1
|
Dmour BA, Badescu MC, Tuchiluș C, Cianga CM, Constantinescu D, Dima N, Duca ȘT, Dmour A, Costache AD, Cepoi MR, Crișan A, Leancă SA, Loghin C, Șerban IL, Costache-Enache II. Can Endothelin-1 Help Address the Diagnostic and Prognostic Challenges in Multimorbid Acute Heart Failure Patients? Life (Basel) 2025; 15:628. [PMID: 40283182 PMCID: PMC12028425 DOI: 10.3390/life15040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
The management of acute heart failure (AHF) is becoming increasingly complex, especially in patients with multiple comorbidities. Endothelin-1 (ET-1), a vasoconstrictive peptide, is an important mediator of neurohormonal activation, endothelial dysfunction, and cardiac remodeling-key processes involved in the pathogenesis of AHF. The aim of our study was to evaluate the diagnostic and prognostic performance of ET-1 in multimorbid AHF patients, compared to established markers such as amino terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I (hs-cTnI). We conducted a single-center prospective study including 76 patients; 54 with AHF and 22 serving as controls. Upon admission, all patients underwent a comprehensive clinical, echocardiographic, and laboratory evaluation, including plasma ET-1 measurement using the enzyme-linked immunosorbent assay (ELISA) method. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis were performed to assess the diagnostic and prognostic performance of ET-1 in comparison to NT-proBNP and hs-cTnI. ET-1 levels were considerably higher in AHF patients than in controls (p = 0.02), with an AUC of 0.954, showing comparable diagnostic accuracy with NT-proBNP (AUC = 0.997), alongside strong correlations with signs of systemic congestion, increased hospital stay, and ventricular dysfunction. ET-1 had the strongest predictive accuracy for in-hospital mortality (AUC = 0.781, p = 0.026), outperforming NT-proBNP and hs-cTnI. For 30-day mortality, ET-1 remained a reliable predictor (AUC = 0.784, p = 0.016). However, as the follow-up period extended to one year, its predictive power declined, confirming ET-1's prognostic efficacy only for short-term outcomes. Moreover, ET-1 levels were not influenced by the presence of comorbidities, demonstrating its potential as an independent biomarker. Our findings support that ET-1 is a valuable biomarker for both diagnosis and short-term prognosis in the assessment of multimorbid AHF patients.
Collapse
Affiliation(s)
- Bianca-Ana Dmour
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Cristina Tuchiluș
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Microbiology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ștefania Teodora Duca
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Awad Dmour
- Department of Orthopedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Maria-Ruxandra Cepoi
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Adrian Crișan
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Sabina Andreea Leancă
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Cătălin Loghin
- Department of Medicine, Division of Cardiovascular Medicine, UTHealth, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77225, USA;
| | - Ionela-Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Irina Iuliana Costache-Enache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| |
Collapse
|
2
|
Nuckols VR, Shoemaker LN, Kuczmarski AV, Haigh KM, McGinty SJ, Del Vecchio AR, Schwab AI, Edwards DG, Taylor HS, Wenner MM. Short-term estradiol administration does not restore endothelin-B receptor-mediated vasodilation in postmenopausal women. Am J Physiol Heart Circ Physiol 2025; 328:H327-H332. [PMID: 39773019 DOI: 10.1152/ajpheart.00815.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
The endothelin-B receptor (ETBR) mediates vasodilation in young women, an effect that is absent in postmenopausal women. We have previously demonstrated that ETBR-mediated vasodilation is regulated by estradiol (E2) in young women; however, the impact of E2 on ETBR function in postmenopausal women remains unknown. Accordingly, the objective of this study was to test the hypothesis that E2 exposure restores ETBR-mediated dilation in postmenopausal women. Ten healthy postmenopausal women (55 ± 2 yr of age, 5 ± 3 years since menopause) completed the study. E2 was administered by transdermal patch for 7 days (0.1 mg/day, Vivelle-Dot patch). Vasodilation in the cutaneous microcirculation (microvascular endothelial function) was measured via local heating (42°C) using laser Doppler flowmetry combined with intradermal microdialysis perfusions of lactated Ringer's (control) and ETBR antagonist (BQ-788, 300 nM) at baseline and after E2 administration. There was no effect of E2 on ETBR function [hormone × site, F(1,9) = 0.77, P = 0.40]. These data demonstrate that in contrast to findings in premenopausal women, E2 administration does not restore ETBR function in postmenopausal women.NEW & NOTEWORTHY The vascular endothelial endothelin-B receptor (ETBR) mediates vasodilation in premenopausal women, an effect modulated by estradiol. ETBR-mediated vasodilation is lost in postmenopausal women, but the effect of exogenous estradiol administration on ETBR function in postmenopausal women is not known. During estradiol administration, ETBR blockade did not affect cutaneous microvascular vasodilatory response to local heating. We demonstrate that exogenous estradiol administration does not restore ETBR-mediated vasodilation in postmenopausal women.
Collapse
Affiliation(s)
- Virginia R Nuckols
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Leena N Shoemaker
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Katherine M Haigh
- School of Nursing, University of Delaware, Newark, Delaware, United States
| | - Shane J McGinty
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Angelica R Del Vecchio
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Allyson I Schwab
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
3
|
Horvit A, Jeon-Slaughter H, Sian J, Roehm B, Van Buren PN. Endothelin-1, Extracellular Volume Overload, and Hemodynamics in Hemodialysis Patients. Am J Hypertens 2024; 37:692-699. [PMID: 38779972 DOI: 10.1093/ajh/hpae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Extracellular volume (ECV) overload and endothelial cell dysfunction are mortality risk factors in hemodialysis (HD) patients. Endothelin-1 (ET-1), an endothelium-derived vasoconstrictive peptide, is associated with poor outcomes in HD patients. We hypothesized there would be associations between ET-1 and ECV overload in hypertensive HD patients. METHODS We obtained pre-HD ET-1, ECV/weight (bioimpedance spectroscopy), pre-HD hemodynamics, and ambulatory blood pressure (BP) in an HD cohort. Following appropriate transformations, we conducted correlation and linear regression analyses idendifying associations between ET-1, ECV overload, total peripheral resistance index (TPRI), cardiac index (CI), and ambulatory BP. RESULTS Among 66 patients, median ET-1 was 1.93 (1.49-2.56) pg/ml. Median pre-HD ECV/weight, median TPRI, mean CI, and mean systolic ambulatory BP were 0.25 (0.22-0.30) l/kg, 3,161 (2,711-3,642) dynes × s/cm-5/m2, 2.92 (0.6) l/min/m2, and 143 (14) mm Hg, respectively. After reciprocal-transformation, ET-1 correlated with reciprocal-transformed ECV/weight (r = 0.3, P = 0.01), log-transformed TPRI (r = -0.3, P = 0.006), CI (r = 0.3, P = 0.009), and ambulatory BP (r = -0.3, P = 0.02). These associations persisted in linear regression analysis (β = 0.15, P = 0.002; β = -0.8, P = 0.002; β = 0.2, P = 0.002; β = -19, P = 0.03). CONCLUSIONS In hypertensive HD patients, ET-1 associates with ECV overload higher TPRI and ambulatory BP, and lower CI. Further research is necessary to determine if ECV reduction lowers ET-1 or if pharmacologic ET-1 antagonism can improve outcomes in HD patients with refractory ECV overload.
