1
|
de Oliveira Junior PC, Sanjinez Argandoña EJ, Dos Santos SM, Santos JMD, de Souza MF, Faoro JAM, Kassuya CAL, Arena AC, Matos Manoel BD, Silva RMMF, Formagio ASN. Toxicological analysis and anti-inflammatory and antioxidant evaluations of extract, fractions and secoxyloganin obtained from Guettarda viburnoides Cham. & Schltdl. in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119090. [PMID: 39528115 DOI: 10.1016/j.jep.2024.119090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guettarda viburnoides, "veludinho do campo," is traditionally used for the treatment of pain and inflammatory conditions in humans; however, only one scientific study has reported this effect in an ear inflammatory model. Therefore, it is necessary to explore other in vivo models and the chemical composition of this medicinal plant. AIM OF THE STUDY A chemical investigation of methanolic extract of G. viburnoides (MEGV) (leaves) led to the isolation of secoxyloganin (GV-1). In addition, the preclinical safety of MEGV (in acute and subacute toxicological models, gavage = p.o.), antioxidants of MEGV, ethyl acetate (EAFGV) and hydromethanolic (HMFGV) fractions were tested using free radical scavenging and lipid peroxidation methodologies, and the anti-inflammatory effects of MEGV, HMFGV and GV-1 (p.o.) were evaluated on carrageenan and complete Freund's adjuvant (CFA) models of inflammation in mice. MATERIALS AND METHODS MEGV was obtained from air-dried leaves by maceration with methanol at room temperature. MEGV was then purified by liquid-liquid partitioning, to obtain the EAFGV and HMFGV fractions. Purification of HMFGV afforded GV-1. The quantification of total phenols, flavonoids, flavonols, and condensed tannins was subsequently performed for MEGV. The antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and oxidation of β-carotene were evaluated in MEGV and its fractions. The anti-inflammatory activity of MEGV (3, 30, and 100 mg/kg, p.o.) was assayed in carrageenan-induced models, followed by assessments of MEGV (100 mg/kg, p.o.), HMFGV (3 and 30 mg/kg, p.o.) and GV-1 (3 mg/kg, p.o.) in CFA-induced models in mice (including paw oedema, mechanical allodynia and cold sensitivity). Acute (14 days of MEGV, 2000 mg/kg, p.o.) and subacute (28 days, MEGV 30, 100, and 300 mg/kg, p.o.) toxicity was assessed in female Swiss mice. RESULTS The major compound was secoxyloganin (GV-1). The oral acute toxicity test of MEGV revealed no evidence of toxicity, indicating low toxicity according to the Organization for Economic Cooperation and Development (OECD) guidelines. In the subacute toxicity group, no clinical signs of toxicity or changes in body weight, water consumption, food consumption, or organ weight or morphology were observed after 28 days of gavage with MEGV (30, 100, and 300 mg/kg) compared with those in the control group. MEGV, EAFGV, and HMFGV showed significant free-radical scavenging and lipid peroxidation activities, with IC50 values ≤ 26.38 ± 4.56 μg/mL. In in vivo anti-inflammatory assays, MEGV (3, 30 and 100 mg/kg) reduced carrageenan-induced oedema (2 and 4 h) and hyperalgesia (3 and 4 h). In the CFA model, MEGV (100 mg/kg), HMFGV (30 mg/kg) and GV-1 (3 mg/kg) reduced inflammation (at 3, 4 and 24 h) in all parameters (oedema, mechanical allodynia and cold sensitivity). CONCLUSION This study revealed that G. viburnoides has antioxidant and anti-inflammatory properties, and no toxicity was detected after acute or subacute gavage with MEGV, validating its traditional use in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | - Maiara Fava de Souza
- Federal University of Grande Dourados, College of Health Science, Dourados, MS, Brazil.
| | | | | | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, University Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil.
| | - Beatriz de Matos Manoel
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, University Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil.
| | | | - Anelise Samara Nazari Formagio
- Federal University of Grande Dourados, College of Biological and Environmental Sciences, MS, Brazil; Federal University of Grande Dourados, College of Health Science, Dourados, MS, Brazil.
