1
|
Kuile AM, Apigo A, Bui A, DiFiore B, Forbes ES, Lee M, Orr D, Preston DL, Behm R, Bogar T, Childress J, Dirzo R, Klope M, Lafferty KD, McLaughlin J, Morse M, Motta C, Park K, Plummer K, Weber D, Young R, Young H. Predator–prey interactions of terrestrial invertebrates are determined by predator body size and species identity. Ecology 2022; 103:e3634. [DOI: 10.1002/ecy.3634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Miller‐ter Kuile
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - An Bui
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Bartholomew DiFiore
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Elizabeth S. Forbes
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Michelle Lee
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado United States
| | - Rachel Behm
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Taylor Bogar
- School of Biological Sciences University of Hong Kong Hong Kong HK
| | - Jasmine Childress
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Rodolfo Dirzo
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - Maggie Klope
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin D. Lafferty
- Western Ecological Research Center U.S. Geological Survey, at Marine Science Institute, University of California Santa Barbara United States
| | - John McLaughlin
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Marisa Morse
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Carina Motta
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin Park
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Katherine Plummer
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - David Weber
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia United States
| | - Ronny Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Hillary Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| |
Collapse
|
2
|
O’Gorman EJ, Chemshirova I, McLaughlin ÓB, Stewart RIA. Impacts of Warming on Reciprocal Subsidies Between Aquatic and Terrestrial Ecosystems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.795603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cross-ecosystem subsidies are important as their recipients often rely on them to supplement in situ resource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.
Collapse
|
3
|
Keppeler FW, Montaña CG, Winemiller KO. The relationship between trophic level and body size in fishes depends on functional traits. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Friedrich W. Keppeler
- Department of Ecology and Conservation Biology Texas A&M University College Station Texas USA
| | - Carmen G. Montaña
- Department of Biology Stephen F. Austin State University Nacogdoches Texas USA
| | - Kirk O. Winemiller
- Department of Ecology and Conservation Biology Texas A&M University College Station Texas USA
| |
Collapse
|
4
|
Torres‐Campos I, Magalhães S, Moya‐Laraño J, Montserrat M. The return of the trophic chain: Fundamental vs. realized interactions in a simple arthropod food web. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Inmaculada Torres‐Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC) Málaga Spain
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Jordi Moya‐Laraño
- Estación Experimental de Zonas Áridas – CSIC, Carretera de Sacramento s/n Almería Spain
| | - Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC) Málaga Spain
| |
Collapse
|
5
|
Roubinet E, Jonsson T, Malsher G, Staudacher K, Traugott M, Ekbom B, Jonsson M. High Redundancy as well as Complementary Prey Choice Characterize Generalist Predator Food Webs in Agroecosystems. Sci Rep 2018; 8:8054. [PMID: 29795226 PMCID: PMC5966386 DOI: 10.1038/s41598-018-26191-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Food web structure influences ecosystem functioning and the strength and stability of associated ecosystem services. With their broad diet, generalist predators represent key nodes in the structure of many food webs and they contribute substantially to ecosystem services such as biological pest control. However, until recently it has been difficult to empirically assess food web structure with generalist predators. We utilized DNA-based molecular gut-content analyses to assess the prey use of a set of generalist invertebrate predator species common in temperate agricultural fields. We investigated the degree of specialization of predator-prey food webs at two key stages of the cropping season and analysed the link temperature of different trophic links, to identify non-random predation. We found a low level of specialization in our food webs, and identified warm and cool links which may result from active prey choice or avoidance. We also found a within-season variation in interaction strength between predators and aphid pests which differed among predator species. Our results show a high time-specific functional redundancy of the predator community, but also suggest temporally complementary prey choice due to within-season succession of some predator species.
Collapse
Affiliation(s)
- Eve Roubinet
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas Jonsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Ecological Modelling group, School of Biosciences, Skövde University, Skövde, Sweden
| | - Gerard Malsher
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Staudacher
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Barbara Ekbom
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mattias Jonsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
6
|
Jonsson T. Conditions for Eltonian Pyramids in Lotka-Volterra Food Chains. Sci Rep 2017; 7:10912. [PMID: 28883486 PMCID: PMC5589755 DOI: 10.1038/s41598-017-11204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/28/2022] Open
Abstract
In ecological communities consumers (excluding parasites and parasitoids) are in general larger and less numerous than their resource. This results in a well-known observation known as 'Eltonian pyramids' or the 'pyramid of numbers', and metabolic arguments suggest that this pattern is independent of the number of trophic levels in a system. At the same time, Lotka-Volterra (LV) consumer-resource models are a frequently used tool to study many questions in community ecology, but their capacity to produce Eltonian pyramids has not been formally analysed. Here, I address this knowledge gap by investigating if and when LV food chain models give rise to Eltonian pyramids. I show that Eltonian pyramids are difficult to reproduce without density-dependent mortality in the consumers, unless biologically plausible relationships between mortality rate and interaction strength are taken into account.
