1
|
Li S, Shu J, Rober JC, Macklem A, Espiritu D, Debnath T, Tian S, Tian D, Aristizabal MJ, Panchenko AR. Deciphering Allosteric Modulation of Cancer-Associated Histone Missense Mutations. J Mol Biol 2025:169180. [PMID: 40311745 DOI: 10.1016/j.jmb.2025.169180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Histone mutations have been implicated in various cancers, but their mechanistic effects on chromatin dynamics remain largely unexplored. In this study, we investigated the allosteric modulation effects induced by 40 cancer-associated histone missense mutations. By combining computational approaches with experimental evidence, we assessed the allosteric and functional impact of these mutations. Our results reveal that the allosteric effects of histone mutations are position-specific, with mutations near the H3 and H4 histone N-terminal tails exhibiting the strongest long-range perturbations. Notably, we predicted seven mutations with significant allosteric effects, potentially altering nucleosome interactions. Experimental verification of H2BS64Y and H2BS64F mutations demonstrated that they disrupted normal histone function, altered the H2BK120 ubiquitination levels and genome stability, findings suggestive of their potential cancerogenic effects. Collectively, these results show that allostery may serve as a critical mechanism underlying the oncogenic potential of some histone mutations, highlighting the need for further exploration of allosteric pathways in cancer epigenetics.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Jie Shu
- Biology Department, Queen's University, ON, Canada
| | - James C Rober
- Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada
| | | | - Daniel Espiritu
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Tanay Debnath
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada
| | - Samuel Tian
- School of Computing, Queen's University, ON, Canada
| | - Daniel Tian
- School of Computing, Queen's University, ON, Canada
| | - Maria J Aristizabal
- Biology Department, Queen's University, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada.
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, ON, Canada; School of Computing, Queen's University, ON, Canada; Ontario Institute of Cancer Research, Toronto, ON, Canada; Physics Department, Queen's University, ON, Canada.
| |
Collapse
|
2
|
León A, Sallaberry I, Fuster RG, Sotelo FB, Aparicio GI, Estrada LC, Scorticati C. Non-synonymous single nucleotide polymorphisms (nsSNPs) within the extracellular domains of the GPM6A gene impair hippocampal neuron development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119913. [PMID: 39938689 DOI: 10.1016/j.bbamcr.2025.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Psychiatric disorders are complex pathologies influenced by both environmental and genetic factors, ultimately leading to synaptic plasticity dysfunction. Altered expression levels of neuronal glycoprotein GPM6a or polymorphisms within the GPM6A gene are associated with neuropsychiatric disorders like schizophrenia, depression, and claustrophobia. This protein promotes neurite outgrowth, filopodia formation, dendritic spine, and synapse maintenance in vitro. Although strong evidence suggests that its extracellular domains (ECs) are responsible for its function, the molecular mechanisms linking GPM6a to the onset of such diseases remain unknown. To gain knowledge of these mechanisms, we characterized new non-synonymous polymorphisms (nsSNPs) within the ECs of GPM6a. We identified six nsSNPs (T71P, T76I, M154V, F156Y, R163Q, and T210N) that impair GPM6a-induced plasticity in neuronal cultures without affecting GPM6a expression, folding, and localization to the cell membrane. However, we observed that some of these modified GPM6a's distribution at the cell membrane. Additionally, one of the nsSNPs exhibited alterations in GPM6a oligomerization, highlighting the importance of this amino acid in establishing homophilic cis interactions. Furthermore, we observed that the ability of GPM6a's extracellular domains to interact and induce cell aggregation was significantly decreased in several of the nsSNP variants studied here. Altogether, these results provide new insights into the key residues within GPM6a's extracellular regions that are crucial for its self-association, which is essential for promoting neuronal morphogenesis. Besides, these findings highlight the importance of reverse genetics approaches to gain knowledge on GPM6a's mechanisms of action and the genetic susceptibility of certain GPM6A variants.
