1
|
Guzmán-Silva A, Martínez-Morales JC, Medina LDC, Romero-Ávila MT, Villegas-Comonfort S, Solís KH, García-Sáinz JA. Mutation of putative phosphorylation sites in the free fatty acid receptor 1: Effects on signaling, receptor phosphorylation, and internalization. Mol Cell Endocrinol 2022; 545:111573. [PMID: 35065200 DOI: 10.1016/j.mce.2022.111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type. Phorbol ester-induced FFA1 receptor phosphorylation was rapid and robust in cells expressing the wild-type receptor and essentially abolished in the mutants. Agonist-induced ERK 1/2 phosphorylation and receptor internalization were decreased in cells expressing the mutant receptors compared to those expressing the wild-type receptor. Our data suggest that the identified sites might participate in receptor phosphorylation, signaling, and internalization.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Luz Del Carmen Medina
- Departamento de Biología de la Reproducción, División de CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México, 09340, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Karina Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Novello MJ, Zhu J, Zhang M, Feng Q, Stathopulos PB. Synergistic stabilization by nitrosoglutathione-induced thiol modifications in the stromal interaction molecule-2 luminal domain suppresses basal and store operated calcium entry. Sci Rep 2020; 10:10177. [PMID: 32576932 PMCID: PMC7311479 DOI: 10.1038/s41598-020-66961-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
Stromal interaction molecule−1 and −2 (STIM1/2) are endoplasmic reticulum (ER) membrane-inserted calcium (Ca2+) sensing proteins that, together with Orai1-composed Ca2+ channels on the plasma membrane (PM), regulate intracellular Ca2+ levels. Recent evidence suggests that S-nitrosylation of the luminal STIM1 Cys residues inhibits store operated Ca2+ entry (SOCE). However, the effects of thiol modifications on STIM2 during nitrosative stress and their role in regulating basal Ca2+ levels remain unknown. Here, we demonstrate that the nitric oxide (NO) donor nitrosoglutathione (GSNO) thermodynamically stabilizes the STIM2 Ca2+ sensing region in a Cys-specific manner. We uncovered a remarkable synergism in this stabilization involving the three luminal Cys of STIM2, which is unique to this paralog. S-Nitrosylation causes structural perturbations that converge on the face of the EF-hand and sterile α motif (EF-SAM) domain, implicated in unfolding-coupled activation. In HEK293T cells, enhanced free basal cytosolic Ca2+ and SOCE mediated by STIM2 overexpression could be attenuated by GSNO or mutation of the modifiable Cys located in the luminal domain. Collectively, we identify the Cys residues within the N-terminal region of STIM2 as modifiable targets during nitrosative stress that can profoundly and cooperatively affect basal Ca2+ and SOCE regulation.
Collapse
Affiliation(s)
- Matthew J Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Jinhui Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.,Dentistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - MengQi Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
3
|
Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111825. [DOI: 10.1016/j.jphotobiol.2020.111825] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/08/2023]
|
4
|
Alcántara-Hernández R, Carmona-Rosas G, Hernández-Espinosa DA, García-Sáinz JA. Glycogen Synthase Kinase-3 modulates α 1A-adrenergic receptor action and regulation. Eur J Cell Biol 2020; 99:151072. [PMID: 32113707 DOI: 10.1016/j.ejcb.2020.151072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/27/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
The possibility that glycogen synthase kinase 3 (GSK3) could modulate α1A-adrenergic receptor (α1A-AR) function and regulation was tested employing LNCaP and HEK293 cells transfected to express the enhanced green fluorescent protein-tagged human α1A-AR. Receptor phosphorylation and internalization, intracellular free calcium, α1A-AR-GSK3 colocalization, and coimmunoprecipitation were studied. The effects of the pharmacological GSK3 inhibitor, SB-216763, and the coexpression of a dominant-negative mutant of this kinase, as well as the signaling, desensitization, and internalization of receptors with S229, S258, S352, and S381 substitutions for alanine or aspartate, were also determined. SB-216763 inhibited agonist- and phorbol myristate acetate (PMA)-mediated α1A-AR phosphorylation, reduced oxymetazoline-induced desensitization, and magnified that induced by PMA. Agonists and PMA increased receptor-GSK3 colocalization and coimmunoprecipitation. Expression of a dominant-negative GSK3 mutant reduced agonist- but not PMA-induced receptor internalization. α1A-AR with the GSK3 putative target sites mutated to alanine exhibited reduced phosphorylation and internalization in response to agonists and increased PMA-induced desensitization. Agonist-induced, but not PMA-induced, receptor-β arrestin intracellular colocalization was diminished in cells expressing the GSK3 putative target sites mutated to alanine. Our data indicated that GSK3 exerts a dual action on α1A-AR participating in agonist-mediated desensitization and internalization and avoiding PMA-induced desensitization.
