1
|
Hirch T, Brander N, Schenk F, Pöllmann SJ, Reichenbach J, Schubert R, Modlich U. Expression of a large coding sequence: Gene therapy vectors for Ataxia Telangiectasia. Sci Rep 2023; 13:19386. [PMID: 37938627 PMCID: PMC10632516 DOI: 10.1038/s41598-023-46332-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).
Collapse
Affiliation(s)
- Tanja Hirch
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Nadine Brander
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Simon J Pöllmann
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Janine Reichenbach
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Deptartment of Somatic Gene Therapy, University Children's Hospital Zurich, Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Ralf Schubert
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ute Modlich
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany.
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
2
|
Ma Y, Wei J, Song J, Hu Z, Zhang R, Li Z, Sun Y. The DACH1 Gene Transcriptional Activation and Protein Degradation Mediated by Transactivator Tas of Prototype Foamy Virus. Viruses 2023; 15:1899. [PMID: 37766305 PMCID: PMC10534306 DOI: 10.3390/v15091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Foamy viruses are members of the Retroviridae family's Spumaretrovirinae subfamily. They induce cell vacuolation and exhibit a foamy pathogenic impact after infecting cells. DACH1 (dachshund family transcription factor 1) is a crucial cytokine linked to tumor development, and is associated with the growth of many different malignant tumor cells. Additionally, DACH1 suppresses pancreatic cell proliferation and is involved in diabetes insulin signaling. Prototype foamy viruses (PFVs) were used for the investigation of the regulatory mechanism of FVs on cellular DACH1 expression. The results show that DACH1 expression in PFV-infected cells was inconsistent at both the transcriptional and protein levels. At the transcriptional level, DACH1 was significantly activated by PFV transactivator Tas, and dual-luciferase reporter gene tests, EMSA, and ChIP assays found a Tas response element of 21 nucleotides in the DACH1 promoter. PFV and Tas did not boost the levels of DACH1 protein in a manner consistent with the high levels of DACH1 transcription expression. It was noted that Tas increased the expression of the Ser/Thr protein phosphatase PPM1E, causing PPM1E-mediated post-translational SUMOylation alterations of DACH1 to prompt DACH1 to degrade. The reason for DACH1 protein degradation is that DACH1 inhibits PFV replication. To sum up, these findings show that PFV upregulated the transcription of DACH1, while urging its protein into PPM1E-mediated SUMOylation, to eliminate the adverse effect of DACH1 overexpression of host cells on viral replication and promote virus survival.
Collapse
Affiliation(s)
- Yongping Ma
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jie Wei
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Environment and Life Sciences, Weinan Normal University, Weinan 714099, China
| | - Jing Song
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Zhongxiang Hu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Ruifen Zhang
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Zhi Li
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yan Sun
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
3
|
Yuan P, Yan J, Wang S, Guo Y, Xi X, Han S, Yin J, Peng B, He X, Bodem J, Liu W. Trim28 acts as restriction factor of prototype foamy virus replication by modulating H3K9me3 marks and destabilizing the viral transactivator Tas. Retrovirology 2021; 18:38. [PMID: 34903241 PMCID: PMC8670036 DOI: 10.1186/s12977-021-00584-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Prototype foamy virus (PFV) is nonpathogenic complex retroviruses that express a transcriptional transactivator Tas, which is essential for the activity of viral long terminal repeat (LTR) promoter and internal promoter (IP). Tripartite motif-containing protein 28 (Trim28) is well known as a scaffold protein normally enriched in gene promoter region to repress transcription. We sought to determine if whether Trim28 could be enriched in PFV promoter region to participate the establishment of PFV latency infection. Results In this study, we show that Trim28 restricts Tas-dependent transactivation activity of PFV promoter and negatively regulates PFV replication. Trim28 was found to be enriched in LTR instead of IP promoter regions of PFV genome and contribute to the maintenance of histone H3K9me3 marks on the LTR promoter. Furthermore, Trim28 interacts with Tas and colocalizes with Tas in the nucleus. Besides, we found that Trim28, an E3 ubiquitin ligase, binds directly to and promotes Tas for ubiquitination and degradation. And the RBCC domain of Trim28 is required for the ubiquitination and degradation of Tas. Conclusions Collectively, our findings not only identify a host factor Trim28 negatively inhibits PFV replication by acting as transcriptional restriction factor enriched in viral LTR promoter through modulating H3K9me3 mark here, but also reveal that Trim28 mediated ubiquitin proteasome degradation of Tas as a mechanism underlying Trim28 restricts Tas-dependent transcription activity of PFV promoter and PFV replication. These findings provide new insights into the process of PFV latency establishment. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Peipei Yuan