Collapse
Affiliation(s)
- Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ignacio Sallaberry
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Rocío Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Facundo Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Gabriela Inés Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Laura Cecilia Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Dechenne J, Wierzbicka M, Krimou R, El Aakchioui A, Malo Pueyo J, Messens J, Fillet M, Spillier Q, Frédérick R. Examining Arginase-1 Trimerization Uncovers a Promising Allosteric Site for Inhibition. J Med Chem 2025; 68:1433-1445. [PMID: 39748145 DOI: 10.1021/acs.jmedchem.4c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Arginase-1 (ARG-1) is a promising target for cancer immunotherapy, but the small size and the highly polar nature of its catalytic site present significant challenges for inhibitor development. An alternative strategy to induce enzyme inhibition by targeting protein oligomerization has been developed recently, offering several advantages such as increased selectivity, promotion of protein degradation, and potential substoichiometric inhibition. In this study, we demonstrated that only trimeric ARG-1 is active, which was confirmed by producing monomeric arginase-1. Through in silico-driven site-directed mutagenesis, we identified an allosteric site involving five key amino acids responsible for ARG-1 trimerization. We further demonstrated the covalent modification of a key arginine residue within this pocket using phenylglyoxal disrupted ARG-1 oligomerization. Although phenylglyoxal has limited potency, it effectively supports the concept of ARG-1 inhibition via homomeric disruption, validating this allosteric targeting approach.
Collapse
Affiliation(s)
- Juhans Dechenne
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Magdalena Wierzbicka
- Laboratory for the Analysis of Medicines (CIRM), Université de Liège (ULG), Liège B-4000, Belgium
| | - Reda Krimou
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Asia El Aakchioui
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, Brussels B-1050, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, Brussels B-1050, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (CIRM), Université de Liège (ULG), Liège B-4000, Belgium
| | - Quentin Spillier
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| |
Collapse
|
4
|
Fichó E, Pancsa R, Magyar C, Kalman Z, Schád É, Németh B, Simon I, Dobson L, Tusnády G. MFIB 2.0: a major update of the database of protein complexes formed by mutual folding of the constituting protein chains. Nucleic Acids Res 2025; 53:D487-D494. [PMID: 39526403 PMCID: PMC11701542 DOI: 10.1093/nar/gkae976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
While the majority of proteins with available structures are able to fold independently and mediate interactions only after acquiring their folded state, a subset of the known protein complexes contains protein chains that are intrinsically disordered in isolation. The Mutual Folding Induced by Binding (MFIB) database collects and classifies protein complexes, wherein all constituent protein chains would be unstable/disordered in isolation but fold into a well-defined 3D complex structure upon binding. This phenomenon is often termed as cooperative folding and binding or mutual synergistic folding (MSF). Here we present a major update to the database: we collected and annotated hundreds of new protein complexes fulfilling the criteria of MSF, leading to an almost six-fold increase in the size of the database. Many novel features have also been introduced, such as clustering of the complexes based on structural similarity and domain types, assigning different evidence levels to each entry and adding the evidence coverage label that allowed us to include complexes of multi(sub)domain monomers with partial MSF. The MFIB 2.0 database is available at https://mfib.pbrg.hu.
Collapse
Affiliation(s)
- Erzsébet Fichó
- Department of Bioinformatics, Cytocast Hungary Kft, Petőfi Sándor utca 5/A, Budapest 1052, Hungary
| | - Rita Pancsa
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Bálint Z Németh
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - István Simon
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Laszlo Dobson
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| |
Collapse
|
5
|
Deng R, Wu K, Lin J, Wang D, Huang Y, Li Y, Shi Z, Zhang Z, Wang Z, Mao Z, Liao X, Ma H. DeepSub: Utilizing Deep Learning for Predicting the Number of Subunits in Homo-Oligomeric Protein Complexes. Int J Mol Sci 2024; 25:4803. [PMID: 38732022 PMCID: PMC11084820 DOI: 10.3390/ijms25094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The molecular weight (MW) of an enzyme is a critical parameter in enzyme-constrained models (ecModels). It is determined by two factors: the presence of subunits and the abundance of each subunit. Although the number of subunits (NS) can potentially be obtained from UniProt, this information is not readily available for most proteins. In this study, we addressed this gap by extracting and curating subunit information from the UniProt database to establish a robust benchmark dataset. Subsequently, we propose a novel model named DeepSub, which leverages the protein language model and Bi-directional Gated Recurrent Unit (GRU), to predict NS in homo-oligomers solely based on protein sequences. DeepSub demonstrates remarkable accuracy, achieving an accuracy rate as high as 0.967, surpassing the performance of QUEEN. To validate the effectiveness of DeepSub, we performed predictions for protein homo-oligomers that have been reported in the literature but are not documented in the UniProt database. Examples include homoserine dehydrogenase from Corynebacterium glutamicum, Matrilin-4 from Mus musculus and Homo sapiens, and the Multimerins protein family from M. musculus and H. sapiens. The predicted results align closely with the reported findings in the literature, underscoring the reliability and utility of DeepSub.