Collapse
Affiliation(s)
- Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabriel Carmona-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David A Hernández-Espinosa
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Distinct phosphorylation sites/clusters in the carboxyl terminus regulate α 1D-adrenergic receptor subcellular localization and signaling. Cell Signal 2018; 53:374-389. [PMID: 30419287 DOI: 10.1016/j.cellsig.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022]
Abstract
The human α1D-adrenergic receptor is a seven transmembrane-domain protein that mediates many of the physiological actions of adrenaline and noradrenaline and participates in the development of hypertension and benign prostatic hyperplasia. We recently reported that different phosphorylation patterns control α1D-adrenergic receptor desensitization. However, to our knowledge, there is no data regarding the role(s) of this receptor's specific phosphorylation residues in its subcellular localization and signaling. In order to address this issue, we mutated the identified phosphorylated residues located on the third intracellular loop and carboxyl tail. In this way, we experimentally confirmed α1D-AR phosphorylation sites and identified, in the carboxyl tail, two groups of residues in close proximity to each other, as well as two individual residues in the proximal (T442) and distal (S543) regions. Our results indicate that phosphorylation of the distal cluster (T507, S515, S516 and S518) favors α1D-AR localization at the plasma membrane, i. e., substitution of these residues for non-phosphorylatable amino acids results in the intracellular localization of the receptors, whereas phospho-mimetic substitution allows plasma membrane localization. Moreover, we found that T442 phosphorylation is necessary for agonist- and phorbol ester-induced receptor colocalization with β-arrestins. Additionally, we observed that substitution of intracellular loop 3 phosphorylation sites for non-phosphorylatable amino acids resulted in sustained ERK1/2 activation; additional mutations in the phosphorylated residues in the carboxyl tail did not alter this pattern. In contrast, mobilization of intracellular calcium and receptor internalization appear to be controlled by the phosphorylation of both third-intracellular-loop and carboxyl terminus-domain residues. In summary, our data indicate that a) both the phosphorylation sites present in the third intracellular loop and in the carboxyl terminus participate in triggering calcium signaling and in turning-off α1D-AR-induced ERK activation; b) phosphorylation of the distal cluster appears to play a role in receptor's plasma membrane localization; and c) T442 appears to play a critical role in receptor phosphorylation and receptor-β-arrestin colocalization.
Collapse
|
6
|
Alfonzo-Méndez MA, Carmona-Rosas G, Hernández-Espinosa DA, Romero-Ávila MT, García-Sáinz JA. Different phosphorylation patterns regulate α 1D-adrenoceptor signaling and desensitization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:842-854. [PMID: 29551601 DOI: 10.1016/j.bbamcr.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Human α1D-adrenoceptors (α1D-ARs) are a group of the seven transmembrane-spanning proteins that mediate many of the physiological and pathophysiological actions of adrenaline and noradrenaline. Although it is known that α1D-ARs are phosphoproteins, their specific phosphorylation sites and the kinases involved in their phosphorylation remain largely unknown. Using a combination of in silico analysis, mass spectrometry and site directed mutagenesis, we identified distinct α1D-AR phosphorylation patterns during noradrenaline- or phorbol ester-mediated desensitizations. We found that the G protein coupled receptor kinase, GRK2, and conventional protein kinases C isoforms α/β, phosphorylate α1D-AR during these processes. Furthermore, we showed that the phosphorylated residues are located in the receptor's third intracellular loop (S300, S323, T328, S331, S332, S334) and carboxyl region (S441, T442, T477, S486, S492, T507, S515, S516, S518, S543) and are conserved among orthologues but are not conserved among the other human α1-adrenoceptor subtypes. Additionally, we found that phosphorylation in either the third intracellular loop or carboxyl tail was sufficient to regulate calcium signaling desensitization. By contrast, mutations in either of these two domains significantly altered mitogen activated protein kinase (ERK) pathway and receptor internalization, suggesting that they have differential regulatory mechanisms. Our data provide new insights into the functional repercussions of these posttranslational modifications in signaling outcomes and desensitization.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México CP 04510, Mexico
| | - Gabriel Carmona-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México CP 04510, Mexico
| | - David A Hernández-Espinosa
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México CP 04510, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México CP 04510, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México CP 04510, Mexico.
