1
|
Qiao L, Yan S, Dou X, Song X, Chang J, Pi S, Zhang X, Xu C. Biogenic Selenium Nanoparticles Alleviate Intestinal Epithelial Barrier Damage through Regulating Endoplasmic Reticulum Stress-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3982613. [PMID: 36035212 PMCID: PMC9410834 DOI: 10.1155/2022/3982613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
The intestinal barrier plays a fundamental role in body health. Intracellular redox imbalance can trigger endoplasmic reticulum stress (ERS) and mitophagy, leading to intestinal barrier damage. Our previous studies demonstrated that mitophagy is closely associated with the protective effects of biogenic selenium nanoparticles (SeNPs) on intestinal epithelial barrier function. Thus, we hypothesize that ERS and mitophagy are likely involved in the regulatory effects of SeNPs on oxidative stress-induced intestinal epithelial barrier dysfunction. The results showed that oxidative stress or ERS caused the increase of intestinal epithelial permeability. SeNPs effectively alleviated hydrogen peroxide (H2O2-)-induced structural damage of endoplasmic reticulum (ER) and mitochondria of porcine jejunal epithelial cells (IPEC-J2). SeNPs significantly decreased intracellular inositol triphosphate (IP3) and Ca2+ concentration, down-regulated inositol trisphosphate receptor (IP3R) expression level, and up-regulated ER-resident selenoproteins mRNA levels in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment significantly decreased the intracellular Ca2+, IP3, IP3R, and reactive oxygen species (ROS) levels; protected the structure and function of ER and mitochondria; and effectively alleviated the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to tunicamycin (TM). Moreover, SeNPs significantly inhibited the colocalization of mitochondria and lysosomes. Furthermore, compared with TM model group, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4 and AMPK/mTOR/PINK1 signaling pathway. The PERK agonist (CCT020312) and the AMPK agonist (AICAR) could reverse the protective effects of SeNPs on IPEC-J2 cells. The PERK inhibitor (GSK2656157) and the AMPK inhibitor (compound C) had a similar effect on IPEC-J2 cells as that of SeNPs. In summary, the protective effects of SeNPs on intestinal barrier dysfunction are closely associated with ERS-related PERK and mitophagy-related AMPK signaling pathway.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
2
|
MafK accelerates Salmonella mucosal infection through caspase-3 activation. Aging (Albany NY) 2022; 14:2287-2303. [PMID: 35260530 PMCID: PMC8954977 DOI: 10.18632/aging.203938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Gastrointestinal homeostasis is critical for maintaining host health, and is affected by many factors. A recent report showed that Musculoaponeurotic fibrosarcoma K (MafK) expression is increased in patients that have ulcerative colitis (UC). Even so, MafK’s significance in sustaining intestinal homeostasis has not been investigated. In this research, MafK overexpressing transgenic (MafK Tg) mice were found to be more susceptible to infection with Salmonella on the mucosa than the wild-type (WT) mice. Following Salmonella oral infection, MafK Tg mice suffered higher mortality and a lot more weight loss, damage to the intestines, and inflammation in the intestines than WT mice. MafK Tg mice were also unable to control Salmonella colonization and dissemination. In vivo data showed that increased MafK expression promoted epithelial cell apoptosis which was further confirmed by in vitro data. The rapid cleavage of caspase-3 in epithelial cells contributed to Salmonella dissemination and inflammation initiation. This study reveals that MafK participates in Salmonella pathogenesis acceleration by increasing caspase-3 activation.
Collapse
|
3
|
Yang G, Zhang X. TMAO promotes apoptosis and oxidative stress of pancreatic acinar cells by mediating IRE1α-XBP-1 pathway. Saudi J Gastroenterol 2021; 27:361-369. [PMID: 34755714 PMCID: PMC8656330 DOI: 10.4103/sjg.sjg_12_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Acute pancreatitis caused by hyperlipidemia is a severe life-threatening condition. Therefore, it is urgent to develop new therapeutic methods to treat this disease. METHODS Cell viability was determined by the Cell Counting Kit-8 (CCK-8) assay. Western blotting (WB) was used to detect the expression levels of apoptotic and endoribonuclease inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP-1) pathway-associated proteins. The induction of cell apoptosis was determined using flow cytometry. The expression levels of the oxidative stress indicators were measured by an enzyme-linked immunosorbent assay. RESULTS WB analysis and the CCK-8 assay demonstrated that trimethylamine-N-oxide (TMAO) decreased cell viability and facilitated apoptosis of MPC-83 cells in a dose-dependent manner. Furthermore, the induction of oxidative stress was assessed by evaluating the levels of specific markers, including hydrogen peroxide, reactive oxygen species, nitric oxide, and superoxide dismutase. The levels of the aforementioned markers were increased in the TMAO-treated group. Subsequently, the IRE1α/XBP-1 pathway-associated proteins were analyzed by WB analysis and the data demonstrated that the regulatory effects of TMAO on MPC-83 cells were meditated by the IRE1α/XBP-1 signaling pathway. Subsequently, rescue experiments were performed to further assess the effects of TMAO. CONCLUSION The present study provides evidence on the application of TMAO as a potential diagnostic and therapeutic strategy for the therapeutic intervention of hyperlipidemic acute pancreatitis.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Huang Y, Feng Y, Wang Y, Wang P, Wang F, Ren H. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice. Front Physiol 2018; 9:441. [PMID: 29740349 PMCID: PMC5925571 DOI: 10.3389/fphys.2018.00441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 12/24/2022] Open
Abstract
The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier.