Collapse
Affiliation(s)
- Rui Deng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ke Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiawei Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dehang Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanyuan Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Li
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenkun Shi
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zihan Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
6
|
Pérez-Mora S, Pérez-Ishiwara DG, Salgado-Hernández SV, Medel-Flores MO, Reyes-López CA, Rodríguez MA, Sánchez-Monroy V, Gómez-García MDC. Entamoeba histolytica: In Silico and In Vitro Oligomerization of EhHSTF5 Enhances Its Binding to the HSE of the EhPgp5 Gene Promoter. Int J Mol Sci 2024; 25:4218. [PMID: 38673804 PMCID: PMC11050682 DOI: 10.3390/ijms25084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.
Collapse
Affiliation(s)
- Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - Sandra Viridiana Salgado-Hernández
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - César Augusto Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico;
| | - Virginia Sánchez-Monroy
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| |
Collapse
|
7
|
Agha MM, Aziziyan F, Uversky VN. Each big journey starts with a first step: Importance of oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:111-141. [PMID: 38811079 DOI: 10.1016/bs.pmbts.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United Staes.
| |
Collapse
|
8
|
Sun L, You J, Li D, Zhang Z, Qin X, Pang W, Li P, Han Q, Li Y, Huang Z, Zhang X, Gong M, Yang H. Variants of a putative baseplate wedge protein extend the host range of Pseudomonas phage K8. MICROBIOME 2023; 11:18. [PMID: 36721246 PMCID: PMC9887876 DOI: 10.1186/s40168-022-01459-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/31/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Narrow host range is a major limitation for phage applications, but phages can evolve expanded host range through adaptations in the receptor-binding proteins. RESULTS Here, we report that Pseudomonas phage K8 can evolve broader host range and higher killing efficiency at the cost of virion stability. Phage K8 host range mutant K8-T239A carries a mutant version of the putative baseplate wedge protein GP075, termed GP075m. While phage K8 adsorbs to hosts via the O-specific antigen of bacterial LPS, phage K8-T239A uses GP075m to also bind the bacterial core oligosaccharide, enabling infection of bacterial strains resistant to K8 infection due to modified O-specific antigens. This mutation in GP075 also alters inter-protein interactions among phage proteins, and reduces the stability of phage particles to environmental stressors like heat, acidity, and alkalinity. We find that a variety of mutations in gp075 are widespread in K8 populations, and that the gp075-like genes are widely distributed among the domains of life. CONCLUSION Our data show that a typical life history tradeoff occurs between the stability and the host range in the evolution of phage K8. Reservoirs of viral gene variants may be widely present in phage communities, allowing phages to rapidly adapt to any emerging environmental stressors. Video Abstract.
Collapse
Affiliation(s)
- Li Sun
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiajia You
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuying Qin
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjing Pang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peize Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qingzhu Han
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yueying Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhiwei Huang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xixi Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | | | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
9
|
Maltarollo VG, Shevchenko E, Lima IDDM, Cino EA, Ferreira GM, Poso A, Kronenberger T. Do Go Chasing Waterfalls: Enoyl Reductase (FabI) in Complex with Inhibitors Stabilizes the Tetrameric Structure and Opens Water Channels. J Chem Inf Model 2022; 62:5746-5761. [PMID: 36343333 DOI: 10.1021/acs.jcim.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.