Collapse
Affiliation(s)
- Andrew Horvit
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haekyung Jeon-Slaughter
- Dallas Veterans Affairs Medical Center, Medical Service, Nephrology Section Dallas, Texas, USA
| | - Jaspreet Sian
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bethany Roehm
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Noel Van Buren
- Dallas Veterans Affairs Medical Center, Medical Service, Nephrology Section Dallas, Texas, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Erlandsson L, Ohlsson L, Masoumi Z, Rehnström M, Cronqvist T, Edvinsson L, Hansson SR. Preliminary evidence that blocking the uptake of placenta-derived preeclamptic extracellular vesicles protects the vascular endothelium and prevents vasoconstriction. Sci Rep 2023; 13:18425. [PMID: 37891193 PMCID: PMC10611745 DOI: 10.1038/s41598-023-45830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy syndrome characterized by hypertension and organ damage manifesting after 20 gestational weeks. The etiology is of multifactorial origin, where placental stress causes increased levels of placenta-derived extracellular vesicles (STBEVs) in the maternal circulation, shown to cause inflammation, endothelial activation, vasoconstriction, and anti-angiogenic activity. General endothelial dysfunction is believed to be initiated by endothelial insult during pregnancy that alters vascular function resulting in increased arterial stiffness, cardiac dysfunction, and increased risk of cardiovascular disease later in life. We compared the effect of normal and PE derived STBEVs in vitro on vascular contractility of human subcutaneous arteries using wire myography. Cellular structures of exposed vessels were investigated by transmission electron microscopy. We explored strategies to pharmacologically block the effects of the STBEVs on human vessels. The PE STBEVs caused significantly stronger angiotensin II-mediated contractions and extended structural damage to human subcutaneous arteries compared to normal STBEVs. These negative effects could be reduced by blocking vesicle uptake by endothelial cells, using chlorpromazine or specific antibodies towards the LOX-1 receptor. The therapeutic potential of blocking vesicle uptake should be further explored, to reduce the permanent damage caused on the vasculature during PE pregnancy to prevent future cardiovascular risk.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden.
| | - Lena Ohlsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Mimmi Rehnström
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Tina Cronqvist
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Lars Edvinsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Dmour BA, Costache AD, Dmour A, Huzum B, Duca ȘT, Chetran A, Miftode RȘ, Afrăsânie I, Tuchiluș C, Cianga CM, Botnariu G, Șerban LI, Ciocoiu M, Bădescu CM, Costache II. Could Endothelin-1 Be a Promising Neurohormonal Biomarker in Acute Heart Failure? Diagnostics (Basel) 2023; 13:2277. [PMID: 37443671 DOI: 10.3390/diagnostics13132277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute heart failure (AHF) is a life-threatening condition with high morbidity and mortality. Even though this pathology has been extensively researched, there are still challenges in establishing an accurate and early diagnosis, determining the long- and short-term prognosis and choosing a targeted therapeutic strategy. The use of reliable biomarkers to support clinical judgment has been shown to improve the management of AHF patients. Despite a large pool of interesting candidate biomarkers, endothelin-1 (ET-1) appears to be involved in multiple aspects of AHF pathogenesis that include neurohormonal activation, cardiac remodeling, endothelial dysfunction, inflammation, atherosclerosis and alteration of the renal function. Since its discovery, numerous studies have shown that the level of ET-1 is associated with the severity of symptoms and cardiac dysfunction in this pathology. The purpose of this paper is to review the existing information on ET-1 and answer the question of whether this neurohormone could be a promising biomarker in AHF.
Collapse
Affiliation(s)
- Bianca-Ana Dmour
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Awad Dmour
- Department of Orthopedics and Traumatology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Orthopaedics and Traumatology, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Huzum
- Department of Orthopaedics and Traumatology, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adriana Chetran
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Radu Ștefan Miftode
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Afrăsânie
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina Tuchiluș
- Department of Microbiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Microbiology Laboratory, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Corina Maria Cianga
- Immunology Laboratory, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Immunology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gina Botnariu
- Unit of Diabetes, Nutrition and Metabolic Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Manuela Ciocoiu
- Department of Morpho-Functional Sciences II, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Codruța Minerva Bădescu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Iuliana Costache
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
6
|
Lopes KG, de Souza MDGC, Bouskela E, Kraemer-Aguiar LG. Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain. Nutrients 2023; 15:2135. [PMID: 37432255 DOI: 10.3390/nu15092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Weight loss after bariatric surgery in obesity improves vascular function and metabolic/inflammatory profiles and reduces cardiovascular mortality but there are limited data on the effects of weight regain on vascular health. We compared the metabolic/inflammatory profiles, oxidative status, and vascular function of post-bariatric patients with a high ratio of weight regain (RWR) vs. non-surgical controls. Thirty-two post-bariatric patients [Roux-en-Y gastric bypass; aged = 44 ± 8 years, BMI = 40.1 ± 7.7 kg/m2, and RWR = 58.7 ± 24.3%] and thirty controls that were BMI-, age-, and gender-matched entered the study. We collected clinical data, metabolic/inflammatory/oxidative stress circulating biomarkers, and endothelial/microvascular reactivity through Venous occlusion plethysmography and Laser speckle contrast imaging. The bariatric group exhibited lower neck circumference, fasting glucose, and triglycerides than the non-surgical group, while HDL-cholesterol was higher in the bariatric group (p < 0.001). There was no significant difference between groups for endothelial/microvascular reactivities (p ≥ 0.06). Resistin, leptin, endothelin-1, soluble forms of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, tumor necrosis factor-α, and thiobarbituric acid reactive substances did not differ significantly between groups (p ≥ 0.09) either. The adiponectin level was higher in the bariatric compared to the non-surgical group, while interleukin-6 was lower in the bariatric group (p < 0.001). Despite the fact that endothelial/microvascular functions were not significantly different between groups, post-bariatric patients present partially preserved metabolic/inflammatory benefits even with high RWR.
Collapse
Affiliation(s)
- Karynne Grutter Lopes
- Obesity Unit, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Postgraduate Program in Clinical and Experimental Physiopathology (Fisclinex), Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology (Biovasc), Rio de Janeiro State University, Rio de Janeiro 20550-013, RJ, Brazil
| | - Maria das Graças Coelho de Souza
- Obesity Unit, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Postgraduate Program in Clinical and Experimental Physiopathology (Fisclinex), Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology (Biovasc), Rio de Janeiro State University, Rio de Janeiro 20550-013, RJ, Brazil
| | - Eliete Bouskela
- Obesity Unit, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Postgraduate Program in Clinical and Experimental Physiopathology (Fisclinex), Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology (Biovasc), Rio de Janeiro State University, Rio de Janeiro 20550-013, RJ, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Obesity Unit, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Postgraduate Program in Clinical and Experimental Physiopathology (Fisclinex), Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology (Biovasc), Rio de Janeiro State University, Rio de Janeiro 20550-013, RJ, Brazil
- Endocrinology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
| |
Collapse
|
7
|
Zhu H, Wang H, Zhu X, Chen Q, Fang X, Xu X, Ping Y, Gao B, Tong G, Ding Y, Chen T, Huang J. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther 2023; 40:76-101. [PMID: 36279093 DOI: 10.1007/s12325-022-02343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
Coronary microvascular dysfunction (CMD) refers to a group of disorders affecting the structure and function of coronary microcirculation and is associated with an increased risk of major adverse cardiovascular events. At present, great progress has been made in the diagnosis of CMD, but there is no specific treatment for it because of the complexity of CMD pathogenesis. Vascular dysfunction is one of the important causes of CMD, but previous reviews mostly considered microvascular dysfunction as a whole abnormality so the obtained conclusions are skewed. The coronary microvascular function is co-regulated by multiple mechanisms, and the mechanisms by which microvessels of different luminal diameters are regulated vary. The main purpose of this review is to revisit the mechanisms by which coronary microvessels at different diameters regulate coronary microcirculation through integrated sequential activation and briefly discuss the pathogenesis, diagnosis, and treatment progress of CMD from this perspective.