| |
Collapse
|
2
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Pectin-stabilized nanoceria double coated with lactoferrin/chitosan for management of experimental autoimmune encephalomyelitis. Colloids Surf B Biointerfaces 2024; 245:114271. [PMID: 39353349 DOI: 10.1016/j.colsurfb.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cerium oxide nanoparticles are a unique antioxidant mimicking the activity of natural antioxidant enzymes. Previous research showed its' promising effect mitigating free radical damage in neurodegenerative disorders. However, there is still unmet therapeutic needs due to poor BBB penetration, a high accumulation in liver, kidney and spleen. This study aimed to synthesize and optimize nanoceria stabilized by natural bioactive polymers suitable for intranasal administration to manage multiple sclerosis. Among the different employed biopolymers, pectin-stabilized nanoceria exhibited the ideal properties with small particles size 87.20 ± 3.43 nm, high zeta potential -56.37 ± 2.39 mV and high free radical scavenging activity 85.27 ± 0.07 %. Then coating was achieved for the first time by two biopolymers: lactoferrin and chitosan producing a double coated cationic nanoceria. Biological assessment involved using experimental autoimmune encephalomyelitis animal model treated in a dose of 1 mg/kg nanoceria for 15 days. Motor function testing in rats revealed 6- and 17-folds increase in latency time in rotating rod and hanging wire tests, respectively. Biochemical analysis revealed significant reduction in lipid peroxidation along with about 1-fold upgrading of the intrinsic antioxidant system. Moreover, histologic examination disclosed decreased degeneration of the brain and spinal cord of treated rats and much decreased liver toxicity.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Chowdhury KU, Holden ME, Wiley MT, Suppiramaniam V, Reed MN. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells 2024; 13:1130. [PMID: 38994982 PMCID: PMC11240741 DOI: 10.3390/cells13131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
There has been a significant increase in the consumption of cannabis for both recreational and medicinal purposes in recent years, and its use can have long-term consequences on cognitive functions, including memory. Here, we review the immediate and long-term effects of cannabis and its derivatives on glutamatergic neurotransmission, with a focus on both the presynaptic and postsynaptic alterations. Several factors can influence cannabinoid-mediated changes in glutamatergic neurotransmission, including dosage, sex, age, and frequency of use. Acute exposure to cannabis typically inhibits glutamate release, whereas chronic use tends to increase glutamate release. Conversely, the postsynaptic alterations are more complicated than the presynaptic effects, as cannabis can affect the glutamate receptor expression and the downstream signaling of glutamate. All these effects ultimately influence cognitive functions, particularly memory. This review will cover the current research on glutamate-cannabis interactions, as well as the future directions of research needed to understand cannabis-related health effects and neurological and psychological aspects of cannabis use.
Collapse
Affiliation(s)
- Kawsar U. Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | - Miles T. Wiley
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Park J, Roh J, Pan J, Kim YH, Park CK, Jo YY. Role of Resolvins in Inflammatory and Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1366. [PMID: 37895837 PMCID: PMC10610411 DOI: 10.3390/ph16101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain is an unpleasant experience associated with actual or potential tissue damage. Inflammatory pain alerts the body to inflammation and promotes healing; however, unresolved inflammation can lead to chronic pain. Conversely, neuropathic pain, due to somatosensory damage, can be a disease in itself. However, inflammation plays a considerable role in the progression of both types of pain. Resolvins, derived from omega-3 fatty acids, actively suppress pro-inflammatory mediators and aid in the resolution of inflammation. Resolvins alleviate various inflammatory and neuropathic pain models by reducing hypersensitivity and regulating inflammatory cytokines and glial activation in the spinal cord and dorsal root ganglia. Thus, resolvins are a promising alternative for pain management with the potential to reduce the side effects associated with conventional medications. Continued research is crucial to unlock the therapeutic potential of resolvins and integrate them into effective clinical pain management strategies. This review aimed to evaluate the literature surrounding the resolvins in inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jaeik Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jingying Pan
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
- Department of Histology and Embryology, Medical School of Nantong University, Nantong 226007, China
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
5
|
Essmat N, Galambos AR, Lakatos PP, Karádi DÁ, Mohammadzadeh A, Abbood SK, Geda O, Laufer R, Király K, Riba P, Zádori ZS, Szökő É, Tábi T, Al-Khrasani M. Pregabalin-Tolperisone Combination to Treat Neuropathic Pain: Improved Analgesia and Reduced Side Effects in Rats. Pharmaceuticals (Basel) 2023; 16:1115. [PMID: 37631030 PMCID: PMC10459435 DOI: 10.3390/ph16081115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT) measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again, PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallodynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or duloxetine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium and calcium channels, respectively. The dual blockade effect of the combination might explain its advantageous acute analgesic effect in the present work.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Péter P. Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Rudolf Laufer
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| |
Collapse
|
6
|