Collapse
Affiliation(s)
- Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Igor Daniel de Miranda Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
10
|
Kim SJ, Sun EG, Bae JA, Park S, Hong C, Park Z, Kim H, Kim KK. A peptide interfering with the dimerization of oncogenic KITENIN protein and its stability suppresses colorectal tumour progression. Clin Transl Med 2022; 12:e871. [PMID: 35853101 PMCID: PMC9296036 DOI: 10.1002/ctm2.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Eun Gene Sun
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeong A Bae
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chang‐Soo Hong
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hangun Kim
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Kyung Keun Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| |
Collapse
|
11
|
Nguyen D, Abdullin D, Heubach CA, Pfaffeneder T, Nguyen A, Heine A, Reuter K, Diederich F, Schiemann O, Klebe G. Entschlüsselung der ligandeninduzierten Verdrehung eines homodimeren Enzyms mit Hilfe der gepulsten Elektron‐Elektron‐Doppelresonanz‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dzung Nguyen
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marbacher Weg 8 35032 Marburg Deutschland
| | - Dinar Abdullin
- Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 12 53115 Bonn Deutschland
| | - Caspar A. Heubach
- Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 12 53115 Bonn Deutschland
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Andreas Nguyen
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marbacher Weg 8 35032 Marburg Deutschland
| | - Andreas Heine
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marbacher Weg 8 35032 Marburg Deutschland
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marbacher Weg 8 35032 Marburg Deutschland
| | - François Diederich
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Olav Schiemann
- Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 12 53115 Bonn Deutschland
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marbacher Weg 8 35032 Marburg Deutschland
| |
Collapse
|
12
|
Klebe G, Nguyen D, Abdullin D, Heubach CA, Pfaffeneder T, Nguyen A, Heine A, Reuter K, Diederich F, Schiemann O. Unraveling a ligand-induced twist of a homodimeric enzyme by pulsed electron-electron double resonance. Angew Chem Int Ed Engl 2021; 60:23419-23426. [PMID: 34387025 PMCID: PMC8597004 DOI: 10.1002/anie.202108179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 11/30/2022]
Abstract
Mechanistic insights into protein–ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA‐guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand‐induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site‐directed spin labeling (SDSL) with distance measurements based on pulsed electron–electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose‐substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation–association mechanism for the formation of the twisted dimer upon ligand binding.
Collapse
Affiliation(s)
- Gerhard Klebe
- Univ. of Marburg, Inst. Pharmaceut. Chem., Marbacher Weg 6, D35032, Marburg, GERMANY
| | - Dzung Nguyen
- Philipps-Universität Marburg: Philipps-Universitat Marburg, Pharmaceutical Chemistry, GERMANY
| | - Dinar Abdullin
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn, Physical and Theoretical Chemistry, GERMANY
| | - Caspar A Heubach
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn, Physical and Theoretical Chemistry, GERMANY
| | - Toni Pfaffeneder
- ETH-Zürich LOC: Eidgenossische Technische Hochschule Zurich Laboratorium fur Organische Chemie, Organic Chemistry, SWITZERLAND
| | - Andreas Nguyen
- Philipps-Universität Marburg: Philipps-Universitat Marburg, Pharmaceutical Chemistry, GERMANY
| | - Andreas Heine
- Philipps-Universität Marburg: Philipps-Universitat Marburg, Pharmaceutical Chemistry, GERMANY
| | - Klaus Reuter
- Philipps-Universität Marburg: Philipps-Universitat Marburg, Pharmaceutical Chemistry, GERMANY
| | - Francois Diederich
- ETH Zurich Department of Chemistry and Applied Biosciences: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Organic Chemistry, SWITZERLAND
| | - Olav Schiemann
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn, Physical and Theoretical Chemistry, GERMANY
| |
Collapse
|
13
|
Nguyen D, Xie X, Jakobi S, Terwesten F, Metz A, Nguyen TXP, Palchykov VA, Heine A, Reuter K, Klebe G. Targeting a Cryptic Pocket in a Protein-Protein Contact by Disulfide-Induced Rupture of a Homodimeric Interface. ACS Chem Biol 2021; 16:1090-1098. [PMID: 34081441 DOI: 10.1021/acschembio.1c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference with protein-protein interfaces represents an attractive as well as challenging option for therapeutic intervention and drug design. The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, is only functional as a homodimer. Although we previously produced monomeric variants by site-directed mutagenesis, we only crystallized the functional dimer, simply because upon crystallization the local protein concentration increases and favors formation of the dimer interface, which represents an optimal and highly stable packing of the protein in the solid state. Unfortunately, this prevents access to structural information about the interface geometry in its