Collapse
Affiliation(s)
- Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Hanxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Zhu
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaojiang Fang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaoqun Xu
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yan Ping
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Beibei Gao
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Guoxin Tong
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Ding
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
8
|
Choudhury M, Hote M, Kapoor PM, Saini S, Kiran U. Does Preoperative Plasma Endothelin-1 Level Influences the Postoperative Events in Patients Undergoing Coronary Artery Bypass Grafting (CABG)? Revisiting Endothelin-1 Molecule in CABG Patients. JOURNAL OF CARDIAC CRITICAL CARE TSS 2022. [DOI: 10.1055/s-0042-1757362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractEndothelin-1 (ET-1) is a powerful physiological vasoconstrictor release in response to endothelial injury. Increased synthesis of endothelin is associated with myocardial ischemia and reperfusion injury. The normal level varies between 0.2 and 18.5 pg/mL that maintains normal vascular homeostasis. We hypothesized that there exists a correlation between ET-1 and clinical outcome in patient undergoing elective coronary artery bypass grafting (CABG) surgery under cardiopulmonary bypass.Fifty-eight patients undergoing elective on-pump CABG were enrolled in the study. Blood sample for plasma ET-1 was taken before anesthesia induction. The median ET-1 level was 5 pg/mL (range: 0.6–30.33 pg/mL). The inotropic and intraaortic balloon pump requirement was significantly higher among patients having baseline ET-1 level more than 14.24pg/mL (p = 0.001in each case). A similar finding was observed in the duration of mechanical ventilation, intensive care unit stay, and duration of hospital stay (r = 0.68, p = 0.000; r = 0.58, p = 0.000; and r = 0.61, p = 0.000 respectively). The occurrence of complications was also more in individuals with higher baseline ET-1 level. The p-value was significant for occurrence infection, arrhythmia, renal and respiratory problems as observed in postoperative period by using Mann–Whitney U test.This study concludes that higher level of preoperative ET-1 levels correlates well to adverse clinical outcome in patients undergoing on-pump CABG surgery, so herein it can be used as a single independent parameter to predict postoperative outcome.
Collapse
Affiliation(s)
- Minati Choudhury
- Department of Cardiac Anaesthesia and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Milind Hote
- Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Poonam Malhotra Kapoor
- Department of Cardiac Anaesthesia and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Saini
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Kiran
- Department of Cardiac Anaesthesia and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Hosseinipour M, Rashidi M, Seif F, Babaahmadi-Rezaei H. Endothelin-1 Induced Phosphorylation of Caveolin-1 and Smad2C in Human Vascular Smooth Muscle Cells: Role of NADPH Oxidases, c-Abl, and Caveolae Integrity in TGF-β Receptor Transactivation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:297-305. [PMID: 37727643 PMCID: PMC10506675 DOI: 10.22088/ijmcm.bums.11.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
Caveolin-1(Cav-1) is one of the most important components of caveolae in the cell membrane, which plays an important role in cell signaling transduction, such as EGFR and TGF-β receptor transactivation. The purpose of this study was to evaluate the effect of c-Abl and NAD(P)H oxidases (NOX) on phosphorylation of Cav-1 and consequently their effect on phosphorylation of Smad2C induced by Endothelin-1 in human vascular smooth muscle cells (VSMCs). In this study, all experiments were performed using human VSMCs. The phosphorylation level of the Caveolin-1 and Smad2C proteins were assessed by western blotting using Phospho-Caveolin-1 (Tyr14) antibody and phospho-Smad2 (Ser465/467) antibody. The data were reported as mean ± SEM. The VSMCs treated with endothelin-1(ET-1) (100 nanomolar (nmol)) demonstrated a time-dependent increase in the pCav-1 level (p<0.05). The inhibitors of NOX (diphenyleneiodonium) (p<0.05), cholesterol depleting agent (beta-cyclodextrin) (p<0.05) and c-Abl inhibitor (PP1) (p<0.01) were able to reduce the level of the phospho-Cav-1 and phospho-Smad2C induced by Et-1 (p<0.05). Our results proposed that caveolae structure, NOX, c-Abl played an important role in the phosphorylation of Cav-1 induced by ET-1 in the human VSMCs. Furthermore, our findings showed that phosphoCav-1 involved in TGFR transactivation. Thus, Et-1 via a transactivation-dependent mechanism can cause phosphorylation of Smad2C.
Collapse
Affiliation(s)
- Mahsa Hosseinipour
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mojtaba Rashidi
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Faezeh Seif
- Department of Basic sciences, Shoushtar Faculty of Medical sciences, Shoushtar, Iran.
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord 2021; 14:17562864211049208. [PMID: 34671423 PMCID: PMC8521409 DOI: 10.1177/17562864211049208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can be divided into a primary and secondary phase. In the primary phase, hematoma volume is evaluated and therapies are focused on reducing hematoma expansion. In the secondary, neuroprotective phase, complex systemic inflammatory cascades, direct cellular toxicity, and blood-brain barrier disruption can result in worsening perihematomal edema that can adversely affect functional outcome. To date, all major randomized phase 3 trials for ICH have targeted primary phase hematoma volume and incorporated clot evacuation, intensive blood pressure control, and hemostasis. Reasons for this lack of clinical efficacy in the major ICH trials may be due to the lack of therapeutics involving mitigation of secondary injury and inflexible trial design that favors unilateral mechanisms in a complex pathophysiology. Potential pathophysiological targets for attenuating secondary injury are highlighted in this review and include therapies increasing calcium, antagonizing microglial activation, maintaining macrophage M1 versus M2 balance by decreasing M1 signaling, aquaporin inhibition, NKCCl inhibition, endothelin receptor inhibition, Sur1-TRPM4 inhibition, matrix metalloproteinase inhibition, and sphingosine-1-phosphate receptor modulation. Future clinical trials in ICH focusing on secondary phase injury and, potentially implementing adaptive trial design approaches with multifocal targets, may improve insight into these mechanisms and provide potential therapies that may improve survival and functional outcome.
Collapse
Affiliation(s)
- Wendy Bautista
- Center for Advanced Preclinical Research (CAPR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P David Adelson
- Division of Pediatric Neurosurgery, Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Nathan Bicher
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Marios Themistocleous
- Department of Neurosurgery, Pediatric Hospital of Athens, Agia Sophia, Athens, Greece
| | - Georgios Tsivgoulis
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, 110 Irving Street, NW, Rm 4B42, Washington, DC 20010, USA
| |
Collapse
|
11
|
Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome-A Review. Angiology 2021; 73:299-311. [PMID: 34541892 DOI: 10.1177/00033197211042684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral arterial disease can involve tissue loss in up to 50% of patients with diabetic foot syndrome (DFS). Consequently, revascularization of narrowed or occluded arteries is one of the most common forms of comprehensive treatment. However, technically successful angioplasty does not always result in the healing of ulcers. The pathomechanism of this phenomenon is still not fully understood, but inadequate angiogenesis in tissue repair may play an essential role. Changes in pro- and anti-angiogenic factors among patients with DFS are not always clear and conclusive. In particular, some studies underline the role of decreased concentration of pro-angiogenic factors and higher levels of anti-angiogenic mediators. Nevertheless, there are still controversial issues, including the paradox of impaired wound healing despite high concentrations of some pro-angiogenic factors, dynamics of their expression during the healing process, and their mutual relationships. Exploring this process among diabetic patients may provide new insight into well-known methods of treatment and show their real benefits and chances for improving outcomes.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland.,Doctoral School of Medical and Health Sciences, 162261Jagiellonian University, Krakow, Poland
| | - Patrycja Łączak
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Pasieka
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Anna Płotek
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Maga
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
Yaiw KC, Mohammad AA, Taher C, Cui HL, Costa H, Kostopoulou ON, Jung M, Assinger A, Wilhelmi V, Yang J, Strååt K, Rahbar A, Pernow J, Söderberg-Nauclér C. Human Cytomegalovirus Reduces Endothelin-1 Expression in Both Endothelial and Vascular Smooth Muscle Cells. Microorganisms 2021; 9:microorganisms9061137. [PMID: 34070407 PMCID: PMC8229579 DOI: 10.3390/microorganisms9061137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of atherosclerosis. Endothelin-1 (ET-1), a potent vasoconstrictive peptide, is overexpressed and strongly associated with many vasculopathies. The main objective of this study was to investigate whether HCMV could affect ET-1 production. As such, both endothelial and smooth muscle cells, two primary cell types involved in the pathogenesis of atherosclerosis, were infected with HCMV in vitro and ET-1 mRNA and proteins were assessed by quantitative PCR assay, immunofluorescence staining and ELISA. HCMV infection significantly decreased ET-1 mRNA and secreted bioactive ET-1 levels from both cell types and promoted accumulation of the ET-1 precursor protein in infected endothelial cells. This was associated with inhibition of expression of the endothelin converting enzyme-1 (ECE-1), which cleaves the ET-1 precursor protein to mature ET-1. Ganciclovir treatment did not prevent the virus suppressive effects on ET-1 expression. Consistent with this observation we identified that the IE2-p86 protein predominantly modulated ET-1 expression. Whether the pronounced effects of HCMV in reducing ET-1 expression in vitro may lead to consequences for regulation of the vascular tone in vivo remains to be proven.
