1
|
Yadav VK, Dhanasekaran S, Choudhary N, Nathiya D, Thakur V, Gupta R, Pramanik S, Kumar P, Gupta N, Patel A. Recent advances in nanotechnology for Parkinson's disease: diagnosis, treatment, and future perspectives. Front Med (Lausanne) 2025; 12:1535682. [PMID: 39911864 PMCID: PMC11794224 DOI: 10.3389/fmed.2025.1535682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease that destroys substantia nigra dopaminergic neurons, causing tremors, bradykinesia, rigidity, and postural instability. Current treatment approaches primarily focus on symptom management, employing pharmacological, non-pharmacological, and surgical methods. However, these treatments often result in fluctuating symptoms, side effects, and disease progression. Here, the authors have reviewed the emerging field of nanomedicine as a promising path for Parkinson's disease treatment, emphasizing its potential to overcome the limitations of traditional therapies. Nanomedicine utilizes nanoparticles for targeted drug delivery, leveraging their small size and high surface area to volume ratio to cross the blood-brain barrier and deliver therapeutic agents directly to affected brain regions. Various nanoparticles, including lipid-based, polymeric, metallic, and carbon-based, have shown potential in Parkinson's disease treatment. Additionally, nanocarrier systems like liposomes, nanogels, dendrimers, and solid lipid nanoparticles offer controlled and sustained release of therapeutic agents, enhancing their bioavailability and reducing side effects. This review provides insights into the pathophysiology of Parkinson's disease, highlighting the mechanisms of neurodegeneration, the role of alpha-synuclein, and the disruption of dopaminergic pathways. It further discusses the application of gene therapy in conjunction with nanomedicine for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Faculty of Sciences, Department of Microbiology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | | | - Nisha Choudhary
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt. Ltd., Greater Noida, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
2
|
Mallik B, Frank CA. Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630694. [PMID: 39803545 PMCID: PMC11722341 DOI: 10.1101/2024.12.30.630694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the Drosophila neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth. Here we report tissue-specific adaptations at the NMJ when MCI is depleted. In Drosophila motor neurons, MCI depletion causes profound cytological defects and increased mitochondrial reactive oxygen species (ROS). But instead of diminishing synapse function, neuronal ROS triggers a homeostatic signaling process that maintains normal NMJ excitation. We identify molecules mediating this compensatory response. MCI depletion in muscles also enhances local ROS. But high levels of muscle ROS cause destructive responses: synapse degeneration, mitochondrial fragmentation, and impaired neurotransmission. In humans, mutations affecting MCI subunits cause severe neurological and neuromuscular diseases. The tissue-level effects that we describe in the Drosophila system are potentially relevant to forms of mitochondrial pathogenesis.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| |
Collapse
|
3
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
4
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Creatine supplementation with exercise reduces α-synuclein oligomerization and necroptosis in Parkinson's disease mouse model. J Nutr Biochem 2024; 126:109586. [PMID: 38262563 DOI: 10.1016/j.jnutbio.2024.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Parkinson's disease (PD) is an incurable neurological disorder that causes typical motor deficits. In this study, we investigated the effects of creatine supplementation and exercise in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found that 2% creatine supplementation and/or exercise intervention for 4 weeks elicited neurobehavioral recovery and neuroprotective effects regarding dopaminergic cell loss in MPTP-treated mice; this effect implies functional preservation of dopaminergic cells in the substantia nigra, as reflected by tyrosine hydroxylase expression recovery. Creatine and exercise reduced necroptotic activity in dopaminergic cells by lowering mixed lineage kinase domain-like protein (MLKL) modification to active phenotypes (phosphorylation at Ser345 and oligomerization) and phosphorylated receptor-interacting protein kinase 1 (RIPK1) (Ser166-p) and RIPK3 (Ser232-p) levels. In addition, creatine and exercise reduced the MPTP-induced increase in pathogenic α-synuclein forms, such as Ser129 phosphorylation and oligomerization. Furthermore, creatine and exercise had anti-inflammatory and antioxidative effects in MPTP mice, as evidenced by a decrease in microglia activation, NF-κB-dependent pro-inflammatory molecule expression, and increase in antioxidant enzyme expression. These phenotypic changes were associated with the exercise/creatine-induced AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuin 3 (SIRT3)/forkhead box O3 (FoxO3a) signaling pathways. In all experiments, combining creatine with exercise resulted in considerable improvement over either treatment alone. Consequently, these findings suggest that creatine supplementation with exercise has anti-inflammatory, antioxidative, and anti-α-synucleinopathy effects, thereby reducing necroptotic cell death in a PD mouse model.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
5
|
Wiśniewska K, Gaffke L, Żabińska M, Węgrzyn G, Pierzynowska K. Cellular Organelle-Related Transcriptomic Profile Abnormalities in Neuronopathic Types of Mucopolysaccharidosis: A Comparison with Other Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:2678-2700. [PMID: 38534785 PMCID: PMC10968730 DOI: 10.3390/cimb46030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.
Collapse
Affiliation(s)
| | | | | | | | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (L.G.); (M.Ż.); (G.W.)
| |
Collapse
|
6
|
Kubota-Sakashita M, Kawakami H, Kikuzato K, Shirai F, Nakamura T, Kato T. An ex vivo screening using mouse brain mitochondria identified seco-cycline D as an inhibitor of mitochondrial permeability transition pore. Biochem Biophys Res Commun 2024; 691:149253. [PMID: 38043196 DOI: 10.1016/j.bbrc.2023.149253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mitochondrial dysfunction is implicated in neuropsychiatric disorders. Inhibition of mitochondrial permeability transition pore (mPTP) and thereby enhancement of mitochondrial Ca2+ retention capacity (CRC) is a promising treatment strategy. Here, we screened 1718 compounds to search for drug candidates inhibiting mPTP by measuring their effects on CRC in mitochondria isolated from mouse brains. We identified seco-cycline D (SCD) as an active compound. SCD and its derivative were more potent than a known mPTP inhibitor, cyclosporine A (CsA). The mechanism of action of SCD was suggested likely to be different from CsA that acts on cyclophilin D. Repeated administration of SCD decreased ischemic area in a middle cerebral artery occlusion model in mice. These results suggest that SCD is a useful probe to explore mPTP function.
Collapse
Affiliation(s)
- Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan; Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| | - Hirochika Kawakami
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan; Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ko Kikuzato
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takemichi Nakamura
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Semadhi MP, Mulyaty D, Halimah E, Levita J. Healthy mitochondrial DNA in balanced mitochondrial dynamics: A potential marker for neuro‑aging prediction (Review). Biomed Rep 2023; 19:64. [PMID: 37614983 PMCID: PMC10442761 DOI: 10.3892/br.2023.1646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2023] [Indexed: 08/25/2023] Open
Abstract
The mitochondrial genome or mitochondrial DNA (mtDNA) is released as a response to cellular stress. In mitochondrial biogenesis, active communication between the mitochondria genome and nucleus is associated with the mtDNA profile that affects the mitochondrial quality. The present review aimed to assess the molecular mechanism and potential roles of mitochondria in neuro-aging, including the importance of evaluating the health status of mtDNA via mitochondrial dynamics. The normal condition of mitochondria, defined as mitochondrial dynamics, includes persistent changes in morphology due to fission and fusion events and autophagy-mitophagy in the mitochondrial quality control process. The calculated copy number of mtDNA in the mitochondria genome represents cellular health, which can be affected by a long-term imbalance between the production and accumulation of reactive oxygen species in the neuroendocrine system, which leads to an abnormal function of mitochondria and mtDNA damage. Mitochondria health is a new approach to discovering a potential indicator for the health status of the nervous system and several types of neurodegenerative disorders. Mitochondrial dynamics is a key contributor to predicting neuro-aging development, which affects the self-renewal and differentiation of neurons in cell metabolism. Neuro-aging is associated with uncontrolled mitochondrial dynamics, which generates age-associated diseases via various mechanisms and signaling routes that lead to the mtDNA damage that has been associated with neurodegeneration. Future studies on the strategic positioning of mtDNA health profile are needed to detect early neurodegenerative disorders.