monomeric state and complicates the development of modulators that can interfere with and prevent dimer formation. Here, we report on a cysteine-containing protein variant in which, under oxidizing conditions, a disulfide linkage is formed. This reinforces a novel packing geometry of the enzyme. In this captured quasi-monomeric state, the monomer units arrange in a completely different way and, thus, expose a loop-helix motif, originally embedded into the old interface, now to the surface. The motif adopts a geometry incompatible with the original dimer formation. Via the soaking of fragments into the crystals, we identified several hits accommodating a cryptic binding site next to the loop-helix motif and modulated its structural features. Our study demonstrates the druggability of the interface by breaking up the homodimeric protein using an introduced disulfide cross-link. By rational concepts, we increased the potency of these fragments to a level where we confirmed their binding by NMR to a nondisulfide-linked TGT variant. The idea of intermediately introducing a disulfide linkage may serve as a general concept of how to transform a homodimer interface into a quasi-monomeric state and give access to essential structural and design information.
Collapse
Affiliation(s)
- Dzung Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Felix Terwesten
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - T. X. Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Vitalii A. Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, 72 Gagarina Avenue, Dnipro 49010, Ukraine
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
14
|
Mangiagalli M, Barbiroli A, Santambrogio C, Ferrari C, Nardini M, Lotti M, Brocca S. The activity and stability of a cold-active acylaminoacyl peptidase rely on its dimerization by domain swapping. Int J Biol Macromol 2021; 181:263-274. [PMID: 33775759 DOI: 10.1016/j.ijbiomac.2021.03.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023]
Abstract
The study of enzymes from extremophiles arouses interest in Protein Science because of the amazing solutions these proteins adopt to cope with extreme conditions. Recently solved, the structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) pinpoints a mechanism of dimerization unusual for this class of enzymes. The quaternary structure of SpAAP relies on a domain-swapping mechanism involving the N-terminal A1 helix. The A1 helix is conserved among homologous mesophilic and psychrophilic proteins and its deletion causes the formation of a monomeric enzyme, which is inactive and prone to aggregate. Here, we investigate the dimerization mechanism of SpAAP through the analysis of chimeric heterodimers where a protomer lacking the A1 helix combines with a protomer carrying the inactivated catalytic site. Our results indicate that the two active sites are independent, and that a single A1 helix is sufficient to partially recover the quaternary structure and the activity of chimeric heterodimers. Since catalytically competent protomers are unstable and inactive unless they dimerize, SpAAP reveals as an "obligomer" for both structural and functional reasons.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Via Celoria 2, 20133 Milano, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Cristian Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
15
|
Xu H, Qing X, Wang Q, Li C, Lai L. Dimerization of PHGDH via the catalytic unit is essential for its enzymatic function. J Biol Chem 2021; 296:100572. [PMID: 33753166 PMCID: PMC8081924 DOI: 10.1016/j.jbc.2021.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Human D-3-phosphoglycerate dehydrogenase (PHGDH), a key enzyme in de novo serine biosynthesis, is amplified in various cancers and serves as a potential target for anticancer drug development. To facilitate this process, more information is needed on the basic biochemistry of this enzyme. For example, PHGDH was found to form tetramers in solution and the structure of its catalytic unit (sPHGDH) was solved as a dimer. However, how the oligomeric states affect PHGDH enzyme activity remains elusive. We studied the dependence of PHGDH enzymatic activity on its oligomeric states. We found that sPHGDH forms a mixture of monomers and dimers in solution with a dimer dissociation constant of ∼0.58 μM, with the enzyme activity depending on the dimer content. We computationally identified hotspot residues at the sPHGDH dimer interface. Single-point mutants at these sites disrupt dimer formation and abolish enzyme activity. Molecular dynamics simulations showed that dimer formation facilitates substrate binding and maintains the correct conformation required for enzyme catalysis. We further showed that the full-length PHGDH exists as a dynamic mixture of monomers, dimers, and tetramers in solution with enzyme concentration-dependent activity. Mutations that can completely disrupt the sPHGDH dimer show different abilities to interrupt the full-length PHGDH tetramer. Among them, E108A and I121A can also disrupt the oligomeric structures of the full-length PHGDH and abolish its enzyme activity. Our study indicates that disrupting the oligomeric structure of PHGDH serves as a novel strategy for PHGDH drug design and the hotspot residues identified can guide the design process.