Collapse
Affiliation(s)
- Koon-Chu Yaiw
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
- Correspondence: (K.-C.Y.); (C.S.-N.)
| | - Abdul-Aleem Mohammad
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Chato Taher
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Huanhuan Leah Cui
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Helena Costa
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Ourania N. Kostopoulou
- Department of Oncology and Pathology, Karolinska Institutet, SE 171 64 Stockholm, Sweden;
| | - Masany Jung
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Vanessa Wilhelmi
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Jiangning Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital Solna, SE 171 64 Stockholm, Sweden; (J.Y.); (J.P.)
| | - Klas Strååt
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University, Hospital Solna and Karolinska Institutet, SE 171 64 Stockholm, Sweden;
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - John Pernow
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital Solna, SE 171 64 Stockholm, Sweden; (J.Y.); (J.P.)
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
- Correspondence: (K.-C.Y.); (C.S.-N.)
| |
Collapse
|
13
|
Alcendor DJ. Dysregulation of Endothelin-1: Implications for Health Disparities in Alzheimer's Disease. J Pers Med 2020; 10:E199. [PMID: 33126567 PMCID: PMC7712547 DOI: 10.3390/jpm10040199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and related dementias disproportionately impact racial and ethnic minorities. The racial and ethnic disparities in AD could be explained by differences in cerebral vascular disease pathology. Endothelin-1 (ET-1) is a potent vasoconstrictive peptide that regulates smooth muscle, endothelial cell, and pericyte contractions that may result in cerebral vascular constriction, leading to cerebral hypoperfusion; over time, ET-1 may result in neuronal injury contributing to the pathology of AD. Upregulation of the ET-1 system has been observed in African Americans when compared with non-Hispanic Whites. The role of the ET-1 system as a driver of ethnic disparities in AD requires further investigation. Targeting of the ET-1 system as a therapeutic intervention that could impact AD progression also needs further study. Dysregulation of ET-1 in Hispanic/Latino populations largely have been unexplored. Genetics linking ET-1 dysregulation and racial disparities in AD also needs further investigation. In this review, I examine how AD effects underserved minority populations and how dysregulation of the ET-1 system specifically predisposes ethnic minorities to AD. In addition, I examine the molecular interactions of the ET-1 system and amyloid beta, the role the ET-1 system in neurodegeneration, potential therapeutics for ET-1 dysregulation, and the impact on AD progression.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
14
|
Dragic S, Momcicevic D, Zlojutro B, Jandric M, Kovacevic T, Djajić V, Gajić A, Talić G, Kovacevic P. Serum levels of nitric oxide and endothelin-1 in vasculopathy managed with hyperbaric oxygen therapy. Clin Hemorheol Microcirc 2020; 75:233-241. [PMID: 32116239 DOI: 10.3233/ch-190796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Roles of nitric oxide (NO) and endothelin-1 (ET-1) in the local regulation of blood flow under physiological conditions are important and well known, while data on their effects and interactions in conditions of hyperbaric hyperoxia is still insufficient. This was a prospective observational study which included patients who underwent hyperbaric oxygen therapy (HBOT) in accordance with existing therapeutic protocol for peripherial arterial disease (PAD) during time period of six months, between january and july of 2016. Clinical stage of PAD according to Fontain was taken into account, as well as risk factors, demographic, anthropometric and clinical characteristics of studied patients. The study included 64 patients with a mean age (±Sd) 60.2±12.7 years, of whom 28 were female. Patients' NO serum levels in all observed categories before and after HBOT were not signifficantly different, except for stage II PAD (NObefore HBOT 21.9±9.6 vs. NOafter HBOT 26.2±12.1 (p = 0.04)). On the contrary, in all studied patients ET-1 level increased signifficantly after HBOT (ET-1before HBOT 4.2±11.6 vs. ET-1after 18.3±21.0 (p < 0.001)). Treatment of PAD using HBOT leads to the predominance of vasoconstrictor effects probably caused by elevation of serum ET-1 concentrations, while other factors such as exposure time to hyperbaric conditions, activation of antioxidant molecules, and the influx of other interfering substances must be considered in interpreting the effects of NO molecules.
Collapse
Affiliation(s)
- Sasa Dragic
- Medical Intensive Care Unit, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.,Pan- European University "Apeiron", College of Health Sciences, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Danica Momcicevic
- Medical Intensive Care Unit, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Biljana Zlojutro
- Medical Intensive Care Unit, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Milka Jandric
- Medical Intensive Care Unit, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Tijana Kovacevic
- Pharmacy Department, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.,Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Vlado Djajić
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Aleksandar Gajić
- Institute for the Physical Medicine and Rehabilitation "dr. Miroslav Zotovic" Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Goran Talić
- Institute for the Physical Medicine and Rehabilitation "dr. Miroslav Zotovic" Banja Luka, Republic of Srpska, Bosnia and Herzegovina.,Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Pedja Kovacevic
- Medical Intensive Care Unit, University Clinical Centre of Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.,Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
15
|
Endothelin-1 Concentration in Aqueous Humor Predicts Postoperative Late Low Intraocular Pressure in Primary Open-angle Glaucoma After Trabeculectomy. J Glaucoma 2019; 28:633-636. [DOI: 10.1097/ijg.0000000000001254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kisling A, Katwa LC. Pro-remodeling peptides modulate collagen α1(I) promoter activity in rat cardiac myofibroblasts. Biochem Biophys Res Commun 2019; 515:693-698. [PMID: 31186140 DOI: 10.1016/j.bbrc.2019.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022]
Abstract
Previous studies have extensively demonstrated the effect of endothelin-1 (ET-1), angiotensin II (Ang II), and TGF-β1 on the stimulation of collagen type I expression in cardiac myofibroblasts. However, the role of pro-remodeling peptides in the transcriptional regulation of the collagen promoter remains unclear. Thus, the purpose of this study was to investigate the net regulatory effects of pro-remodeling peptides on collagen type I promoter activity. Constructs of various lengths (300 bp, 1.1 kbp, 1.7 kbp, 2.3 kbp and 3.5 kbp) of the rat collagen α1(I) promoter were transfected into cardiac myofibroblasts in vitro and promoter activity was measured using chloramphenicol acetyl transferase (CAT) assays. Reduced promoter activity occurred across all treatments in myofibroblasts transfected with the 1.7 kbp construct. ET-1 was unable to increase promoter activity with constructs 300, 1.1, and 1.7 kbp, but induced promoter activity in cells with the 2.3 kbp construct. Additionally, while a combination of pro-remodeling peptides induced promoter activity across constructs, the resultant increase in the 2.3 and 3.5 kbp constructs were comparable to that observed from ET-1 treatment alone. Lastly, cells transfected with the entire promoter sequence had the lowest promoter activity. This data suggests that the collagen promoter is tightly regulated and that pro-remodeling factors produce an overall net effect on collagen expression, rather than additive.