Collapse
Affiliation(s)
- Made Putra Semadhi
- Prodia National Reference Laboratory, Jakarta 10430, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dewi Mulyaty
- Prodia Widyahusada Co., Jakarta 10430, Indonesia
| | - Eli Halimah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Seyedtaghia MR, Soudyab M, Shariati M, Esfehani RJ, Vafadar S, Shalaei N, Nouri V, Zech M, Winkelmann J, shoeibi A, Sadr-Nabavi A. Copy number analysis from whole-exome sequencing data revealed a novel homozygous deletion in PARK7 leads to severe early-onset Parkinson's disease. Heliyon 2023; 9:e15393. [PMID: 37095917 PMCID: PMC10122007 DOI: 10.1016/j.heliyon.2023.e15393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disease characterized by both motor neuron and non-motor neuron symptoms, is the most frequent neurodegenerative disease after Alzheimer's disease. Both genetic and environmental factors take part in disease etiology. Most cases are considered complex multifactorial diseases. About 15% of PD appear in the familial form, and about 5% of all cases arise from a single gene mutation. Among Mendelian causes of PD, PARK7 is one of the autosomal recessive forms due to loss-of-function mutations in both gene alleles. Both single nucleotide variants (SNVs) and copy number variations (CNVs) are observed in PARK7. This study presents an Iranian family with familial PD where some relatives had psychiatric disorders. A homozygous 1617 bp deletion in a female with early-onset PD was detected through copy-number analysis from whole-exome sequencing (WES) data in this consanguineous family. Further investigation by surveying microhomology revealed that the actual size of the deletion is 3,625 bp. This novel CNV that was in the PARK7gene is supposed to co-relation with early-onset PD and infertility in this family.
Collapse
Affiliation(s)
- Mohammad Reza Seyedtaghia
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Shariati
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Shabnam Vafadar
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shalaei
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Nouri
- Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Julianne Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institut für Humangenetik, Technische Universität München, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Ali shoeibi
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institut für Humangenetik, Technische Universität München, Munich, Germany
- Corresponding author. Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
10
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
11
|
Lorenzo-Betancor O, Galosi L, Bonfili L, Eleuteri AM, Cecarini V, Verin R, Dini F, Attili AR, Berardi S, Biagini L, Robino P, Stella MC, Yearout D, Dorschner MO, Tsuang DW, Rossi G, Zabetian CP. Homozygous CADPS2 Mutations Cause Neurodegenerative Disease with Lewy Body-like Pathology in Parrots. Mov Disord 2022; 37:2345-2354. [PMID: 36086934 PMCID: PMC9772200 DOI: 10.1002/mds.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Several genetic models that recapitulate neurodegenerative features of Parkinson's disease (PD) exist, which have been largely based on genes discovered in monogenic PD families. However, spontaneous genetic mutations have not been linked to the pathological hallmarks of PD in non-human vertebrates. OBJECTIVE To describe the genetic and pathological findings of three Yellow-crowned parrot (Amazona ochrocepahala) siblings with a severe and rapidly progressive neurological phenotype. METHODS The phenotype of the three parrots included severe ataxia, rigidity, and tremor, while their parents were phenotypically normal. Tests to identify avian viral infections and brain imaging studies were all negative. Due to their severe impairment, they were all euthanized at age 3 months and their brains underwent neuropathological examination and proteasome activity assays. Whole genome sequencing (WGS) was performed on the three affected parrots and their parents. RESULTS The brains of affected parrots exhibited neuronal loss, spongiosis, and widespread Lewy body-like inclusions in many regions including the midbrain, basal ganglia, and neocortex. Proteasome activity was significantly reduced in these animals compared to a control (P < 0.05). WGS identified a single homozygous missense mutation (p.V559L) in a highly conserved amino acid within the pleckstrin homology (PH) domain of the calcium-dependent secretion activator 2 (CADPS2) gene. CONCLUSIONS Our data suggest that a homozygous mutation in the CADPS2 gene causes a severe neurodegenerative phenotype with Lewy body-like pathology in parrots. Although CADPS2 variants have not been reported to cause PD, further investigation of the gene might provide important insights into the pathophysiology of Lewy body disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Oswaldo Lorenzo-Betancor
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science,
University of Padova “Agripolis”, Legnaro, Italy
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino,
Torino, Italy
| | | | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA
| | - Michael O. Dorschner
- Department of Pathology, Center for Precision Diagnostics,
University of Washington, Seattle, Washington, USA
| | - Debby W. Tsuang
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Psychiatry, University of Washington School
of Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| |
Collapse
|
12
|
Chai GS, Wu JJ, Gong J, Zhou JL, Jiang ZQ, Yi HY, Gu Y, Huang HH, Yao ZY, Zhang YQ, Zhao P, Nie YJ. Activation of β2-adrenergic Receptor Ameliorates Amyloid-β-induced Mitophagy Defects and Tau Pathology in Mice. Neuroscience 2022; 505:34-50. [DOI: 10.1016/j.neuroscience.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
|
13
|
Elyasi L, Rosenholm JM, Jesmi F, Jahanshahi M. The Antioxidative Effects of Picein and Its Neuroprotective Potential: A Review of the Literature. Molecules 2022; 27:molecules27196189. [PMID: 36234724 PMCID: PMC9571929 DOI: 10.3390/molecules27196189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the main cause of dementia in the elderly, having no cure to date, as the currently available therapies focus on symptom remission. Most NDDs will progress despite treatment and eventually result in the death of the patient after several years of a burden on both the patient and the caregivers. Therefore, it is necessary to investigate agents that tackle the disease pathogenesis and can efficiently slow down or halt disease progression, with the hope of curing the patients and preventing further burden and mortality. Accordingly, recent research has focused on disease-modifying treatments with neuroregenerative or neuroprotective effects. For this purpose, it is necessary to understand the pathogenesis of NDDs. It has been shown that oxidative stress plays an important role in the damage to the central nervous system and the progression of neurodegenerative disorders. Furthermore, mitochondrial dysfunction and the accumulation of unfolded proteins, including beta-amyloid (Aβ), tau proteins, and α-synuclein, have been suggested. Accordingly, cellular and molecular studies have investigated the efficacy of several natural compounds (herbs and nutritional agents) for their neuroprotective and antioxidative properties. The most popular herbs suggested for the treatment and/or prevention of NDDs include Withania somnifera (ashwagandha), ginseng, curcumin, resveratrol, Baccopa monnieri, and Ginkgo biloba. In some herbs, such as ginseng, preclinical and clinical evidence are available for supporting its effectiveness; however, in some others, only cellular and animal studies are available. In line with the scant literature in terms of the effectiveness of herbal compounds on NDDs, there are also other herbal agents that have been disregarded. Picein is one of the herbal agents that has been investigated in only a few studies. Picein is the active ingredient of several herbs and can be thus extracted from different types of herbs, which makes it more available. It has shown to have anti-inflammatory properties in cellular and plant studies; however, to date, only one study has suggested its neuroprotective properties. Furthermore, some cellular studies have shown no anti-inflammatory effect of picein. Therefore, a review of the available literature is required to summarize the results of studies on picein. To date, no review study seems to have addressed this issue. Thus, in the present study, we gather the available information about the antioxidative and potential neuroprotective properties of picein and its possible effectiveness in treating NDDs. We also summarize the plants from which picein can be extracted in order to guide researchers for future investigations.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
