina-like bacterium grew lithoautotrophically at 28°C in diluted seawater supplemented with inorganic salts and nitrite. Gram-negative rods were characterized morphologically, physiologically and partly biochemically. The 16S rRNA gene of the new strain of Nitrospina is 97.9% similar to the described species N. gracilis and DNA/DNA hybridization experiments revealed a relatedness of 30.0%. The data from both Nitrospina species and environmental clones were used for an extensive 16S rRNA based phylogenetic study applying high quality filtering. Treeing analyses confirm the newly defined phylum status for "Nitrospinae" [18]. The results of phylogenetic and genotypic analyses support the proposal of a novel species Nitrospina watsonii sp. nov. (type strain 347(T), LMG 27401(T), NCIMB 14887(T)).
Collapse
|
49
|
Hoefman S, Heylen K, De Vos P. Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 2014; 64:1210-1217. [PMID: 24408530 DOI: 10.1099/ijs.0.057794-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two methanotrophic bacteria, strains R-45377(T) and R-45370, were respectively isolated from a slurry pit of a cow stable and from a denitrification tank of a wastewater treatment plant in Belgium. The strains showed 99.9 % 16S rRNA gene sequence similarity. Cells were Gram-negative, motile rods containing type I methanotroph intracytoplasmic membranes. Colonies and liquid cultures appeared white to pale pink. The pmoA gene encoding particulate methane monooxygenase (pMMO) and the nifH gene encoding nitrogenase were present. Soluble methane monooxygenase (sMMO) activity, the presence of the mmoX gene encoding sMMO and the presence of the pxmA gene encoding a sequence-divergent pMMO were not detected. Methane and methanol were utilized as sole carbon sources. The strains grew optimally at 20 °C (range 15-28 °C) and at pH 6.8-7.3 (range pH 6.3-7.8). The strains grew in media supplemented with up to 1.2 % NaCl. The major cellular fatty acids were C16 : 1ω8c, C16 : 1ω5c, C16 : 1ω7c, C14 : 0, C15 : 0 and C16 : 0 and the DNA G+C content was 47 mol%. 16S rRNA gene- and pmoA-based phylogenetic analyses showed that the isolates cluster among members of the genus Methylomonas within the class Gammaproteobacteria, with pairwise 16S rRNA gene sequence similarities of 97.5 and 97.2 % between R-45377(T) and the closest related type strains, Methylomonas scandinavica SR5(T) and Methylomonas paludis MG30(T), respectively. Based on phenotypic characterization of strains R-45377(T) and R-45370, their low 16S rRNA gene sequence similarities and the formation of a separate phylogenetic lineage compared with existing species of the genus Methylomonas, we propose to classify these strains in a novel species, Methylomonas lenta sp. nov., with R-45377(T) ( = LMG 26260(T) = JCM 19378(T)) as the type strain.
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Paul De Vos
- BCCM/LMG Bacteria Collection, Gent, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| |
Collapse
|
50
|
Fujitani H, Ushiki N, Tsuneda S, Aoi Y. Isolation of sublineage I Nitrospira by a novel cultivation strategy. Environ Microbiol 2013; 16:3030-40. [PMID: 25312601 DOI: 10.1111/1462-2920.12248] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Nitrification is an important process in the biogeochemical nitrogen cycle and is widely exploited in biological wastewater treatment. Recently, Nitrospira has been recognized as the numerically dominant nitrite-oxidizing bacterial genus and is primarily responsible for the second step of aerobic nitrification. Nevertheless, the physiological properties of Nitrospira remain poorly understood because the organisms are difficult to isolate and culture. Here, we report a novel cultivation strategy for obtaining members of the Nitrospira sublineage I in pure culture. The method combines: (i) selective enrichment of Nitrospira using a continuous feeding reactor and (ii) purification followed by sub-cultivation via a cell sorting system by focusing on the unique characteristics of Nitrospira forming spherical micro-colonies. This strategy is potentially applicable to other uncultured or unisolated Nitrospira and could accelerate the physiological and biochemical understandings of this important group of organisms.
Collapse
Affiliation(s)
- Hirotsugu Fujitani
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | |
Collapse
|