Collapse
Affiliation(s)
- Andrew Kisling
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
17
|
Kalani C, Garcia I, Ocegueda-Pacheco C, Varon J, Surani S. The Innovations in Pulmonary Hypertension Pathophysiology and Treatment: What are our Options! CURRENT RESPIRATORY MEDICINE REVIEWS 2019; 14:189-203. [DOI: 10.2174/1573398x15666190117133311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Charlene Kalani
- Bay Area Medical Center, Corpus Christi, Texas, United States
| | - Ismael Garcia
- Dorrington Medical Associates, PA, Houston, Texas, United States
| | | | | | - Salim Surani
- Texas A&M University, College Station, Texas, United States
| |
Collapse
|
18
|
Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38:2129-2149. [PMID: 30198826 PMCID: PMC6282213 DOI: 10.1177/0271678x18800589] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities are a hallmark of stroke that both increase the incidence of stroke and worsen outcome. Hypertension is prevalent in the stroke population and the most important modifiable risk factor for stroke. Hypertensive disorders promote stroke through increased shear stress, endothelial dysfunction, and large artery stiffness that transmits pulsatile flow to the cerebral microcirculation. Hypertension also promotes cerebral small vessel disease through several mechanisms, including hypoperfusion, diminished autoregulatory capacity and localized increase in blood-brain barrier permeability. Preeclampsia, a hypertensive disorder of pregnancy, also increases the risk of stroke 4-5-fold compared to normal pregnancy that predisposes women to early-onset cognitive impairment. In this review, we highlight how comorbidities and concomitant disorders are not only risk factors for ischemic stroke, but alter the response to acute ischemia. We focus on hypertension as a comorbidity and its effects on the cerebral circulation that alters the pathophysiology of ischemic stroke and should be considered in guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - David S Liebeskind
- 2 Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
19
|
Improved and single-pot process for the synthesis of macitentan, an endothelin receptor antagonist, via lithium amide-mediated nucleophilic substitution. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Zhao L, Zhu Y, Chen Z, Xu H, Zhou J, Tang S, Xu Z, Kong F, Li X, Zhang Y, Li X, Zhang J, Jia G. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology 2018; 12:169-184. [PMID: 29324056 DOI: 10.1080/17435390.2018.1425502] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although some toxicological studies have reported that exposure to titanium dioxide nanoparticles (nano-TiO2) may elicit adverse cardiopulmonary effects, related data collected from human are currently limited. The purpose of this study is to explore cardiopulmonary effects among workers who were exposed to nano-TiO2 and to identify biomarkers associated with exposure. A cross-sectional study was conducted in a nano-TiO2 manufacturing plant in eastern China. Exposure assessment and characterization of TiO2 particles were performed in a packaging workshop. Physical examination and possible biomarkers for cardiopulmonary effects were examined among 83 exposed workers and 85 controls. In packaging workshop, the total mass concentration of particles was 3.17 mg/m3. The mass concentration of nanoparticles was 1.22 mg/m3 accounting for 39% of the total mass. Lung damage markers (SP-D and pulmonary function), cardiovascular disease markers (VCAM-1, ICAM-1, LDL, and TC), oxidative stress markers (SOD and MDA), and inflammation markers (IL-8, IL-6, IL-1β, TNF-α, and IL-10) were associated with occupational exposure to nano-TiO2. Among those markers, SP-D showed a time (dose)-response pattern within exposed workers. The data strongly suggest that nano-TiO2 could contribute, at least in part, to the cardiopulmonary effects observed in workers. The studied markers and pulmonary function tests may be useful in health surveillance for workers exposed to nanomaterials.
Collapse
Affiliation(s)
- Lin Zhao
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Yifang Zhu
- b Department of Environmental Health Sciences , Jonathan and Karin Fielding School of Public Health, University of California Los Angeles , Los Angeles , CA , USA
| | - Zhangjian Chen
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Huadong Xu
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Jingwen Zhou
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Shichuan Tang
- d Beijing Municipal Institute of Labor Protection , Beijing , P. R. China
| | - Zhizhen Xu
- d Beijing Municipal Institute of Labor Protection , Beijing , P. R. China
| | - Fanling Kong
- e Shandong Center for Disease Control and Prevention , Jinan , Shandong , P.R. China
| | - Xinwei Li
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Yifei Zhang
- f Zibo Prevention and Treatment Hospital for Occupation Diseases , Zibo , Shandong , P.R. China
| | - Xianzuo Li
- f Zibo Prevention and Treatment Hospital for Occupation Diseases , Zibo , Shandong , P.R. China
| | - Ji Zhang
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Guang Jia
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| |
Collapse
|
21
|
Macarak E, Rosenbloom J. The Pathogenesis of Intraabdominal Adhesions: Similarities and Differences to Luminal Fibrosis. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:319-346. [DOI: 10.1007/978-3-319-90578-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Pan DS, Feng SZ, Cao P, Li JJ. Endothelin B receptor promotes the proliferation and immune escape of malignant gliomas. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1230-1235. [PMID: 28841806 DOI: 10.1080/21691401.2017.1366336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE As a kind of difficult to cure tumour, malignant gliomas have attracted widespread attention. The proliferation and immune escape of tumour cells were closely related to the development of malignant gliomas. The aim of this study was to investigate the role of endothelin B receptor (NTBR) in gliomas. METHODS RT-PCR was used to detect the expression of NTBR mRNA in glioma tissue and glioma cell lines. The expression of NTBR in glioma tissues was detected by immunohistochemistry. MTT assay was used to detect the viability of U87 cells after adding NTBR. Cell cloning assay was used to detect the cell proliferation ability. Western blot was used to detect the expression of TGF-β and the expression of Treg after adding NTBR to U87. RESULT The expression of NTBR in glioma tissues and cells was significantly higher than that in the control group by RT-PCR. After adding NTBR, cell proliferation of U87 was significantly enhanced and TGF-β and Treg were significantly expressed. It was suggested that NTBR could contribute to tumour immune escape in glioma, and it was found that there was a positive correlation between NTBR expression and different stages in malignant gliomas. CONCLUSION Endothelin B receptor can increase the proliferation of glioma cells and tumour immune escape. The expression of endothelin B is closely related to the clinical stage of glioma.
Collapse
Affiliation(s)
- Dong-Sheng Pan
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Si-Zhe Feng
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Peng Cao
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Jin-Jiang Li
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| |
Collapse
|
23
|
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174:1591-1619. [PMID: 27187006 PMCID: PMC5446575 DOI: 10.1111/bph.13517] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| | - Sebastian Steven
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Alina Weber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Huige Li
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
- Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Santiago Lamas
- Department of Cell Biology and ImmunologyCentro de Biología Molecular "Severo Ochoa" (CSIC‐UAM)MadridSpain
| | - Thomas Münzel
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| |
Collapse
|
24
|
Wang Y, Zhang Y, Zhu CG, Guo YL, Huang QJ, Wu NQ, Gao Y, Qing P, Liu G, Dong Q, Li JJ. Big endothelin-1 level is a useful marker for predicting the presence of isolated coronary artery ectasia. Biomarkers 2017; 22:331-336. [PMID: 27885846 DOI: 10.1080/1354750x.2016.1265001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 01/23/2023]
Abstract
CONTEXT Endothelin-1(ET-1) has been implicated in coronary artery disease (CAD) and may be associated with coronary artery ectasia (CAE). OBJECTIVE To clarify the relationship between big ET-1 and isolated CAE. METHODS We measured big ET-1 with ELISA in 216 patients (CAE, n = 72; CAD, n = 72; normal, n = 72) and evaluated the link with isolated CAE. RESULTS The level of plasma big ET-1 was significantly higher in patients with isolated CAE (p < 0.001). Big ET-1 was strongly and independently associated with CAE by multivariate analysis (OR 95%CI: 1.026 (1.018-1.034), p = 0.000). CONCLUSIONS Big ET-1 may be a useful predictor for the presence of isolated CAE.