Collapse
Affiliation(s)
- Hanyu Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyu Qing
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
16
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
17
|
Batista FA, Gyau B, Vilacha JF, Bosch SS, Lunev S, Wrenger C, Groves MR. New directions in antimalarial target validation. Expert Opin Drug Discov 2020; 15:189-202. [PMID: 31959021 DOI: 10.1080/17460441.2020.1691996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Malaria is one of the most prevalent human infections worldwide with over 40% of the world's population living in malaria-endemic areas. In the absence of an effective vaccine, emergence of drug-resistant strains requires urgent drug development. Current methods applied to drug target validation, a crucial step in drug discovery, possess limitations in malaria. These constraints require the development of techniques capable of simplifying the validation of Plasmodial targets.Areas covered: The authors review the current state of the art in techniques used to validate drug targets in malaria, including our contribution - the protein interference assay (PIA) - as an additional tool in rapid in vivo target validation.Expert opinion: Each technique in this review has advantages and disadvantages, implying that future validation efforts should not focus on a single approach, but integrate multiple approaches. PIA is a significant addition to the current toolset of antimalarial validation. Validation of aspartate metabolism as a druggable pathway provided proof of concept of how oligomeric interfaces can be exploited to control specific activity in vivo. PIA has the potential to be applied not only to other enzymes/pathways of the malaria parasite but could, in principle, be extrapolated to other infectious diseases.
Collapse
Affiliation(s)
- Fernando A Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Benjamin Gyau
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Juliana F Vilacha
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Soraya S Bosch
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matthew R Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Abrusán G, Marsh JA. Ligand Binding Site Structure Influences the Evolution of Protein Complex Function and Topology. Cell Rep 2019; 22:3265-3276. [PMID: 29562182 PMCID: PMC5873459 DOI: 10.1016/j.celrep.2018.02.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/17/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the evolution of protein complexes is significantly influenced by stochastic, non-adaptive processes. Using ligand binding as a proxy of function, we show that the structure of ligand-binding sites significantly influences the evolution of protein complexes. We show that homomers with multi-chain binding sites (MBSs) evolve new functions slower than monomers or other homomers, and those binding cofactors and metals have more conserved quaternary structure than other homomers. Moreover, the ligands and ligand-binding pockets of homologous MBS homomers are more similar than monomers and other homomers. Our results suggest strong evolutionary selection for quaternary structure in cofactor-binding MBS homomers, whereas neutral processes are more important in complexes with single-chain binding sites. They also have pharmacological implications, suggesting that complexes with single-chain binding sites are better targets for selective drugs, whereas MBS homomers are good candidates for broad-spectrum antibiotic and multitarget drug design. Ligand binding site structure significantly influences protein function evolution MBS homomers have more similar ligand binding pockets than monomers and other homomers Cofactor and metal-binding MBS homomers have more conserved QS than other homomers MBS homomers are promising targets for developing antibiotics and multitarget drugs
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
19
|
Davey NE. The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 2019; 56:155-163. [DOI: 10.1016/j.sbi.2019.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
20
|
Batista FA, Bosch SS, Butzloff S, Lunev S, Meissner KA, Linzke M, Romero AR, Wang C, Müller IB, Dömling ASS, Groves MR, Wrenger C. Oligomeric protein interference validates druggability of aspartate interconversion in Plasmodium falciparum. Microbiologyopen 2019; 8:e00779. [PMID: 30821109 PMCID: PMC6612543 DOI: 10.1002/mbo3.779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023] Open