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Guo
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xueyan Xi
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
5
|
Kane M, Mele V, Liberatore RA, Bieniasz PD. Inhibition of spumavirus gene expression by PHF11. PLoS Pathog 2020; 16:e1008644. [PMID: 32678836 PMCID: PMC7390438 DOI: 10.1371/journal.ppat.1008644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/29/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The foamy viruses (FV) or spumaviruses are an ancient subfamily of retroviruses that infect a variety of vertebrates. FVs are endemic, but apparently apathogenic, in modern non-human primates. Like other retroviruses, FV replication is inhibited by type-I interferon (IFN). In a previously described screen of IFN-stimulated genes (ISGs), we identified the macaque PHD finger domain protein-11 (PHF11) as an inhibitor of prototype foamy virus (PFV) replication. Here, we show that human and macaque PHF11 inhibit the replication of multiple spumaviruses, but are inactive against several orthoretroviruses. Analysis of other mammalian PHF11 proteins revealed that antiviral activity is host species dependent. Using multiple reporter viruses and cell lines, we determined that PHF11 specifically inhibits a step in the replication cycle that is unique to FVs, namely basal transcription from the FV internal promoter (IP). In so doing, PHF11 prevents expression of the viral transactivator Tas and subsequent activation of the viral LTR promoter. These studies reveal a previously unreported inhibitory mechanism in mammalian cells, that targets a family of ancient viruses and may promote viral latency.
Collapse
Affiliation(s)
- Melissa Kane
- Department of Pediatrics, Infectious Diseases Division, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vincent Mele
- Department of Pediatrics, Infectious Diseases Division, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rachel A. Liberatore
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
6
|
Ensser A, Großkopf AK, Mätz-Rensing K, Roos C, Hahn AS. Isolation and sequence analysis of a novel rhesus macaque foamy virus isolate with a serotype-1-like env. Arch Virol 2018; 163:2507-2512. [PMID: 29860676 DOI: 10.1007/s00705-018-3892-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/20/2018] [Indexed: 11/28/2022]
Abstract
SFVmmu-DPZ9524 represents the third completely sequenced rhesus macaque simian foamy virus (SFV) isolate, alongside SFVmmu_K3T with a similar SFV-1-type env, and R289HybAGM with a SFV-2-like env. Sequence analysis demonstrates that, in gag and pol, SFVmmu-DPZ9524 is more closely related to R289HybAGM than to SFVmmu_K3T, which, outside of env, is more similar to a Japanese macaque isolate than to the other two rhesus macaque isolates SFVmmu-DPZ9524 and R289HybAGM. Further, we identify bel as another recombinant locus in R289HybAGM, confirming that recombination contributes to sequence diversity in SFV.
Collapse
Affiliation(s)
- Armin Ensser
- Virologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Anna K Großkopf
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | - Kerstin Mätz-Rensing
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | - Christian Roos
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alexander S Hahn
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Spannaus R, Miller C, Lindemann D, Bodem J. Purification of foamy viral particles. Virology 2017; 506:28-33. [PMID: 28314126 DOI: 10.1016/j.virol.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022]
Abstract
Foamy viruses are non-pathogenic retroviruses and represent a tool for vector development. For gene therapy applications and for analyses of viral protein composition infectious particles need to be purified, which has been difficult for foamy viruses in the past. Here, we describe a novel, simple, and fast purification method for prototype foamy viruses with high purity using size exclusion and affinity chromatography. More than 99,9% of the contaminating proteins were removed. The purified viruses were used to determine the amount of the incorporated Pol protein relative to Gag. The determined Gag to Pol PR-RT ratio of 30:1 confirmed previous studies suggesting FV virions encapsidate fewer number of Pol molecules than orthoretroviruses.
Collapse
Affiliation(s)
- Ralf Spannaus
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Christina Miller
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Dirk Lindemann
- Institut für Virologie, Technische Universität Dresden, Germany
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany.