Collapse
Affiliation(s)
- Yao Wang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yan Zhang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Cheng-Gang Zhu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yuan-Lin Guo
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qiao-Juan Huang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Na-Qiong Wu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ying Gao
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ping Qing
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Geng Liu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qian Dong
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jian-Jun Li
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
25
|
Hennenberg M, Acevedo A, Wiemer N, Kan A, Tamalunas A, Wang Y, Yu Q, Rutz B, Ciotkowska A, Herlemann A, Strittmatter F, Stief CG, Gratzke C. Non-Adrenergic, Tamsulosin-Insensitive Smooth Muscle Contraction is Sufficient to Replace α 1 -Adrenergic Tension in the Human Prostate. Prostate 2017; 77:697-707. [PMID: 28116771 DOI: 10.1002/pros.23293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia may be caused by prostate smooth muscle contraction. Although α1 -blockers may improve symptoms by prostate smooth muscle relaxation, their efficacy is limited. This may be explained by non-adrenergic mediators causing contraction in parallel to α1 -adrenoceptors. However, little is known about the relevance and cooperative actions of non-adrenergic mediators in the prostate. METHODS Prostate tissues were obtained from radical prostatectomy (n = 127 patients). Contractile responses were studied in an organ bath. RESULTS Endothelin-1 and noradrenaline induced contractions of similar magnitude (116 ± 23 and 117 ± 18% of KCl-induced contractions). Endothelin-2- and -3-induced maximum contractions of 63 ± 8.6 and 71 ± 19% of KCl, while contractions by the thromboxane analog U46619 amounted up to 63 ± 9.4%. Dopamine-induced contractions averaged to 22 ± 4.5% of KCl, while maximum contractions by serotonin, histamine, and carbachol stayed below 10% of KCl-induced. While noradrenaline-induced contractions were inhibited by tamsulosin (300 nM), endothelin-1-, -2-, or -3-induced contraction were not. No additive effects were observed if endothelins and noradrenaline were applied consecutively to the same samples. If endothelin-1 was applied after U46619, resulting tension (172 ± 43% of KCl) significantly exceeded noradrenaline-induced contraction. Tensions following combined application of endothelin-2 or -3 with U46619 stayed below noradrenaline-induced contractions. Tension following combined application of all three endothelins with U46619 resembled maximum noradrenaline-induced tone. CONCLUSIONS Contractions following concomitant confrontation of human prostate tissue with noradrenaline and endothelin-1 are not additive. Endothelin-1 is sufficient to induce a smooth muscle tone resembling that of noradrenaline. This may replace lacking α1 -adrenergic tone under therapy with α1 -blockers, explaining the limited efficacy of α1 -blockers in LUTS treatment. Contractions by thromboxane and endothelin-1 may be additive, and may exceed α1 -adrenergic tone. Prostate 77:697-707, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Alice Acevedo
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Nicolas Wiemer
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Aysenur Kan
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | - Yiming Wang
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Qingfeng Yu
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Beata Rutz
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Annika Herlemann
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | - Christian G Stief
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
26
|
Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6040043. [PMID: 28375184 PMCID: PMC5406775 DOI: 10.3390/jcm6040043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Stephen Y Chan
- Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
27
|
Thanigaimani S, Lau DH, Agbaedeng T, Elliott AD, Mahajan R, Sanders P. Molecular mechanisms of atrial fibrosis: implications for the clinic. Expert Rev Cardiovasc Ther 2017; 15:247-256. [DOI: 10.1080/14779072.2017.1299005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shivshankar Thanigaimani
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Thomas Agbaedeng
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Adrian D. Elliott
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
28
|
Abstract
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Collapse
|
29
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
30
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats. Exp Gerontol 2016; 88:32-41. [PMID: 28039024 DOI: 10.1016/j.exger.2016.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.
Collapse
|
32
|
Kleniewska P, Kowalczyk A, Ciesla W, Goraca A. Estimation of Some Oxidative Stress Parameters and Blood Pressure After Administration of Endothelin-1 (ET-1) in Rats. Cell Biochem Biophys 2016; 71:1483-9. [PMID: 25391890 DOI: 10.1007/s12013-014-0371-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the study was to investigate changes in the plasma antioxidative activity and in lipid peroxidation after administration of endothelin-1 (ET-1) and endothelin receptor blockers and additionally, to estimate blood pressure. The study was performed on male Wistar rats (n = 6 per group) divided into 4 groups which received: (1) saline, (2) endothelin-1 (ET-1) (3 μg/kg b.w.) + saline, (3) BQ123 (1 mg/kg) + ET-1 (3 μg/kg), and (4) BQ788 (3 mg/kg) + ET-1 (3 μg/kg b.w.). The endothelin receptor antagonist was injected intravenously 30 min before ET-1 administration. Blood pressure was monitored, and the blood was collected before the saline or ET-1 administration as well as 60 and 300 min after their administration. The antioxidative properties were examined by FRAP method (ferric reducing ability of plasma), and the concentration of lipid peroxidation products was examined by the reaction with thiobarbituric acid (TBARS). It was estimated that intravenous administration of endothelin receptor blocker ETA increases plasma antioxidative properties (p < 0.01) and parallelly decreases the process of lipid peroxidation (p < 0.05 vs. ET-1) and blood pressure (p < 0.05).
Collapse
Affiliation(s)
- Paulina Kleniewska
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Agata Kowalczyk
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Wlodzimierz Ciesla
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Goraca
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
33
|
Fox BM, Kasztan M. Endothelin receptor antagonists in sickle cell disease: A promising new therapeutic approach. Life Sci 2016; 159:15-19. [PMID: 27049871 PMCID: PMC4992628 DOI: 10.1016/j.lfs.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell disease (SCD) is a genetic hematologic disorder that is characterized by a variety of potentially life threatening acute and chronic complications. Currently, hydroxyurea is the only clinically approved pharmacological therapy for the treatment of SCD, and the continued prevalence of severe disease complications underscores the desperate need for the development of new therapeutic agents. Central features of the sickle cell disease milieu, including hypoxia, oxidative stress, and thrombosis, are established enhancers of endothelin-1 (ET-1) synthesis. This conceptual connection between ET-1 and SCD was confirmed by multiple studies that demonstrated markedly elevated plasma and urinary levels of ET-1 in SCD patients. Direct evidence for the involvement of ET-1 signaling in the development of SCD pathologies has come from studies using endothelin receptor antagonists in SCD mice. This review summarizes recent studies that have implicated ET-1 signaling as a mechanistic contributor to renal, vascular, pulmonary, and nociceptive complications of sickle cell disease and discusses the potential for the use of ET receptor antagonists in the treatment of SCD.
Collapse
Affiliation(s)
- Brandon M Fox
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Rosenbloom J, Ren S, Macarak E. New frontiers in fibrotic disease therapies: The focus of the Joan and Joel Rosenbloom Center for Fibrotic Diseases at Thomas Jefferson University. Matrix Biol 2016; 51:14-25. [PMID: 26807756 DOI: 10.1016/j.matbio.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases constitute a world-wide major health problem, but research support remains inadequate in comparison to the need. Although considerable understanding of the pathogenesis of fibrotic reactions has been attained, no completely effective therapies exist. Although fibrotic disorders are diverse, it is universally appreciated that a particular cell type with unique characteristics, the myofibroblast, is responsible for replacement of functioning tissue with non-functional scar tissue. Understanding the cellular and molecular mechanisms responsible for the creation of myofibroblasts and their activities is central to the development of therapies. Critical signaling cascades, initiated primarily by TGF-β, but also involving other cytokines which stimulate pro-fibrotic reactions in the myofibroblast, offer potential therapeutic targets. However, because of the multiplicity and complex interactions of these signaling pathways, it is very unlikely that any single drug will be successful in modifying a major fibrotic disease. Therefore, we have chosen to examine the effectiveness of administration of several drug combinations in a mouse pneumoconiosis model. Such treatment proved to be effective. Because fibrotic diseases that tend to be chronic, are difficult to monitor, and are patient variable, implementation of clinical trials is difficult and expensive. Therefore, we have made efforts to identify and validate non-invasive biomarkers found in urine and blood. We describe the potential utility of five such markers: (i) the EDA form of fibronectin (Fn(EDA)), (ii) lysyl oxidase (LOX), (iii) lysyl oxidase-like protein 2 (LoxL2), (iv) connective tissue growth factor (CTGF, CCNII), and (v) the N-terminal propeptide of type III procollagen (PIIINP).