- Correspondence: ; Tel./Fax: +98-17-32453515
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fatemeh Jesmi
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran 1415944911, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
| |
Collapse
|
14
|
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022; 23:10878. [PMID: 36142791 PMCID: PMC9503857 DOI: 10.3390/ijms231810878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Valentina Piano
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
15
|
Jagaran K, Singh M. Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23169361. [PMID: 36012619 PMCID: PMC9408920 DOI: 10.3390/ijms23169361] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD), a neurodegenerative disorder, is a life-altering, debilitating disease exhibiting a severe physical, psychological, and financial burden on patients. Globally, approximately 7–10 million people are afflicted with this disease, with the number of cases estimated to increase to 12.9 million by 2040. PD is a progressive movement disorder with nonmotor symptoms, including insomnia, depression, anxiety, and anosmia. While current therapeutics are available to PD patients, this treatment remains palliative, necessitating alternative treatment approaches. A major hurdle in treating PD is the protective nature of the blood–brain barrier (BBB) and its ability to limit access to foreign molecules, including therapeutics. Drugs utilized presently are nonspecific and administered at dosages that result in numerous adverse side effects. Nanomedicine has emerged as a potential strategy for treating many diseases. From the array of nanomaterials available, lipid nanoparticles (LNPs) possess various advantages, including enhanced permeability to the brain via passive diffusion and specific and nonspecific transporters. Their bioavailability, nontoxic nature, ability to be conjugated to drugs, and targeting moieties catapult LNPs as a promising therapeutic nanocarriers for PD. While PD-related studies are limited, their potential as therapeutics is evident in their formulations as vaccines. This review is aimed at examining the roles and properties of LNPs that make them efficient therapeutic nanodelivery vehicles for the treatment of PD, including therapeutic advances made to date.
Collapse
|
16
|
Colorectal Cancer Chemoprevention by S-Allyl Cysteine–Caffeic Acid Hybrids: In Vitro Biological Activity and In Silico Studies. Sci Pharm 2022. [DOI: 10.3390/scipharm90030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conventional chemotherapy for colorectal cancer (CRC) gives only a small increase in patient survival, since it is often diagnosed at late stages, when the tumor has disseminated to other organs. Moreover, it is common to observe that malignant cells may acquire resistance to conventional chemotherapies through different mechanisms, including reducing drug activation or accumulation (by enhancing efflux), inducing alterations in molecular targets, and inhibiting the DNA damage response, among other strategies. Considering these facts, the discovery of new molecules with therapeutic potential has become an invaluable tool in chemoprevention. In this context, we previously evaluated two hybrids (SAC-CAFA-MET and SAC-CAFA-PENT) that exhibited selective cytotoxicity against SW480 cells, with better results than the conventional chemotherapeutic agent (5-fluorouracil; 5-FU). Here, we investigated the possible mechanisms of these molecules in greater depth, to identify whether they could be valuable therapeutic scaffolds in the search for new molecules with chemopreventive potential for the treatment of CRC. Both compounds reduced ROS formation, which could be related to antioxidant effects. Further evaluations showed that SAC-CAFA-MET induces cell death independent of caspases and the tumor-suppressor protein p53, but probably mediated by the negative regulation of the pro-apoptotic Bcl-2. In addition, the lack of activation of caspase-8 and the positive regulation of caspase-3 induced by SAC-CAFA-PENT suggest that this compound acts through an apoptotic mechanism, probably initiated by intrinsic pathways. Furthermore, the downregulation of IL-6 by SAC-CAFA-PENT suggests that it also induces a significant anti-inflammatory process. In addition, docking studies would suggest caspase-3 modulation as the primary mechanism by which SAC-CAFA-PENT elicits apoptosis in SW480human colorectal adenocarcinoma cells. Meanwhile, density functional theory (DFT) calculations suggest that both hybrids would produce effects in the modulation of ROS in SW480 cells via the hydrogen atom transfer (HAT) pathway. The present work notes that SAC-CAFA-MET and SAC-CAFA-PENT could be potential candidates for further investigations in the search for potential chemopreventive agents.
Collapse
|
17
|
Association of p53 with Neurodegeneration in Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:6600944. [PMID: 35601652 PMCID: PMC9117072 DOI: 10.1155/2022/6600944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
p53 is a vital transcriptional protein implicated in regulating diverse cellular processes, including cell cycle arrest, DNA repair, mitochondrial metabolism, redox homeostasis, autophagy, senescence, and apoptosis. Recent studies have revealed that p53 levels and activity are substantially increased in affected neurons in cellular and animal models of Parkinson's disease (PD) as well as in the brains of PD patients. p53 activation in response to neurodegenerative stress is closely associated with the degeneration of dopaminergic neurons accompanied by mitochondrial dysfunction, reactive oxygen species (ROS) production, abnormal protein aggregation, and impairment of autophagy, and these pathogenic events have been implicated in the pathogenesis of PD. Pathogenic p53 integrates diverse cellular stresses and activate these downstream events to induce the degeneration of dopaminergic neurons; thus, it plays a crucial role in the pathogenesis of PD and appears to be a potential target for the treatment of the disease. We reviewed the current knowledge concerning p53-dependent neurodegeneration to better understand the underlying mechanisms and provide possible strategies for PD treatment by targeting p53.
Collapse
|
18
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Rosenstock TR, Sun C, Hughes GW, Winter K, Sarkar S. Analysis of Mitochondrial Dysfunction by Microplate Reader in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Disorders. Methods Mol Biol 2022; 2549:1-21. [PMID: 35347693 DOI: 10.1007/7651_2021_451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria are responsible for many vital pathways governing cellular homeostasis, including cellular energy management, heme biosynthesis, lipid metabolism, cellular proliferation and differentiation, cell cycle regulation, and cellular viability. Electron transport and ADP phosphorylation coupled with proton pumping through the mitochondrial complexes contribute to the preservation of mitochondrial membrane potential (ΔΨm). Importantly, mitochondrial polarization is essential for reactive oxygen species (ROS) production and cytosolic calcium (Ca2+) handling. Thus, changes in mitochondrial oxidative phosphorylation (OXPHOS), ΔΨm, and ATP/ADP may occur in parallel or stimulate each other. Brain cells like neurons are heavily reliant on mitochondrial OXPHOS for its high-energy demands, and hence improper mitochondrial function is detrimental for neuronal survival. Indeed, several neurodegenerative disorders are associated with mitochondrial dysfunction. Modeling this disease-relevant phenotype in neuronal cells differentiated from patient-derived human induced pluripotent stem cells (hiPSCs) provide an appropriate cellular platform for studying the disease pathology and drug discovery. In this review, we describe high-throughput analysis of crucial parameters related to mitochondrial function in hiPSC-derived neurons. These methodologies include measurement of ΔΨm, intracellular Ca2+, oxidative stress, and ATP/ADP levels using fluorescence probes via a microplate reader. Benefits of such an approach include analysis of mitochondrial parameters on a large population of cells, simultaneous analysis of different cell lines and experimental conditions, and for drug screening to identify compounds restoring mitochondrial function.