Abstract
The appearance of multi-drug resistant strains of malaria poses a major challenge to human health and validated drug targets are urgently required. To define a protein's function in vivo and thereby validate it as a drug target, highly specific tools are required that modify protein function with minimal cross-reactivity. While modern genetic approaches often offer the desired level of target specificity, applying these techniques is frequently challenging-particularly in the most dangerous malaria parasite, Plasmodium falciparum. Our hypothesis is that such challenges can be addressed by incorporating mutant proteins within oligomeric protein complexes of the target organism in vivo. In this manuscript, we provide data to support our hypothesis by demonstrating that recombinant expression of mutant proteins within P. falciparum leverages the native protein oligomeric state to influence protein function in vivo, thereby providing a rapid validation of potential drug targets. Our data show that interference with aspartate metabolism in vivo leads to a significant hindrance in parasite survival and strongly suggest that enzymes integral to aspartate metabolism are promising targets for the discovery of novel antimalarials.
Collapse
Affiliation(s)
- Fernando A. Batista
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Soraya S. Bosch
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Sabine Butzloff
- LG MüllerBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Sergey Lunev
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kamila A. Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Atilio R. Romero
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Chao Wang
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Ingrid B. Müller
- LG MüllerBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Alexander S. S. Dömling
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Matthew R. Groves
- Department of Pharmacy, Structural Biology Unit, XB20 Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
21
|
Álvarez-Cao ME, González R, Pernas MA, Rúa ML. Contribution of the Oligomeric State to the Thermostability of Isoenzyme 3 from Candida rugosa. Microorganisms 2018; 6:E108. [PMID: 30347699 PMCID: PMC6313406 DOI: 10.3390/microorganisms6040108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Thermophilic proteins have evolved different strategies to maintain structure and function at high temperatures; they have large, hydrophobic cores, and feature increased electrostatic interactions, with disulfide bonds, salt-bridging, and surface charges. Oligomerization is also recognized as a mechanism for protein stabilization to confer a thermophilic adaptation. Mesophilic proteins are less thermostable than their thermophilic homologs, but oligomerization plays an important role in biological processes on a wide variety of mesophilic enzymes, including thermostabilization. The mesophilic yeast Candida rugosa contains a complex family of highly related lipase isoenzymes. Lip3 has been purified and characterized in two oligomeric states, monomer (mLip3) and dimer (dLip3), and crystallized in a dimeric conformation, providing a perfect model for studying the effects of homodimerization on mesophilic enzymes. We studied kinetics and stability at different pHs and temperatures, using the response surface methodology to compare both forms. At the kinetic level, homodimerization expanded Lip3 specificity (serving as a better catalyst on soluble substrates). Indeed, dimerization increased its thermostability by more than 15 °C (maximum temperature for dLip3 was out of the experimental range; >50 °C), and increased the pH stability by nearly one pH unit, demonstrating that oligomerization is a viable strategy for the stabilization of mesophilic enzymes.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - Roberto González
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María A Pernas
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María Luisa Rúa
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
22
|
The Dimer-of-Trimers Assembly Prevents Catalysis at the Transferase Site of Prokaryotic FAD Synthase. Biophys J 2018; 115:988-995. [PMID: 30177440 DOI: 10.1016/j.bpj.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMN:adenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules: the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg2+ and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.