Collapse
Affiliation(s)
- Joel Rosenbloom
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Shumei Ren
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Edward Macarak
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
36
|
Nielsen EA, Sun M, Honjo O, Hjortdal VE, Redington AN, Friedberg MK. Dual Endothelin Receptor Blockade Abrogates Right Ventricular Remodeling and Biventricular Fibrosis in Isolated Elevated Right Ventricular Afterload. PLoS One 2016; 11:e0146767. [PMID: 26765263 PMCID: PMC4713098 DOI: 10.1371/journal.pone.0146767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/22/2015] [Indexed: 01/11/2023] Open
Abstract
Background Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown. Methods Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan. Conclusion Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload.
Collapse
Affiliation(s)
- Eva Amalie Nielsen
- Department of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Cardiothoracic and Vascular Surgery & Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Mei Sun
- Department of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Department of Cardiovascular Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery & Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Andrew N. Redington
- Department of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark K. Friedberg
- Department of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Selej M, Romero AJ, Channick RN, Clozel M. Development of macitentan for the treatment of pulmonary arterial hypertension. Ann N Y Acad Sci 2015; 1358:68-81. [PMID: 26291180 DOI: 10.1111/nyas.12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious, chronic condition that, without early recognition and treatment, leads to progressive right heart failure and death. The dual endothelin receptor antagonist macitentan was designed through a deliberate discovery process to maximize endothelin-axis blockade while improving adverse-effect profiles compared with previous compounds. Macitentan's efficacy was demonstrated in an event-driven morbidity and mortality study of treatment-naive and background PAH therapy-treated symptomatic patients. Compared to placebo, 10 mg of macitentan significantly reduced the relative risk of morbidity and mortality by 45%, primarily by delaying PAH worsening, most prominently in World Health Organization (WHO) functional class II and III PAH patients. Macitentan reduced the incidence of the composite end point of PAH-related hospitalizations and mortality and improved WHO FC and exercise capacity (6-min walk distance). Furthermore, it significantly improved cardiopulmonary hemodynamics and quality of life, and had a favorable safety and tolerability profile. To date, this was the largest and longest prospective trial for PAH. Macitentan, currently the only approved oral PAH treatment shown to be safe and effective in delaying long-term progression and reducing PAH-related hospitalizations, has changed treatment paradigms from goal-directed to long-term outcome-oriented therapy.
Collapse
Affiliation(s)
- Mona Selej
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Alain J Romero
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Richard N Channick
- Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
39
|
Sidharta PN, Treiber A, Dingemanse J. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet 2015; 54:457-71. [PMID: 25860376 PMCID: PMC4412377 DOI: 10.1007/s40262-015-0255-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.
Collapse
Affiliation(s)
- P N Sidharta
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123, Allschwil, Switzerland,
| | | | | |
Collapse
|
40
|
Martin DS, Wang X. The COP9 signalosome and vascular function: intriguing possibilities? AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2015; 5:33-52. [PMID: 26064791 PMCID: PMC4460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Disorders of vascular function contribute importantly to cardiovascular disease which represents a substantial cause of morbidity and mortality worldwide. An emerging paradigm in the study of cardiovascular diseases is that protein ubiquitination and turnover represent key pathological mechanisms. Our understanding of these processes in the vasculature is growing but remains incomplete. Since protein ubiquitination and turnover can represent a terminal event in the life of a given protein, entry into these pathways must be highly regulated. However, at present understanding of these regulatory mechanisms, particularly in the vasculature, is fragmentary. The COP9 (constitutive photomorphogenic mutant 9) signalosome (CSN) is a heteromeric protein complex implicated in the control of protein degradation. The CSN participates critically in the control of Cullin Ring Ligases (CRLs), at least in part via the detachment of a small protein, Nedd8 (deneddylation). CRLs are one of the largest groups of ubiquitin ligases, which represent the most selective control point for protein ubiquitination. Thus, the CSN by virtue of its ability to control the CRLs ubiquitin ligase activity is ideally positioned to effect selective modulation of protein turnover. This review surveys currently available data regarding the potential role of the CSN in control of vascular function. Data potentially linking the CSN to control of regulatory proteins involved in vascular smooth muscle proliferation and to vascular smooth muscle contraction are presented with the intent of providing potentially intriguing possibilities for future investigation.
Collapse
Affiliation(s)
- Douglas S Martin
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| |
Collapse
|
41
|
Sidharta PN, Krähenbühl S, Dingemanse J. Pharmacokinetic and pharmacodynamic evaluation of macitentan , a novel endothelin receptor antagonist for the treatment of pulmonary arterial hypertension. Expert Opin Drug Metab Toxicol 2015; 11:437-49. [PMID: 25604973 DOI: 10.1517/17425255.2015.1000859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a chronic disorder of the pulmonary vasculature characterized by elevated mean pulmonary arterial pressure eventually leading to right-sided heart failure and premature death. Macitentan is an oral, once-daily, dual endothelin (ET)A and ETB receptor antagonist with high affinity and sustained receptor binding that was approved in the USA, Europe, Canada, and Switzerland for the treatment of PAH. AREAS COVERED This review discusses the pharmacokinetics (PK) and pharmacodynamics (PD) of macitentan and its drug interaction potential based on preclinical and clinical data. EXPERT OPINION Up to date, macitentan is the only registered treatment for PAH that significantly reduced morbidity and mortality as a combined endpoint in a long-term event-driven study. The safety profile of macitentan is favorable with respect to hepatic safety and edema/fluid retention and may be better than that of other ET receptor antagonists such as bosentan and ambrisentan. The PK profile supports a once-a-day dosing regimen. Macitentan has limited interactions with other drugs. Based on these characteristics macitentan is an important new addition to the treatment of PAH.
Collapse
Affiliation(s)
- Patricia N Sidharta
- Actelion Pharmaceuticals Ltd., Department of Clinical Pharmacology , Gewerbestrasse 16, CH-4123 Allschwil , Switzerland +41 61 656686 ; +41 61 5656200 ;
| | | | | |
Collapse
|
42
|
Relationship between endothelin-1 levels and pulmonary arterial hypertension in HIV-infected patients. AIDS 2014; 28:2693-9. [PMID: 25493595 DOI: 10.1097/qad.0000000000000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a progressive, fatal disease with average survival of less than 3 years if left untreated. It is most common in patients infected with HIV. Although the pathogenesis in this population is not fully understood, it is thought that HIV infection, through the immune response and release of different inflammatory mediators such as endothelin-1, may contribute directly to endothelial damage. Our objective was to quantify endothelin-1 levels in HIV-infected patients and determine whether or not there is an association between this marker and PAH. DESIGN A case-control study in patients attending an infectious diseases clinic. METHODS The sample was composed of 79 patients divided into three groups: 23 HIV patients with PAH (HIV+/PAH+), 45 HIV patients without PAH (HIV+/PAH-) and a control group of 11 healthy individuals. The ratio between the HIV+/PAH- and HIV+/PAH+ groups was 2 : 1. Patients were matched by age, sex, risk group and viral load; the control group by age and sex. All patients had blood taken for endothelin-1 plasma quantification. RESULTS We found lower endothelin-1 levels in the controls than in the HIV+/PAH- group [0.71 pg/ml (interquartile range, IQR 0.54-0.94) vs. 1.13 pg/ml (IQR 0.87-1.38); P = 0.005] and the HIV+/PAH+ cohort [1.16 pg/ml (IQR 0.86-2.37); P = 0.003]. Patients with severe PAH had higher endothelin-1 levels [2.94 pg/ml (IQR 1.81-6.33)] than patients with mild and moderate PAH. CONCLUSION Plasma endothelin-1 levels are higher in HIV patients with PAH than in the HIV-noninfected population and levels increase with the severity of the PAH.