Collapse
Affiliation(s)
- Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
- Department of Bioscience, Sygnature Discovery, BioCity, Nottingham, United Kingdom
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Georgina Wynne Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Katherine Winter
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
20
|
Tiwari S, Dewry RK, Srivastava R, Nath S, Mohanty TK. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology 2021; 179:22-31. [PMID: 34823058 DOI: 10.1016/j.theriogenology.2021.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are vital organelles with a multifaceted role in cellular bioenergetics, biosynthesis, signaling and calcium homeostasis. During oxidative phosphorylation, sperm mitochondria generate reactive oxygen species (ROS) at physiological levels mediating signaling pathways essential for sperm fertilizing competence. Moreover, sperm subpopulation with active mitochondria is positively associated with sperm motility, chromatin and plasma membrane integrity, and normal morphology. However, the osmotic and thermal stress, and intracellular ice crystal formation generate excess ROS to cause mitochondrial dysfunction, potentiating cryoprotectant-induced calcium overload in the mitochondrial matrix. It further stimulates the opening of mitochondrial permeability transition pores (mPTP) to release pro-apoptotic factors from mitochondria and initiate apoptotic cascade, with a decrease in Mitochondrial Membrane Potential (MMP) and altered sperm functions. To improve the male reproductive potential, it is essential to address challenges in semen cryopreservation, precisely the deleterious effects of oxidative stress on sperm quality. During semen cryopreservation, the supplementation of extended semen with conventional antioxidants is extensively reported. However, the outcomes of supplementation to improve semen quality are inconclusive across different species, which is chiefly attributed to the unknown bioavailability of antioxidants at the primary site of ROS generation, i.e., mitochondria. Increasing evidence suggests that the targeted delivery of antioxidants to sperm mitochondria is superior in mitigating oxidative stress and improving semen freezability than conventional antioxidants. Therefore, the present review comprehensively describes mitochondrial-targeted antioxidants, their mechanism of action and effects of supplementation on improving semen cryopreservation efficiency in different species. Moreover, it also discusses the significance of active mitochondria in determining sperm fertilizing competence, cryopreservation-induced oxidative stress and mitochondrial dysfunction, and its implications on sperm fertility. The potential of mitochondrial-targeted antioxidants to modulate mitochondrial functions and improve semen quality has been reviewed extensively.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - R K Dewry
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Rashika Srivastava
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sapna Nath
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| |
Collapse
|
21
|
Swim Training Ameliorates Hyperlocomotion of ALS Mice and Increases Glutathione Peroxidase Activity in the Spinal Cord. Int J Mol Sci 2021; 22:ijms222111614. [PMID: 34769048 PMCID: PMC8583724 DOI: 10.3390/ijms222111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is an incurable, neurodegenerative disease. In some cases, ALS causes behavioral disturbances and cognitive dysfunction. Swimming has revealed a neuroprotective influence on the motor neurons in ALS. (2) Methods: In the present study, a SOD1-G93A mice model of ALS were used, with wild-type B6SJL mice as controls. ALS mice were analyzed before ALS onset (10th week of life), at ALS 1 onset (first symptoms of the disease, ALS 1 onset, and ALS 1 onset SWIM), and at terminal ALS (last stage of the disease, ALS TER, and ALS TER SWIM), and compared with wild-type mice. Swim training was applied 5 times per week for 30 min. All mice underwent behavioral tests. The spinal cord was analyzed for the enzyme activities and oxidative stress markers. (3) Results: Pre-symptomatic ALS mice showed increased locomotor activity versus control mice; the swim training reduced these symptoms. The metabolic changes in the spinal cord were present at the pre-symptomatic stage of the disease with a shift towards glycolytic processes at the terminal stage of ALS. Swim training caused an adaptation, resulting in higher glutathione peroxidase (GPx) and protection against oxidative stress. (4) Conclusion: Therapeutic aquatic activity might slow down the progression of ALS.
Collapse
|
22
|
Mitochondria dynamics in the aged mice eye and the role in the RPE phagocytosis. Exp Eye Res 2021; 213:108800. [PMID: 34688622 DOI: 10.1016/j.exer.2021.108800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.
Collapse
|
23
|
Méndez-López I, Sancho-Bielsa FJ, Engel T, García AG, Padín JF. Progressive Mitochondrial SOD1 G93A Accumulation Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 Down-Regulation in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22158194. [PMID: 34360957 PMCID: PMC8347639 DOI: 10.3390/ijms22158194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
In recent years, the “non-autonomous motor neuron death” hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.
Collapse
Affiliation(s)
- Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Francisco J. Sancho-Bielsa
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Antonio G. García
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Juan Fernando Padín
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
- Correspondence:
| |
Collapse
|
24
|
Serpa RO, Ferguson L, Larson C, Bailard J, Cooke S, Greco T, Prins ML. Pathophysiology of Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:696510. [PMID: 34335452 PMCID: PMC8319243 DOI: 10.3389/fneur.2021.696510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
The national incidence of traumatic brain injury (TBI) exceeds that of any other disease in the pediatric population. In the United States the Centers for Disease Control and Prevention (CDC) reports 697,347 annual TBIs in children ages 0–19 that result in emergency room visits, hospitalization or deaths. There is a bimodal distribution within the pediatric TBI population, with peaks in both toddlers and adolescents. Preclinical TBI research provides evidence for age differences in acute pathophysiology that likely contribute to long-term outcome differences between age groups. This review will examine the timecourse of acute pathophysiological processes during cerebral maturation, including calcium accumulation, glucose metabolism and cerebral blood flow. Consequences of pediatric TBI are complicated by the ongoing maturational changes allowing for substantial plasticity and windows of vulnerabilities. This review will also examine the timecourse of later outcomes after mild, repeat mild and more severe TBI to establish developmental windows of susceptibility and altered maturational trajectories. Research progress for pediatric TBI is critically important to reveal age-associated mechanisms and to determine knowledge gaps for future studies.