Collapse
Affiliation(s)
- Yalan Huang
- School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhai Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Ren
- School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Alongi F, Giaj-Levra N, Sciascia S, Fozza A, Fersino S, Fiorentino A, Mazzola R, Ricchetti F, Buglione M, Buonfrate D, Roccatello D, Ricardi U, Bisoffi Z. Radiotherapy in patients with HIV: current issues and review of the literature. Lancet Oncol 2017; 18:e379-e393. [PMID: 28677574 DOI: 10.1016/s1470-2045(17)30440-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/08/2023]
Abstract
Although the introduction of highly active antiretroviral therapy has radically improved the life expectancy of patients with HIV, HIV positivity is still considered a major barrier to oncological treatment for patients with cancer because of their worse prognosis and increased susceptibility to toxic effects compared with patients who are immunocompetent. The use of radiotherapy with or without chemotherapy, immunotherapy, or molecular targeted therapy is the standard of care for several cancers. These new drugs and substantial improvements in radiotherapy techniques, including intensity-modulated radiotherapy, image-guided radiotherapy, and stereotactic ablative radiotherapy, are optimising the feasibility of such anticancer treatments and are providing new opportunities for patients with cancer and HIV. In this Review, we discuss the role of radiotherapy, with or without chemotherapy or new drugs, in the treatment of cancer in patients with HIV, with a focus on the efficacy and tolerability of this approach on the basis of available evidence. Moreover, we analyse and discuss the biological basis of interactions between HIV and radiotherapy, evidence from preclinical studies, and immunomodulation by radiotherapy in the HIV setting.
Collapse
Affiliation(s)
- Filippo Alongi
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy; University of Brescia, Brescia, Italy
| | - Niccolò Giaj-Levra
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy; Department of Oncology, University of Turin, Torino, Italy.
| | - Savino Sciascia
- Department of Clinical and Biological Sciences, Centre of Research of Immunopathology and Rare Diseases-Coordinating Centre of Piemonte and Valle d'Aosta Network for Rare Disease, Torino, Italy
| | - Alessandra Fozza
- Radiation Oncology, Department of Oncology, Ospedale dell'Angelo, Mestre-Venezia, Italy
| | - Sergio Fersino
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Alba Fiorentino
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Rosario Mazzola
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Francesco Ricchetti
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Michela Buglione
- Radiation Oncology, University and Spedali Civili, Brescia, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Centre of Research of Immunopathology and Rare Diseases-Coordinating Centre of Piemonte and Valle d'Aosta Network for Rare Disease, Torino, Italy
| | | | - Zeno Bisoffi
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| |
Collapse
|
7
|
Sena AAS, Glavan T, Jiang G, Sankaran-Walters S, Grishina I, Dandekar S, Goulart LR. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection. Sci Rep 2016; 6:31157. [PMID: 27484833 PMCID: PMC4971494 DOI: 10.1038/srep31157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/15/2016] [Indexed: 01/18/2023] Open
Abstract
HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection.
Collapse
Affiliation(s)
- Angela A S Sena
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.,Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Tiffany Glavan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Guochun Jiang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.,Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
9
|
Liu R, Zhang L, Yang J, Zhang X, Mikkelsen R, Song S, Zhou H. HIV Protease Inhibitors Sensitize Human Head and Neck Squamous Carcinoma Cells to Radiation by Activating Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0125928. [PMID: 25933118 PMCID: PMC4416809 DOI: 10.1371/journal.pone.0125928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/26/2015] [Indexed: 01/04/2023] Open
Abstract
Background Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC. Methodology and Principal Findings HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase. Conclusion and Significance HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC.