| |
Collapse
|
8
|
The fourth central polypurine tract guides the synthesis of prototype foamy virus plus-strand DNA. Virus Genes 2017; 53:259-265. [PMID: 28185138 DOI: 10.1007/s11262-016-1425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
Abstract
Foamy virus (FV) is a nonpathogenic retrovirus that has the potential to serve as a gene therapy vector. In retroviral replication, the central polypurine tract (cPPT) is used as a primer to synthesize plus-strand DNA. The cPPT is subsequently degraded to produce a single-stranded gap in the double-stranded viral DNA molecule. In the prototype foamy virus (PFV), four cPPT-like motifs have been previously identified, in which there is a gap with uncertain terminals. In this study, we determined the length of the PFV gap varying from 144 to 731 bp. The 3' terminus of the cleavage sites is located between 6272 bp and 6274 bp from the first base of PFV genome, while the 5' terminus is located within a 465 bp range. The start and terminal nucleotides of the gap are located on either side of the fourth cPPT element. Deletion, mutation, and replacement of the fourth cPPT with the Human immunodeficiency virus 1 (HIV-1) cPPT resulted in a significant reduction in modified PFV virions, indicating that the fourth cPPT ought to be the primer that guides the synthesis of PFV plus-strand DNA. These results improve the theoretical basis for understanding FVs replication and will help construct new FV vectors with simple genome sequences containing only the necessary cis elements.
Collapse
|
9
|
A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression. Retrovirology 2017; 14:10. [PMID: 28166800 PMCID: PMC5294762 DOI: 10.1186/s12977-017-0337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0337-6) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Katzourakis A, Aiewsakun P, Jia H, Wolfe ND, LeBreton M, Yoder AD, Switzer WM. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology 2014; 11:61. [PMID: 25091111 PMCID: PMC4261875 DOI: 10.1186/1742-4690-11-61] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background Foamy viruses (FVs) are a unique subfamily of retroviruses that are widely distributed in mammals. Owing to the availability of sequences from diverse mammals coupled with their pattern of codivergence with their hosts, FVs have one of the best-understood viral evolutionary histories ever documented, estimated to have an ancient origin. Nonetheless, our knowledge of some parts of FV evolution, notably that of prosimian and afrotherian FVs, is far from complete due to the lack of sequence data. Results Here, we report the complete genome of the first extant prosimian FV (PSFV) isolated from a lorisiforme galago (PSFVgal), and a novel partial endogenous viral element with high sequence similarity to FVs, present in the afrotherian Cape golden mole genome (ChrEFV). We also further characterize a previously discovered endogenous PSFV present in the aye-aye genome (PSFVaye). Using phylogenetic methods and available FV sequence data, we show a deep divergence and stable co-evolution of FVs in eutherian mammals over 100 million years. Nonetheless, we found that the evolutionary histories of bat, aye-aye, and New World monkey FVs conflict with the evolutionary histories of their hosts. By combining sequence analysis and biogeographical knowledge, we propose explanations for these mismatches in FV-host evolutionary history. Conclusion Our discovery of ChrEFV has expanded the FV host range to cover the whole eutherian clade, and our evolutionary analyses suggest a stable mammalian FV-host co-speciation pattern which extends as deep as the exafroplacentalian basal diversification. Nonetheless, two possible cases of host switching were observed. One was among New World monkey FVs, and the other involves PSFVaye and a bat FV which may involve cross-species transmission at the level of mammalian orders. Our results highlight the value of integrating multiple sources of information to elucidate the evolutionary history of viruses, including continental and geographical histories, ancestral host locations, in addition to the natural history of host and virus. Electronic supplementary material The online version of this article (doi:10.1186/1742-4690-11-61) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Spannaus R, Bodem J. Determination of the protease cleavage site repertoire--the RNase H but not the RT domain is essential for foamy viral protease activity. Virology 2014; 454-455:145-56. [PMID: 24725941 DOI: 10.1016/j.virol.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/15/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2׳ and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation.
Collapse
Affiliation(s)
- Ralf Spannaus
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Jochen Bodem
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
12
|
Abstract
Foamy viruses (FV) are complex retroviruses that naturally infect all nonhuman primates (NHP) studied to date. Zoonotic transmission of Old World NHP simian foamy viruses (SFV) has been documented, leading to nonpathogenic persistent infections. To date, there have been no reports concerning zoonotic transmission of New World monkey (NWM) SFV to humans and resulting infection. In this study, we developed a Western blot assay to detect antibodies to NWM SFV, a nested PCR assay to detect NWM SFV DNA, and a β-galactosidase-containing indicator cell line to assay replication of NWM SFV. Using these tools, we analyzed the plasma and blood of 116 primatologists, of whom 69 had reported exposures to NWM. While 8 of the primatologists tested were seropositive for SFV from a NWM, the spider monkey, none had detectable levels of viral DNA in their blood. We found that SFV isolated from three different species of NWM replicated in some, but not all, human cell lines. From our data, we conclude that while humans exposed to NWM SFV produce antibodies, there is no evidence for long-term viral persistence.
Collapse
|