Collapse
Affiliation(s)
- Rebecka O Serpa
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cooper Larson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julie Bailard
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha Cooke
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tiffany Greco
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Brito MD, Silva LFSE, Siena A, Chipara M, Sarkar S, Rosenstock TR. Oxygen Consumption Evaluation: An Important Indicator of Metabolic State, Cellular Function, and Cell Fate Along Neural Deregulation. Methods Mol Biol 2021; 2240:207-230. [PMID: 33423236 DOI: 10.1007/978-1-0716-1091-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depletion of oxygen (O2) levels and reduction in the ATP synthesis (or even its complete blockage) are important characteristics of mitochondrial dysfunction; features that are often correlated with neurodegeneration. The measurement of oxygen consumption rate (OCR) is thus essential to evaluate cellular metabolism, survival, and neuroprotective strategies. In the present chapter, we describe the oxygen consumption assay using a Clark-type oxygen electrode in different types of samples named cells suspension (from primary and established cell culture), brain slices (ex vivo), and fresh brain tissues. In addition, we demonstrate herein how the program Oxygraph can be used in order to analyze the data and different approaches to normalize it.
Collapse
Affiliation(s)
- Mariana Dutra Brito
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science. R. Doutor Cesário Motta Júnior, São Paulo, SP, Brazil
| | - Luiz Felipe Souza E Silva
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science. R. Doutor Cesário Motta Júnior, São Paulo, SP, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science. R. Doutor Cesário Motta Júnior, São Paulo, SP, Brazil
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
27
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem J 2020; 477:833-852. [PMID: 32108870 PMCID: PMC7054746 DOI: 10.1042/bcj20190872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.
Collapse
|
29
|
Anjo SI, Dos Santos PV, Rosado L, Baltazar G, Baldeiras I, Pires D, Gomes A, Januário C, Castelo-Branco M, Grãos M, Manadas B. A different vision of translational research in biomarker discovery: a pilot study on circulatory mitochondrial proteins as Parkinson's disease potential biomarkers. Transl Neurodegener 2020; 9:11. [PMID: 32266064 PMCID: PMC7118951 DOI: 10.1186/s40035-020-00188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The identification of circulating biomarkers that closely correlate with Parkinson’s Disease (PD) has failed several times in the past. Nevertheless, in this pilot study, a translational approach was conducted, allowing the evaluation of the plasma levels of two mitochondrial-related proteins, whose combination leads to a robust model with potential diagnostic value to discriminate the PD patients from matched controls. Methods The proposed translational approach was initiated by the analysis of secretomes from cells cultured under control or well-defined oxidative stress conditions, followed by the identification of proteins related to PD pathologic mechanisms that were altered between the two states. This pipeline was further translated into the analysis of undepleted plasma samples from 28 control and 31 PD patients. Results From the secretome analysis, several mitochondria-related proteins were found to be differentially released between control and stress conditions and to be able to distinguish the two secretomes. Similarly, two mitochondrial-related proteins were found to be significantly changed in a PD cohort compared to matched controls. Moreover, a linear discriminant model with potential diagnostic value to discriminate PD patients was obtained using the combination of these two proteins. Both proteins are associated with apoptotic mitochondrial changes, which may correspond to potential indicators of cell death. Moreover, one of these proteins, the VPS35 protein, was reported in plasma for the first time, and its quantification was only possible due to its previous identification in the secretome analysis. Conclusions In this work, an adaptation of a translational pipeline for biomarker selection was presented and transposed to neurological diseases, in the present case Parkinson’s Disease. The novelty and success of this pilot study may arise from the combination of: i) a translational research pipeline, where plasma samples are interrogated using knowledge previously obtained from the evaluation of cells’ secretome under oxidative stress; ii) the combined used of statistical analysis and an informed selection of candidates based on their link with relevant disease mechanisms, and iii) the use of SWATH-MS, an untargeted MS method that allows a complete record of the analyzed samples and a targeted data extraction of the quantitative values of proteins previously identified.
Collapse
Affiliation(s)
- Sandra I Anjo
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Luiza Rosado
- 4Centro Hospitalar Cova da Beira, E.P.E, Covilhã, Portugal
| | - Graça Baltazar
- 3Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Inês Baldeiras
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Diana Pires
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Andreia Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Cristina Januário
- 5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Mário Grãos
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,7Biocant, Biotechnology Transfer Association, Cantanhede, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| |
Collapse
|
30
|
Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J Tissue Eng 2020; 11:2041731419897460. [PMID: 32180936 PMCID: PMC7057401 DOI: 10.1177/2041731419897460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Brain diseases including neurodegenerative disorders and tumours are among the most serious health problems, degrading the quality of life and causing massive economic cost. Nanoparticles that load and deliver drugs and genes have been intensively studied for the treatment of brain diseases, and have demonstrated some biological effects in various animal models. Among other efforts taken in the nanoparticle development, targeting of blood brain barrier, specific cell type or local intra-/extra-cellular space is an important strategy to enhance the therapeutic efficacy of the nanoparticle delivery systems. This review underlies the targeting issue in the nanoparticle development for the treatment of brain diseases, taking key exemplar studies carried out in various in vivo models.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Atanu Chakraborty
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
31
|
Liu K, Zhan Z, Gao W, Feng J, Xie X. Cyclosporine attenuates Paraquat-induced mitophagy and pulmonary fibrosis. Immunopharmacol Immunotoxicol 2020; 42:138-146. [PMID: 32116062 DOI: 10.1080/08923973.2020.1729176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives: Paraquat (PQ) poisoning can induce mitophagy and pulmonary fibrosis. Cyclosporine A (CsA) is an inhibitor of mitophagy. This study aimed at investigating whether CsA could inhibit PQ-induced mitophagy and pulmonary fibrosis in rats.Materials and Methods: Male Sprague-Dawley (SD) rats were treated with vehicle saline (control), 50 mg/kg PQ by gavage alone, or together with different doses of CsA. At 14 days post-induction, the levels of pulmonary fibrosis and PTEN-induced putative kinase 1 (PINK1) and Parkin expression in individual rats and mitochondrial membrane potential (MMP) in lung cells were measured. Moreover, A549 cells were treated with PQ or PQ + CsA for 24 h and the levels of PINK1, Parkin, fibronectin, collagen I and LC3 I and II expression and MMP were examined. Finally, the impact of PINK1 overexpression on the PQ or PQ + CsA-modulated fibronectin and collagen I expression in A549 cells was tested.Results: PQ exposure significantly increased the levels of hydroxyproline and collagen I expression and collagen fiber accumulation in the lung of rats, which were mitigated by CsA treatment. Furthermore, treatment with CsA significantly improved the PQ-decreased MMP and abrogated PQ-upregulated PINK1 and Parkin expression in the lungs of rats. In addition, CsA treatment decreased the PQ-induced fibrosis and mitophagy and PQ-impaired MMP as well as PQ-upregulated PINK1 and Parkin expression in A549 cells. The later effect of CsA was abrogated by PINK1 overexpression in A549 cells.Conclusions: Therefore, CsA can inhibit the PQ-induced mitophagy and pulmonary fibrosis by attenuating the PINK1/Parkin signaling.