| |
Collapse
|
7
|
The α-1 adrenoceptor (ADRA1A) genotype moderates the magnitude of acute cocaine-induced subjective effects in cocaine-dependent individuals. Pharmacogenet Genomics 2017; 26:428-35. [PMID: 27379509 DOI: 10.1097/fpc.0000000000000234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We examined whether a functional variant of the ADRA1A gene moderated cocaine-induced subjective effects in a group of cocaine-dependent individuals. METHODS This study was a within-participant, double-blind, placebo-controlled inpatient human laboratory evaluation of 65 nontreatment-seeking, cocaine-dependent [Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV)] individuals aged 18-55 years. Participants received both placebo (saline, IV) and cocaine (40 mg, IV), and subjective responses were assessed 15 min before receiving an infusion and at 5 min intervals for the subsequent 20 min. The rs1048101 variant of the α1A-adrenoceptor (ADRA1A) gene was genotyped and it was evaluated whether the Cys to Arg substitution at codon 347 in exon 2 (Cys347Arg) moderated the magnitude of the subjective effects produced by cocaine. RESULTS Thirty (46%) participants were found to have the major allele CC genotype and 35 (44%) carried at least one minor T-allele of rs1048101 (TT or TC genotype). Individuals with the CC genotype showed greater responses for 'desire' (P<0.0001), 'high' (P<0.0001), 'any drug effect' (P<0.0001), 'like cocaine' (P<0.0001), and 'likely to use cocaine if given access' (P<0.05) with experiment-wise significance. CONCLUSION This study indicates that the ADRA1A genotype could be used to identify individuals for whom acute cocaine exposure may be more rewarding and by inference may result in greater difficulty in establishing and/or maintaining abstinence from cocaine.
Collapse
|
8
|
Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α 1A-adrenergic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2378-2388. [PMID: 28888989 DOI: 10.1016/j.bbamcr.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/04/2023]
Abstract
In LNCaP cells that stably express α1A-adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α1A-Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α1A-adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α1A-AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined.
Collapse
|
9
|
Villegas-Comonfort S, Takei Y, Tsujimoto G, Hirasawa A, García-Sáinz JA. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot Essent Fatty Acids 2017; 117:1-10. [PMID: 28237082 DOI: 10.1016/j.plefa.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.
Collapse
Affiliation(s)
- S Villegas-Comonfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico
| | - Y Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - G Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - A Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - J A García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico.
| |
Collapse
|
10
|
Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. Novel Structural Approaches to Study GPCR Regulation. Int J Mol Sci 2016; 18:E27. [PMID: 28025563 PMCID: PMC5297662 DOI: 10.3390/ijms18010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Upon natural agonist or pharmacological stimulation, G protein-coupled receptors (GPCRs) are subjected to posttranslational modifications, such as phosphorylation and ubiquitination. These posttranslational modifications allow protein-protein interactions that turn off and/or switch receptor signaling as well as trigger receptor internalization, recycling or degradation, among other responses. Characterization of these processes is essential to unravel the function and regulation of GPCR. METHODS In silico analysis and methods such as mass spectrometry have emerged as novel powerful tools. Both approaches have allowed proteomic studies to detect not only GPCR posttranslational modifications and receptor association with other signaling macromolecules but also to assess receptor conformational dynamics after ligand (agonist/antagonist) association. RESULTS this review aims to provide insights into some of these methodologies and to highlight how their use is enhancing our comprehension of GPCR function. We present an overview using data from different laboratories (including our own), particularly focusing on free fatty acid receptor 4 (FFA4) (previously known as GPR120) and α1A- and α1D-adrenergic receptors. From our perspective, these studies contribute to the understanding of GPCR regulation and will help to design better therapeutic agents.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Rocío Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
11
|
Carboxyl terminus-truncated α1D-adrenoceptors inhibit the ERK pathway. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:911-20. [PMID: 27146292 DOI: 10.1007/s00210-016-1254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Abstract
Human α1D-adrenoceptors are G protein-coupled receptors that mediate adrenaline/noradrenaline actions. There is a growing interest in identifying regulatory domains in these receptors and determining how they function. In this work, we show that the absence of the human α1D-adrenoceptor carboxyl tail results in altered ERK (extracellular signal-regulated kinase) and p38 phosphorylation states. Amino terminus-truncated and both amino and carboxyl termini-truncated α1D-adrenoceptors were transfected into Rat-1, HEK293, and B103 cells, and changes in the phosphorylation state of extracellular signal-regulated kinase was assessed using biochemical and biophysical approaches. The phosphorylation state of other protein kinases (p38, MEK1, and Raf-1) was also studied. Noradrenaline-induced ERK phosphorylation in Rat-1 fibroblasts expressing amino termini-truncated α1D-adrenoceptors. However, in cells expressing receptors with both amino and carboxyl termini truncations, noradrenaline-induced activation was abrogated. Interestingly, ERK phosphorylation that normally occurs through activation of endogenous G protein-coupled receptors, EGF receptors, and protein kinase C, was also decreased, suggesting that downstream steps in the mitogen-activated protein kinase pathway were affected. A similar effect was observed in B103 cells but not in HEK 293 cells. Phosphorylation of Raf-1 and MEK1 was also diminished in Rat-1 fibroblasts expressing amino- and carboxyl-truncated α1D-adrenoceptors. Our data indicate that expression of carboxyl terminus-truncated α1D-adrenoceptors alters ERK and p38 phosphorylation state.
Collapse
|