Sánchez-Zavaleta R, Becerril-Meléndez LA, Ruiz-Contreras AE, Escobar-Elías AP, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. CB1R chronic intermittent pharmacological activation facilitates amphetamine seeking and self-administration and changes in CB1R/CRFR1 expression in the amygdala and nucleus accumbens in rats. Pharmacol Biochem Behav 2023:173587. [PMID: 37308040 DOI: 10.1016/j.pbb.2023.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS). Adult male Wistar rats were treated with a daily administration of vehicle or 20 μg of ACEA, or four days of vehicle followed by 100 μg of ACEA on the fifth day, for a total of 30 days. Upon completion of this treatment, the CB1R and CRFR1 expression in the CeA and NAcS was evaluated by immunofluorescence. Additional groups of rats were evaluated for their anxiety levels (elevated plus maze, EPM), amphetamine (AMPH) self-administration (ASA) and breakpoint (A-BP), as well as AMPH-induced conditioned place preference (A-CPP). Results indicated that ACEA induced changes in the CB1R and CRFR1 expression in both the NAcS and CeA. An increase in anxiety-like behavior, ASA, A-BP and A-CPP was also observed. Since the intermittent administration of 100 μg of ACEA induced the most evident changes in most of the parameters studied, we concluded that binge-like ingestion of drugs induces changes in the brain that may make the subject more vulnerable to developing drug addiction.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Lorena Alline Becerril-Meléndez
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Ana Paula Escobar-Elías
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Chile
| | - Mónica Méndez-Díaz
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Miguel Pérez de la Mora
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Oscar E Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
7
|
Sánchez-Zavaleta R, Segovia J, Ruiz-Contreras AE, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. GPR55 activation prevents amphetamine-induced conditioned place preference and decrease the amphetamine-stimulated inflammatory response in the ventral hippocampus in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110636. [PMID: 36099968 DOI: 10.1016/j.pnpbp.2022.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption. The aim of the present study was to investigate whether vHp GPR55 activation prevents both the inflammatory response induced by amphetamine (AMPH) in the vHp and the AMPH-induced conditioned place preference (A-CPP). Wistar adult male rats with a bilateral cannula into the vHp or intact males were subjected to A-CPP (5 mg/kg). Upon the completion of A-CPP, the vHp was dissected to evaluate IL-1β and IL-6 expression through RT-PCR, Western blot and immunofluorescence. Our results reveal that AMPH induces both A-CPP and an increase of IL-1β and IL-6 in the vHp. The GPR55 agonist lysophosphatidylinositol (LPI, 10 μM) infused into the vHp prevented A-CPP and the AMPH-induced IL-1β increase. CID 16020046 (CID, 10 μM), a selective GPR55 antagonist, abolished LPI effects. To evaluate the effect of the inflammatory response, lipopolysaccharide (LPS, 5 μg/μl) was infused bilaterally into the vHp during A-CPP acquisition. LPS strengthened A-CPP and increased IL-1β/IL-6 mRNA and protein levels in the vHp. LPS also increased CD68, Iba1, GFAP and vimentin expression. All LPS-induced effects were blocked by LPI. Our results suggest that GPR55 activation in the vHp prevents A-CPP while decreasing the local neuro-inflammatory response. These findings indicate that vHp GPR55 is a crucial factor in preventing the rewarding effects of AMPH due to its capacity to interfere with proinflammatory responses in the vHp.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, México
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, México
| | - Mónica Méndez-Díaz
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Oscar E Prospéro-García
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
8
|
Finlay DB, Nguyen T, Gamage TF, Chen S, Barrus DG, Patel PR, Thomas BF, Wiley JL, Zhang Y, Glass M. Exploring determinants of agonist efficacy at the CB1 cannabinoid receptor: Analogues of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Res Perspect 2022; 10:e00901. [PMID: 35041297 PMCID: PMC8929370 DOI: 10.1002/prp2.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Neutral antagonists of GPCRs remain relatively rare—indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG‐018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG‐018 and 13 analogues along with extant putative neutral antagonists of CB1. In HEK cells stably expressing human CB1, assays for inhibition of cAMP were performed by real‐time BRET biosensor (CAMYEL), G protein cycling was quantified by [35S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG‐018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG‐018‐based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long‐standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1.
Collapse
Affiliation(s)
- David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Thuy Nguyen
- RTI International, Research Triangle Park, North Carolina, USA
| | - Thomas F Gamage
- RTI International, Research Triangle Park, North Carolina, USA
| | - Shuli Chen
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel G Barrus
- RTI International, Research Triangle Park, North Carolina, USA
| | - Purvi R Patel
- RTI International, Research Triangle Park, North Carolina, USA
| | - Brian F Thomas
- RTI International, Research Triangle Park, North Carolina, USA
| | - Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina, USA
| | - Yanan Zhang
- RTI International, Research Triangle Park, North Carolina, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 2016; 310:H785-H801. [PMID: 26825517 PMCID: PMC4865067 DOI: 10.1152/ajpheart.00571.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.
Collapse
Affiliation(s)
- Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Miriam Leszl-Ishiguro
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Iring A, Ruisanchez É, Leszl-Ishiguro M, Horváth B, Benkő R, Lacza Z, Járai Z, Sándor P, Di Marzo V, Pacher P, Benyó Z. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation. PLoS One 2013; 8:e53390. [PMID: 23308211 PMCID: PMC3537620 DOI: 10.1371/journal.pone.0053390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). METHODOLOGY/PRINCIPAL FINDINGS In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. CONCLUSION/SIGNIFICANCE Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the first time the involvement of the endocannabinoid system and CB1-receptors in the regulation of the cerebral circulation during H/H and also raise the possibility of their contribution to the autoregulation of CoBF.
Collapse
Affiliation(s)
- András Iring
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Miriam Leszl-Ishiguro
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Béla Horváth
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rita Benkő
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Járai
- Department of Cardiology, St. Imre Teaching Hospital, Budapest, Hungary
| | - Péter Sándor
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zoltán Benyó
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|