Collapse
Affiliation(s)
- Kaixiang Liu
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.,Department of Nephrology, the Chengdu Second Affiliated Hospital of Chongqing Medical University, and the Third People's Hospital of Chengdu, Chengdu, China
| | - Zhipeng Zhan
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Wei Gao
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Jie Feng
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Xisheng Xie
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| |
Collapse
|
32
|
Fu MH, Chen IC, Lee CH, Wu CW, Lee YC, Kung YC, Hung CY, Wu KLH. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. J Neuroinflammation 2019; 16:224. [PMID: 31729994 PMCID: PMC6858639 DOI: 10.1186/s12974-019-1623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Decreased heart rate variability (HRV) leads to cardiovascular diseases and increased mortality in clinical studies. However, the underlying mechanisms are still inconclusive. Systemic inflammation-induced neuroinflammation is known to impair the autonomic center of cardiovascular regulation. The dynamic stability of blood pressure and heart rate (HR) is regulated by modulation of the reciprocal responses of sympathetic and parasympathetic tone by the baroreflex, which is controlled by the nucleus of the solitary tract (NTS). METHODS Systemic inflammation was induced by E. coli lipopolysaccharide (LPS, 1.2 mg/kg/day, 7 days) peritoneal infusion via an osmotic minipump in normotensive Sprague-Dawley rats. Systolic blood pressure (SBP) and HR were measured by femoral artery cannulation and recorded on a polygraph under anesthesia. The low-frequency (LF; 0.25-0.8 Hz) and high-frequency (HF; 0.8-2.4 Hz) components of SBP were adopted as the indices for sympathetic vasomotor tone and parasympathetic vasomotor tone, while the baroreflex effectiveness index (BEI) was adopted from the analysis of SBP and pulse interval (PI). The plasma levels of proinflammatory cytokines and mitochondrial DNA (mtDNA) oxidative damage were analyzed by ELISA. Protein expression was evaluated by Western blot. The distribution of oxidative mtDNA was probed by immunofluorescence. Pharmacological agents were delivered via infusion into the cisterna magna with an osmotic minipump. RESULTS The suppression of baroreflex sensitivity was concurrent with increased SBP and decreased HR. Neuroinflammatory factors, including TNF-α, CD11b, and Iba-1, were detected in the NTS of the LPS group. Moreover, indices of mtDNA damage, including 8-OHdG and γ-H2AX, were significantly increased in neuronal mitochondria. Pentoxifylline or minocycline intracisternal (IC) infusion effectively prevented mtDNA damage, suggesting that cytokine and microglial activation contributed to mtDNA damage. Synchronically, baroreflex sensitivity was effectively protected, and the elevated blood pressure was significantly relieved. In addition, the mtDNA repair mechanism was significantly enhanced by pentoxifylline or minocycline. CONCLUSION These results suggest that neuronal mtDNA damage in the NTS induced by neuroinflammation could be the core factor in deteriorating baroreflex desensitization and subsequent cardiovascular dysfunction. Therefore, the enhancement of base excision repair (BER) signaling in mitochondria could be a potential therapeutic strategy for cardiovascular reflex dysregulation.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Republic of China
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chou-Hwei Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu Chih Kung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Neipu Township, Republic of China
- Department of Nursing, Meiho University, Neipu Township, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, 700 Taiwan Republic of China
| |
Collapse
|
33
|
Addressing the alterations in cerebral ischemia-reperfusion injury on the brain mitochondrial activity: A possible link to cognitive decline. Biochem Biophys Res Commun 2019; 518:100-106. [DOI: 10.1016/j.bbrc.2019.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
|
34
|
Role of PGC-1α in Mitochondrial Quality Control in Neurodegenerative Diseases. Neurochem Res 2019; 44:2031-2043. [PMID: 31410709 DOI: 10.1007/s11064-019-02858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
As one of the major cell organelles responsible for ATP production, it is important that neurons maintain mitochondria with structural and functional integrity; this is especially true for neurons with high metabolic requirements. When mitochondrial damage occurs, mitochondria are able to maintain a steady state of functioning through molecular and organellar quality control, thus ensuring neuronal function. And when mitochondrial quality control (MQC) fails, mitochondria mediate apoptosis. An apparently key molecule in MQC is the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α). Recent findings have demonstrated that upregulation of PGC-1α expression in neurons can modulate MQC to prevent mitochondrial dysfunction in certain in vivo and in vitro aging or neurodegenerative encephalopathy models, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease. Because mitochondrial function and quality control disorders are the basis of pathogenesis in almost all neurodegenerative diseases (NDDs), the role of PGC-1α may make it a viable entry point for the treatment of such diseases. This review focuses on multi-level MQC in neurons, as well as the regulation of MQC by PGC-1α in these major NDDs.
Collapse
|
35
|
Fresenius HL, Wohlever ML. Sorting out how Msp1 maintains mitochondrial membrane proteostasis. Mitochondrion 2019; 49:128-134. [PMID: 31394253 DOI: 10.1016/j.mito.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Robust membrane proteostasis networks are essential for cells to withstand proteotoxic stress arising from environmental insult and intrinsic errors in protein production (Labbadia and Morimoto, 2015; Hegde and Zavodszky, 2019). Failures in mitochondrial membrane proteostasis are associated with cancer, aging, and a range of cardiovascular and neurodegenerative diseases (Wallace et al., 2010; Martin, 2012; Gustafsson and Gottlieb, 2007). As a result, mitochondria possess numerous pathways to maintain proteostasis (Avci and Lemberg, 2015; Shi et al., 2016; Weidberg and Amon, 2018; Shpilka and Haynes, 2018; Quirós et al., 2016; Sorrentino et al., 2017). Mitochondrial Sorting of Proteins 1 (Msp1) is a membrane anchored AAA ATPase that extracts proteins from the outer mitochondrial membrane (OMM) (Chen et al., 2014; Okreglak and Walter, 2014). In the past few years, several papers have addressed various aspects of Msp1 function. Here, we summarize these recent advances to build a basic model for how Msp1 maintains mitochondrial membrane proteostasis while also highlighting outstanding questions in the field.
Collapse
Affiliation(s)
- Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
36
|
Marques EP, Ferreira FS, Santos TM, Prezzi CA, Martins LAM, Bobermin LD, Quincozes-Santos A, Wyse ATS. Cross-talk between guanidinoacetate neurotoxicity, memory and possible neuroprotective role of creatine. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165529. [PMID: 31398469 DOI: 10.1016/j.bbadis.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Guanidinoacetate Methyltransferase deficiency is an inborn error of metabolism that results in decreased creatine and increased guanidinoacetate (GAA) levels. Patients present neurological symptoms whose mechanisms are unclear. We investigated the effects of an intrastriatal administration of 10 μM of GAA (0.02 nmol/striatum) on energy metabolism, redox state, inflammation, glutamate homeostasis, and activities/immunocontents of acetylcholinesterase and Na+,K+-ATPase, as well as on memory acquisition. The neuroprotective role of creatine was also investigated. Male Wistar rats were pretreated with creatine (50 mg/kg) or saline for 7 days underwenting stereotactic surgery. Forty-eight hours after surgery, the animals (then sixty-days-old) were divided into groups: Control, GAA, GAA + Creatine, and Creatine. Experiments were performed 30 min after intrastriatal infusion. GAA decreased SDH, complexes II and IV activities, and ATP levels, but had no effect on mitochondrial mass/membrane potential. Creatine totally prevented SDH and complex II, and partially prevented COX and ATP alterations. GAA increased dichlorofluorescein levels and decreased superoxide dismutase and catalase activities. Creatine only prevented catalase and dichlorofluorescein alterations. GAA increased cytokines, nitrites levels and acetylcholinesterase activity, but not its immunocontent. Creatine prevented such effects, except nitrite levels. GAA decreased glutamate uptake, but had no effect on the immunocontent of its transporters. GAA decreased Na+,K+-ATPase activity and increased the immunocontent of its α3 subunit. The performance on the novel object recognition task was also impaired. Creatine partially prevented the changes in glutamate uptake and Na+,K+-ATPase activity, and completely prevented the memory impairment. This study helps to elucidate the protective effects of creatine against the damage caused by GAA.