Collapse
Affiliation(s)
- Tomas Jonsson
- Ecological Modeling Group, School of Bioscience, University of Skövde, Box 408, SE-541 28, Skövde, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
7
|
Melguizo-Ruiz N, Jiménez-Navarro G, Moya-Laraño J. Beech cupules as keystone structures for soil fauna. PeerJ 2016; 4:e2562. [PMID: 27781162 PMCID: PMC5075700 DOI: 10.7717/peerj.2562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/13/2016] [Indexed: 11/20/2022] Open
Abstract
Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.
Collapse
Affiliation(s)
- Nereida Melguizo-Ruiz
- Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas-CSIC , Almería , Spain
| | - Gerardo Jiménez-Navarro
- CIBIO/InBio-UE Research Center in Biodiversity and Genetic Resources, University of Évora , Évora , Portugal
| | - Jordi Moya-Laraño
- Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas-CSIC , Almería , Spain
| |
Collapse
|
8
|
Jacob U, Woodward G. Preface. ADV ECOL RES 2012. [DOI: 10.1016/b978-0-12-396992-7.09986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
O'Gorman EJ, Pichler DE, Adams G, Benstead JP, Cohen H, Craig N, Cross WF, Demars BO, Friberg N, Gíslason GM, Gudmundsdóttir R, Hawczak A, Hood JM, Hudson LN, Johansson L, Johansson MP, Junker JR, Laurila A, Manson JR, Mavromati E, Nelson D, Ólafsson JS, Perkins DM, Petchey OL, Plebani M, Reuman DC, Rall BC, Stewart R, Thompson MS, Woodward G. Impacts of Warming on the Structure and Functioning of Aquatic Communities. ADV ECOL RES 2012. [DOI: 10.1016/b978-0-12-398315-2.00002-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Hagen M, Kissling WD, Rasmussen C, De Aguiar MA, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, Mclaughlin Ó, Morellato LPC, O'Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM. Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. ADV ECOL RES 2012. [DOI: 10.1016/b978-0-12-396992-7.00002-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Twomey M, Jacob U, Emmerson MC. Perturbing a Marine Food Web: Consequences for Food Web Structure and Trivariate Patterns. ADV ECOL RES 2012. [DOI: 10.1016/b978-0-12-398315-2.00005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
Brown LE, Edwards FK, Milner AM, Woodward G, Ledger ME. Food web complexity and allometric scaling relationships in stream mesocosms: implications for experimentation. J Anim Ecol 2011; 80:884-95. [PMID: 21418207 DOI: 10.1111/j.1365-2656.2011.01814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Mesocosms are used extensively by ecologists to gain a mechanistic understanding of ecosystems based on the often untested assumption that these systems can replicate the key attributes of natural assemblages. 2. Previous investigations of stream mesocosm utility have explored community composition, but here for the first time, we extend the approach to consider the replicability and realism of food webs in four outdoor channels (4 m(2)). 3. The four food webs were similarly complex, consisting of diverse assemblages (61-71 taxa) with dense feeding interactions (directed connectance 0.09-0.11). Mesocosm food web structural attributes were within the range reported for 82 well-characterized food webs from natural streams and rivers. When compared with 112 additional food webs from standing freshwater, marine, estuarine and terrestrial environments, stream food webs (including mesocosms) had similar characteristic path lengths, but typically lower mean food chain length and exponents for the species-link relationship. 4. Body size (M) abundance (N) allometric scaling coefficients for trivariate taxonomic mesocosm food webs (-0.53 to -0.49) and individual size distributions (-0.60 to -0.58) were consistent and similar to those from natural systems, suggesting that patterns of energy flux between mesocosm consumers and resources were realistic approximations. 5. These results suggest that stream mesocosms of this scale can support replicate food webs with a degree of biocomplexity that is comparable to 'natural' streams. The findings highlight the potential value of mesocosms as model systems for performing experimental manipulations to test ecological theories, at spatiotemporal scales of relevance to natural ecosystems.
Collapse
Affiliation(s)
- Lee E Brown
- School of Geography, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
14
|
|
15
|
|
16
|
Arim M, Berazategui M, Barreneche JM, Ziegler L, Zarucki M, Abades SR. Determinants of Density–Body Size Scaling Within Food Webs and Tools for Their Detection. ADV ECOL RES 2011. [DOI: 10.1016/b978-0-12-386475-8.00001-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
17
|
Long-Term Dynamics of a Well-Characterised Food Web. ADV ECOL RES 2011. [DOI: 10.1016/b978-0-12-374794-5.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Gilljam D, Thierry A, Edwards FK, Figueroa D, Ibbotson AT, Jones JI, Lauridsen RB, Petchey OL, Woodward G, Ebenman B. Seeing Double:. ADV ECOL RES 2011. [DOI: 10.1016/b978-0-12-386475-8.00003-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
|
20
|
|
21
|
|
22
|
Olesen JM, Dupont YL, O'Gorman E, Ings TC, Layer K, Melián CJ, Trøjelsgaard K, Pichler DE, Rasmussen C, Woodward G. From Broadstone to Zackenberg. ADV ECOL RES 2010. [DOI: 10.1016/b978-0-12-381363-3.00001-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
|
24
|
|
25
|
O'Gorman EJ, Emmerson MC. Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web. ADV ECOL RES 2010. [DOI: 10.1016/b978-0-12-381363-3.00006-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|