Collapse
Affiliation(s)
- Runping Liu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Yang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Xiaoxuan Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Ross Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Shiyu Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; McGuire Veterans Affairs Medical Center, Richmond, VA, 23298, United States of America
| |
Collapse
|
10
|
Thein P, Kalinec GM, Park C, Kalinec F. In vitro assessment of antiretroviral drugs demonstrates potential for ototoxicity. Hear Res 2014; 310:27-35. [PMID: 24487230 DOI: 10.1016/j.heares.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Abstract
Several studies have reported an increased incidence of auditory dysfunction among HIV/AIDS patients. We used auditory HEI-OC1 cells in cell viability, flow cytometry and caspases 3/7-activation studies to investigate the potential ototoxicity of fourteen HIV antiretroviral agents: Abacavir, AZT, Delavirdine, Didenosine, Efavirenz, Emtricitabine, Indinavir, Lamivudine, Nefinavir, Nevirapine, Tenofovir, Ritonavir, Stavudine and Zalcitabine, as well as combinations of these agents as used in the common anti-HIV cocktails Atripla™, Combivir™, Epzicom™, Trizivir™, and Truvada™. Our results suggested that most of the single assayed anti-HIV drugs are toxic for HEI-OC1 auditory cells. The cocktails, on the other hand, decreased auditory cells' viability with high significance, with the following severity gradient: Epzicom ∼ Trizivir >> Atripla ∼ Combivir > Truvada. Interestingly, our results suggest that Trizivir- and Epzicom-induced cell death would be mediated by a caspase-independent mechanism. l-Carnitine, a natural micronutrient known to protect HEI-OC1 cells against some ototoxic drugs as well as to decrease neuropathies associated with anti-HIV treatments, increased viability of cells treated with Lamivudine and Tenofovir as well as with the cocktail Atripla, but had only minor effects on cells treated with other drugs and drug combinations. Altogether, these results suggest that some frequently used anti-HIV agents could have deleterious effects on patients' hearing, and provide arguments in favor of additional studies aimed at elucidating the potential ototoxicity of current as well as future anti-HIV drugs.
Collapse
Affiliation(s)
- Pru Thein
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Gilda M Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Channy Park
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 2100 West 3rd Street, Los Angeles, CA 90057, USA.
| |
Collapse
|
11
|
Wang Y, Zhang L, Wu X, Gurley EC, Kennedy E, Hylemon PB, Pandak WM, Sanyal AJ, Zhou H. The role of CCAAT enhancer-binding protein homologous protein in human immunodeficiency virus protease-inhibitor-induced hepatic lipotoxicity in mice. Hepatology 2013; 57:1005-16. [PMID: 23080229 PMCID: PMC3566321 DOI: 10.1002/hep.26107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human immunodeficiency virus (HIV) protease inhibitors (HIV PIs) are the core components of highly active antiretroviral therapy, which has been successfully used in the treatment of HIV-1 infection in the past two decades. However, benefits of HIV PIs are compromised by clinically important adverse effects, such as dyslipidemia, insulin resistance, and cardiovascular complications. We have previously shown that activation of endoplasmic reticulum (ER) stress plays a critical role in HIV PI-induced dys-regulation of hepatic lipid metabolism. HIV PI-induced hepatic lipotoxicity is closely linked to the up-regulation of CCAAT enhancer binding protein homologous protein (CHOP) in hepatocytes. To further investigate whether CHOP is responsible for HIV PI-induced hepatic lipotoxicity, C57BL/6J wild-type (WT) or CHOP knockout (CHOP(-/-) ) mice or the corresponding primary mouse hepatocytes were used in this study. Both in vitro and in vivo studies indicated that HIV PIs (ritonavir and lopinavir) significantly increased hepatic lipid accumulation in WT mice. In contrast, CHOP(-/-) mice showed a significant reduction in hepatic triglyceride accumulation and liver injury, as evidenced by hematoxylin and eosin and Oil Red O staining. Real-time reverse-transcriptase polymerase chain reaction and immunoblotting data showed that in the absence of CHOP, HIV PI-induced expression of stress-related proteins and lipogenic genes were dramatically reduced. Furthermore, tumor necrosis factor alpha and interleukin-6 levels in serum and liver were significantly lower in HIV PI-treated CHOP(-/-) mice, compared to HIV PI-treated WT mice. CONCLUSION Taken together, these data suggest that CHOP is an important molecular link of ER stress, inflammation, and hepatic lipotoxicity, and that increased expression of CHOP represents a critical factor underlying events leading to hepatic injury. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Luyong Zhang
- Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xudong Wu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Emily C. Gurley
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Elaine Kennedy
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA,To whom correspondence should be addressed: Huiping Zhou, Ph.D, Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 908678, Richmond, VA 23298-0678, Tel: (804)-828-6817, Fax: (804) 828-0676,
| |
Collapse
|