Collapse
Affiliation(s)
- Eduardo Peil Marques
- Laboratory of Neuroprotection and Neurometabolic Diseases, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil; Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil; Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Tiago Marcon Santos
- Laboratory of Neuroprotection and Neurometabolic Diseases, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil; Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Caroline Acauan Prezzi
- Laboratory of Neuroprotection and Neurometabolic Diseases, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil; Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Leo A M Martins
- Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil; Program of Post-graduation in Biological Sciences-Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul, Street Ramiro Barcelos, 2600-Annex, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
38
|
Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019; 16:250-269. [PMID: 31200115 PMCID: PMC6562374 DOI: 10.1016/j.isci.2019.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells provide a sensitive model to study exposure to toxicants, such as cigarette smoke. Electronic cigarettes (ECs) are popular nicotine delivery devices, often targeted to youth and pregnant mothers. However, little is known about how chemicals in ECs might affect neural stem cells, and in particular their mitochondria, organelles that maintain cell functionality and health. Here we show that the mechanism underlying EC-induced stem cell toxicity is stress-induced mitochondrial hyperfusion (SIMH), a transient survival response accompanied by increased mitochondrial oxidative stress. We identify SIMH as a survival response to nicotine, now widely available in EC refill fluids and in pure form for do-it-yourself EC products. These observed mitochondrial alterations combined with autophagy dysfunction to clear damaged mitochondria could lead to faulty stem cell populations, accelerate cellular aging, and lead to acquired mitochondriopathies. Any nicotine-containing product may likewise stress stem cells with long-term repercussions for users and passively exposed individuals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Atena Zahedi
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Sara Leung
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Esther Omaiye
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Prue Talbot
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA.
| |
Collapse
|
39
|
Bigland MJ, Brichta AM, Smith DW. Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs. Curr Aging Sci 2019; 11:108-117. [PMID: 30777575 PMCID: PMC6388513 DOI: 10.2174/1874609811666180830143358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023]
Abstract
Background: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for ener-gy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. Objective: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. Methods: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. Results: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mu-tations. However, we found an increase in abundance of major arc genes near the mtDNA control re-gion. There was also a marked age-related reduction in mtDNA copy number in both cell types. Ves-tibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. Conclusion: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals
Collapse
Affiliation(s)
- Mark J Bigland
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alan M Brichta
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Doug W Smith
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
40
|
Marques EP, Wyse ATS. Creatine as a Neuroprotector: an Actor that Can Play Many Parts. Neurotox Res 2019; 36:411-423. [PMID: 31069754 DOI: 10.1007/s12640-019-00053-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Creatine is a nitrogenous organic acid that plays a central role as an energy buffer in high energy demanding systems, including the muscular and the central nervous system. It can be acquired from diet or synthesized endogenously, and its main destination is the system creatine/phosphocreatine that strengthens cellular energetics via a temporal and spatial energy buffer that can restore cellular ATP without a reliance on oxygen. This compound has been proposed to possess secondary roles, such as direct and indirect antioxidant, immunomodulatory agent, and possible neuromodulator. However, these effects may be associated with its bioenergetic role in the mitochondria. Given the fundamental roles that creatine plays in the CNS, several preclinical and clinical studies have tested the potential that creatine has to treat degenerative disorders. However, although in vitro and in vivo animal models are highly encouraging, most clinical trials fail to reproduce positive results suggesting that the prophylactic use for neuroprotection in at-risk populations or patients is the most promising field. Nonetheless, the only clearly positive data of the creatine supplementation in human beings are related to the (rare) creatine deficiency syndromes. It seems critical that future studies must establish the best dosage regime to increase brain creatine in a way that can relate to animal studies, provide new ways for creatine to reach the brain, and seek larger experimental groups with biomarkers for prediction of efficacy.
Collapse
Affiliation(s)
- Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
41
|
Ravindran S, Kurian GA. Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 2019; 24:581-594. [PMID: 31025239 PMCID: PMC6527675 DOI: 10.1007/s12192-019-00990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive issues in stroke arise as a result of reperfusion of a clogged artery, which is reported to exacerbate the injury in the brain leading to oxidative stress. Through the present work, we try to understand the regional variations across brain regions mainly cortex and striatum associated with the progression of ischemia-reperfusion injury (IRI). In a rat model of IRI, the influence of varying ischemia and reperfusion times on the biochemical phases across the brain regions were monitored. IRI resulted in the blood-brain barrier disruption and developed mild areas of risk. The brain's tolerance towards IRI indicated a progressive trend in the injury and apoptosis from ischemia to reperfusion that was supported by the activities of plasma lactate dehydrogenase and tissue caspase-3. Cognitive impairment in these rats was an implication of cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) that persisted by 24-h reperfusion. The oxidative stress was prominent in the cortex than the striatum and was supported by the lower ATP level. Upregulated Mn-SOD expression leading to a preserved mitochondria in the striatum could be attributed to the regional protection. Overall, a progression of IRI was observed from striatum to cortex leading to 5-day cognitive decline.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|
42
|
Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 2019; 149:54-72. [PMID: 30300917 PMCID: PMC7680578 DOI: 10.1111/jnc.14608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose-6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP-activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt-mediated improvements in neuronal glucose metabolism.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M. Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana. I. Torres
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
43
|
Abraham JR, Barnard J, Wang H, Noritz GH, Yeganeh M, Buhas D, Natowicz MR. Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder. Biochem Biophys Res Commun 2019; 512:421-427. [PMID: 30902390 DOI: 10.1016/j.bbrc.2019.02.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023]
Abstract
HERC2 is a giant protein with E3 ubiquitin ligase activity and other known and suspected functions. Mutations of HERC2 are implicated in the pathogenesis of various cancers and result in severe neurological conditions in Herc2-mutant mice. Recently, a pleotropic autosomal recessive HERC2-associated syndrome of intellectual disability, autism and variable neurological deficits was described; its pathogenetic basis is largely unknown. Using peripheral blood-derived lymphoblasts from 3 persons with homozygous HERC2 variants and 14 age- and gender-matched controls, we performed label-free unbiased HPLC-tandem mass spectrometry-based proteomic analyses to provide insights into HERC2-mediated pathobiology. We found that out of 3427 detected proteins, there were 812 differentially expressed proteins between HERC2-cases vs. controls. 184 canonical pathways were enriched after FDR adjustment, including mitochondrial function, energy metabolism, EIF2 signaling, immune functions, ubiquitination and DNA repair. Ingenuity Pathway Analysis® identified 209 upstream regulators that could drive the differential expression, prominent amongst which were neurodegeneration-associated proteins. Differentially expressed protein interaction networks highlighted themes of immune function/dysfunction, regulation of cell cycle/cell death, and energy metabolism. Overall, the analysis of the HERC2-associated proteome revealed striking differential protein expression between cases and controls. The large number of differentially expressed proteins likely reflects HERC2's multiple domains and numerous interacting proteins. Our canonical pathway and protein interaction network findings suggest derangements of multiple pathways in HERC2-associated disease.