Collapse
|
43
|
Gatfield J, Mueller Grandjean C, Bur D, Bolli MH, Nayler O. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis. PLoS One 2014; 9:e107809. [PMID: 25226600 PMCID: PMC4166607 DOI: 10.1371/journal.pone.0107809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/23/2014] [Indexed: 11/29/2022] Open
Abstract
The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ETA receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ETA receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ETA receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ETA receptor-antagonist interaction modes, we performed functional studies using ETA receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ETA receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that – in contrast to bosentan and ambrisentan - macitentan-ETA receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable antagonism.
Collapse
Affiliation(s)
- John Gatfield
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | | | - Daniel Bur
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - Oliver Nayler
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
44
|
Fahrmayr C, König J, Auge D, Mieth M, Münch K, Segrestaa J, Pfeifer T, Treiber A, Fromm M. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol 2014; 169:21-33. [PMID: 23387445 DOI: 10.1111/bph.12126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/05/2012] [Accepted: 12/16/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. EXPERIMENTAL APPROACH A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. KEY RESULTS Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48-5033 and Ro 47-8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. CONCLUSIONS AND IMPLICATIONS These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs.
Collapse
Affiliation(s)
- C Fahrmayr
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nisimura LM, Estato V, de Souza EM, Reis PA, Lessa MA, Castro-Faria-Neto HC, Pereira MCDS, Tibiriçá E, Garzoni LR. Acute Chagas disease induces cerebral microvasculopathy in mice. PLoS Negl Trop Dis 2014; 8:e2998. [PMID: 25010691 PMCID: PMC4091872 DOI: 10.1371/journal.pntd.0002998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
Cardiomyopathy is the main clinical form of Chagas disease (CD); however, cerebral manifestations, such as meningoencephalitis, ischemic stroke and cognitive impairment, can also occur. The aim of the present study was to investigate functional microvascular alterations and oxidative stress in the brain of mice in acute CD. Acute CD was induced in Swiss Webster mice (SWM) with the Y strain of Trypanosoma cruzi (T. cruzi). Cerebral functional capillary density (the number of spontaneously perfused capillaries), leukocyte rolling and adhesion and the microvascular endothelial-dependent response were analyzed over a period of fifteen days using intravital video-microscopy. We also evaluated cerebral oxidative stress with the thiobarbituric acid reactive species TBARS method. Compared with the non-infected group, acute CD significantly induced cerebral functional microvascular alterations, including (i) functional capillary rarefaction, (ii) increased leukocyte rolling and adhesion, (iii) the formation of microvascular platelet-leukocyte aggregates, and (iv) alteration of the endothelial response to acetylcholine. Moreover, cerebral oxidative stress increased in infected animals. We concluded that acute CD in mice induced cerebral microvasculopathy, characterized by a reduced incidence of perfused capillaries, a high number of microvascular platelet-leukocyte aggregates, a marked increase in leukocyte-endothelium interactions and brain arteriolar endothelial dysfunction associated with oxidative stress. These results suggest the involvement of cerebral microcirculation alterations in the neurological manifestations of CD. Chagas disease (CD) is a neglected tropical illness caused by the parasite Trypanosoma cruzi (T. cruzi). It is endemic in Latin America and affects 10 million people worldwide. Meningoencephalitis occurs in children with acute CD and in immunosuppressed patients suffering acute CD reactivation. During the chronic phase, cerebral manifestations, including ischemic stroke and cognitive impairment, can also occur. Although microvascular alterations have been implicated in Chagas cardiomyopathy, the main clinical form of the disease, there is a lack of discussion in some studies regarding alterations of the cerebral microcirculation in CD. In the present study, we evaluated the functionality of the cerebral microcirculation in mice infected by T. cruzi. Utilizing an intravital video-microscope, we observed in the brain of infected mice a reduction in the number of perfused capillaries, an increased interaction between inflammatory cells and venules, the presence of microvascular platelet-leukocyte aggregates and alterations in the dilatation capacity of arterioles. Moreover, cerebral oxidative stress was increased in infected animals. We concluded that acute CD induced cerebral microvasculopathy.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Estato
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elen Mello de Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Adriano Lessa
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirian Claudia de Souza Pereira
- Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
46
|
Chester AH, Yacoub MH. The role of endothelin-1 in pulmonary arterial hypertension. Glob Cardiol Sci Pract 2014; 2014:62-78. [PMID: 25405182 PMCID: PMC4220438 DOI: 10.5339/gcsp.2014.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/30/2014] [Indexed: 01/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but debilitating disease, which if left untreated rapidly progresses to right ventricular failure and eventually death. In the quest to understand the pathogenesis of this disease differences in the profile, expression and action of vasoactive substances released by the endothelium have been identified in patients with PAH. Of these, endothelin-1 (ET-1) is of particular interest since it is known to be an extremely powerful vasoconstrictor and also involved in vascular remodelling. Identification of ET-1 as a target for pharmacological intervention has lead to the discovery of a number of compounds that can block the receptors via which ET-1 mediates its effects. This review sets out the evidence in support of a role for ET-1 in the onset and progression of the disease and reviews the data from the various clinical trials of ET-1 receptor antagonists for the treatment of PAH.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, NHLI, Imperial College London, Harefield, Middlesex, UK UB9 6JH
| | - Magdi H Yacoub
- Qatar Cardiovascular Research Centre, Qatar Foundation, Qatar
| |
Collapse
|
47
|
Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 2014; 5:124. [PMID: 24982634 PMCID: PMC4056636 DOI: 10.3389/fphar.2014.00124] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/10/2014] [Indexed: 01/15/2023] Open
Abstract
Iron regulatory proteins (IRPs) regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs) in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5′untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3′untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1-/-/Irp2-/- mice), which contrasts with the fact that Irp1-/- and Irp2-/- mice are viable. In addition, Irp2-/- mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1-/- animals were first assessed in the early 1990s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1-/- mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension, and neurodegeneration.
Collapse
Affiliation(s)
- De-Liang Zhang
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| | - Manik C Ghosh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| |
Collapse
|
48
|
|
49
|
Gromo G, Mann J, Fitzgerald JD. Cardiovascular drug discovery: a perspective from a research-based pharmaceutical company. Cold Spring Harb Perspect Med 2014; 4:4/6/a014092. [PMID: 24890831 DOI: 10.1101/cshperspect.a014092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theme of this review is to summarize the evolving processes in cardiovascular drug discovery and development within a large pharmaceutical company. Emphasis is placed on the contrast between the academic and industrial research operating environments, which can influence the effectiveness of research collaboration between the two constituencies, but which plays such an important role in drug innovation. The strategic challenges that research directors face are also emphasized. The need for improved therapy in many cardiovascular indications remains high, but the feasibility in making progress, despite the advances in molecular biology and genomics, is also assessed.
Collapse
Affiliation(s)
- G Gromo
- F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland
| | - J Mann
- Translational Medicine, Cardiovascular and Metabolism, F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland
| | | |
Collapse
|
50
|
De Mey JGR, Vanhoutte PM. End o' the line revisited: moving on from nitric oxide to CGRP. Life Sci 2014; 118:120-8. [PMID: 24747136 DOI: 10.1016/j.lfs.2014.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/24/2022]
Abstract
When endothelin-1(ET-1) was discovered it was hailed as the prototypical endothelium-derived contracting factor (EDCF). However, over the years little evidence emerged convincingly demonstrating that the peptide actually contributes to moment-to-moment changes in vascular tone elicited by endothelial cells. This has been attributed to the profound inhibitory effect of nitric oxide (NO) on both the production (by the endothelium) and the action (on vascular smooth muscle) of ET-1. Hence, the peptide is likely to initiate acute changes in vascular diameter only under extreme conditions of endothelial dysfunction when the NO bioavailability is considerably reduced if not absent. The present essay discusses whether or not this concept should be revised, in particular in view of the potent inhibitory effect exerted by calcitonin gene related peptide (CGRP) released from sensorimotor nerves on vasoconstrictor responses to ET-1.
Collapse
Affiliation(s)
- Jo G R De Mey
- Institute of Molecular Medicine, University of South Denmark, Odense, Denmark; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Paul M Vanhoutte
- Institute of Molecular Medicine, University of South Denmark, Odense, Denmark; Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|