Collapse
Affiliation(s)
- Joseph R Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heng Wang
- DDC Clinic, Center for Special Needs Children, Middlefield, OH, USA
| | - Garey H Noritz
- Complex Health Care Program, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mehdi Yeganeh
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada
| | - Daniela Buhas
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
44
|
Fang J, Chavez-Valdez R, Flock DL, Avaritt O, Saraswati M, Robertson C, Martin LJ, Northington FJ. An Inhibitor of the Mitochondrial Permeability Transition Pore Lacks Therapeutic Efficacy Following Neonatal Hypoxia Ischemia in Mice. Neuroscience 2019; 406:202-211. [PMID: 30849447 DOI: 10.1016/j.neuroscience.2019.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Abstract
Neonatal hypoxic ischemic (HI) brain injury causes lifelong neurologic disability. Therapeutic hypothermia (TH) is the only approved therapy that partially mitigates mortality and morbidity. Therapies specifically targeting HI-induced brain cell death are currently lacking. Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction through the formation of the mitochondrial permeability transition pore (mPTP) are drivers of HI cellular injury. GNX-4728, a small molecule direct inhibitor of the mPTP that increases mitochondrial calcium retention capacity, is highly effective in adult neurodegenerative disease models and could have potential as a therapy in neonatal HI. A dose of GNX-4728, equivalent to that used in animal models, 300 mg/kg, IP was highly toxic in p10 mice. We then tested the hypothesis that acute administration of 30 mg/kg, IP of GNX-4728 immediately after HI in a neonatal mouse model would provide neuroprotection. This non-lethal lower dose of GNX-4728 (30 mg/kg, IP) improved the respiratory control ratio of neonatal female HI brain tissue but not in males. Brain injury, assessed histologically with a novel metric approach at 1 and 30 days after HI, was not mitigated by GNX-4728. Our work demonstrates that a small molecule inhibitor of the mPTP has i) an age related toxicity, ii) a sex-related brain mitoprotective profile after HI but iii) this is not sufficient to attenuate forebrain HI neuropathology.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debbie L Flock
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Oliver Avaritt
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Courtney Robertson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lee J Martin
- Department of Neuroscience and Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Walczak J, Dębska-Vielhaber G, Vielhaber S, Szymański J, Charzyńska A, Duszyński J, Szczepanowska J. Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics. FASEB J 2018; 33:4388-4403. [PMID: 30550341 DOI: 10.1096/fj.201801843r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioenergetic failure, oxidative stress, and changes in mitochondrial morphology are common pathologic hallmarks of amyotrophic lateral sclerosis (ALS) in several cellular and animal models. Disturbed mitochondrial physiology has serious consequences for proper functioning of the cell, leading to the chronic mitochondrial stress. Mitochondria, being in the center of cellular metabolism, play a pivotal role in adaptation to stress conditions. We found that mitochondrial dysfunction and adaptation processes differ in primary fibroblasts derived from patients diagnosed with either sporadic or familial forms of ALS. The evaluation of mitochondrial parameters such as the mitochondrial membrane potential, the oxygen consumption rate, the activity and levels of respiratory chain complexes, and the levels of ATP, reactive oxygen species, and Ca2+ show that the bioenergetic properties of mitochondria are different in sporadic ALS, familial ALS, and control groups. Comparative statistical analysis of the data set (with use of principal component analysis and support vector machine) identifies and distinguishes 3 separate groups despite the small number of investigated cell lines and high variability in measured parameters. These findings could be a first step in development of a new tool for predicting sporadic and familial forms of ALS and could contribute to knowledge of its pathophysiology.-Walczak, J., Dębska-Vielhaber, G., Vielhaber, S., Szymański, J., Charzyńska, A., Duszyński, J., Szczepanowska, J. Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics.
Collapse
Affiliation(s)
- Jarosław Walczak
- Laboratory of Bioenergetics and Biomembranes, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; and
| | - Jędrzej Szymański
- Laboratory of Bioenergetics and Biomembranes, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Charzyńska
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy Duszyński
- Laboratory of Bioenergetics and Biomembranes, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Szczepanowska
- Laboratory of Bioenergetics and Biomembranes, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Zhang Q, Li Q, Ma J, Zhao Y. PM2.5 impairs neurobehavior by oxidative stress and myelin sheaths injury of brain in the rat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:994-1001. [PMID: 30373045 DOI: 10.1016/j.envpol.2018.07.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Air particulate matter (PM) is a serious environmental problem that has been found to cause neuropathological disorders. Although the general toxicity of PM2.5 has been intensively studied, its neurobehavior effects are poorly discussed. In this study, we aim to investigate whether different exposure time of PM2.5 influence neurobehavior of rats, induce oxidative stress, histopathologic abnormalities, apoptosis, or changes of mitochondria and myelin. The results reveal that exposure to PM2.5 impaired spatial learning and memory, inquiring ability, as well as sensory function. These alterations were related to ultrastructure changes of mitochondria and myelin sheaths, abnormal expression of apoptosis-related proteins (Caspase-3, Caspase-9). These results provide a basis for a better understanding of myelin abnormality-related neurobehavior impairment in response to PM2.5.
Collapse
Affiliation(s)
- Qun Zhang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Qingzhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000, PR China
| | - Jincai Ma
- School of Environment and Resources, Ji Lin University, Ji Lin, 130021, PR China.
| | - Yaping Zhao
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China.
| |
Collapse
|
47
|
Aloni E, Ruggiero A, Gross A, Segal M. Learning Deficits in Adult Mitochondria Carrier Homolog 2 Forebrain Knockout Mouse. Neuroscience 2018; 394:156-163. [PMID: 30401654 DOI: 10.1016/j.neuroscience.2018.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023]
Abstract
Mitochondrial Carrier Homolog 2 (MTCH2) acts as a receptor for the BH3 interacting-domain death agonist (BID) in the mitochondrial outer membrane. Loss of MTCH2 affects mitochondria energy metabolism and function. MTCH2 forebrain conditional KO (MTCH2 BKO) display a deficit in hippocampus-dependent cognitive functions. Here we study age-related MTCH2 BKO behavioral and electrophysiological aspects of hippocampal functions. MTCH2 BKO exhibit impaired spatial but not motor learning and an impairment in long-term potentiation (LTP) in hippocampal slices. Moreover, MTCH2 BKO express an increase in activated microglia, in addition to a reduction in neuron density in the hippocampus, but do not express amyloid-β plaques or neurofibrillary tangles. These results highlight the role of mitochondria in the normal hippocampus-dependent memory formation.
Collapse
Affiliation(s)
- Etay Aloni
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | - Antonella Ruggiero
- Department of Biological Regulation, The Weizmann Institute, Rehovot 76100, Israel
| | - Atan Gross
- Department of Biological Regulation, The Weizmann Institute, Rehovot 76100, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
48
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
49
|
Sidorova-Darmos E, Sommer R, Eubanks JH. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Front Cell Neurosci 2018; 12:196. [PMID: 30090057 PMCID: PMC6068278 DOI: 10.3389/fncel.2018.00196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD+). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rosa Sommer
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|