Collapse
|
23
|
Ehrmann FR, Kalim J, Pfaffeneder T, Bernet B, Hohn C, Schäfer E, Botzanowski T, Cianférani S, Heine A, Reuter K, Diederich F, Klebe G. Austausch der Proteinkontaktflächen in der homodimeren tRNA-Guanin-Transglycosylase: ein Weg der funktionellen Regulation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - Jorna Kalim
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Bruno Bernet
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Christoph Hohn
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg Frankreich
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg Frankreich
| | - Andreas Heine
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| |
Collapse
|
24
|
Ehrmann FR, Kalim J, Pfaffeneder T, Bernet B, Hohn C, Schäfer E, Botzanowski T, Cianférani S, Heine A, Reuter K, Diederich F, Klebe G. Swapping Interface Contacts in the Homodimeric tRNA-Guanine Transglycosylase: An Option for Functional Regulation. Angew Chem Int Ed Engl 2018; 57:10085-10090. [DOI: 10.1002/anie.201804627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Jorna Kalim
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bruno Bernet
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Christoph Hohn
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg France
| | - Andreas Heine
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
25
|
Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria. Proc Natl Acad Sci U S A 2018; 115:7141-7146. [PMID: 29915055 PMCID: PMC6142219 DOI: 10.1073/pnas.1806668115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon fixation is arguably one of the most important metabolic processes on Earth. Stand-alone CP12 proteins are major players in the regulation of this pathway in all oxygenic photosynthetic organisms, yet their intrinsic disorder has so far hampered the capturing of a principal part of their structure. Here we provide structural insights into CP12 by investigating an uncharacterized CP12 fusion protein, CBS–CP12, which is widespread among cyanobacteria, and reveal a unique hexameric structure. Our data further extend the existing knowledge of the regulation of photosynthesis and carbon fixation by the CP12 protein family, suggesting a more versatile role of this protein family in global redox regulation, predominantly in bloom-forming cyanobacteria that pose major threats in lakes and reservoirs. Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine β-synthase (CBS)–chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS–CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS–CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS–CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS–CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS–CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS–CP12 expand its regulatory function beyond those of CP12 in cyanobacteria.
Collapse
|
26
|
Lunev S, Butzloff S, Romero AR, Linzke M, Batista FA, Meissner KA, Müller IB, Adawy A, Wrenger C, Groves MR. Oligomeric interfaces as a tool in drug discovery: Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro. PLoS One 2018; 13:e0195011. [PMID: 29694407 PMCID: PMC5919072 DOI: 10.1371/journal.pone.0195011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 01/29/2023] Open
Abstract
Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.
Collapse
Affiliation(s)
- Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sabine Butzloff
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Atilio R. Romero
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kamila A. Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Ingrid B. Müller
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alaa Adawy
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
- * E-mail: (MRG); (CW)
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail: (MRG); (CW)
| |
Collapse
|
27
|
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable α/β hydrolase fold esterase. Protein Eng Des Sel 2017; 30:559-570. [PMID: 28967962 DOI: 10.1093/protein/gzx049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/β hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Santosh Shivakumaraswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Kim HT, Kim S, Na BK, Chung J, Hwang E, Hwang KY. Structural insights into the dimer-tetramer transition of FabI from Bacillus anthracis. Biochem Biophys Res Commun 2017; 493:28-33. [PMID: 28935372 DOI: 10.1016/j.bbrc.2017.09.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Enoyl-ACP reductase (ENR, also known as FabI) has received considerable interest as an anti-bacterial target due to its essentiality in fatty acid synthesis. All the FabI structures reported to date, regardless of the organism, are composed of homo-tetramers, except for two structures: Bacillus cereus and Staphylococcus aureus FabI (bcFabI and saFabI, respectively), which have been reported as dimers. However, the reason for the existence of the dimeric form in these organisms and the biological meaning of dimeric and tetrameric forms of FabI are ambiguous. Herein, we report the high-resolution crystal structure of a dimeric form of Bacillus anthracis FabI (baFabI) and the crystal structures of tetrameric forms of baFabI in the apo state and in complex with NAD+ and with NAD+-triclosan, at 1.7 Å, 1.85 Å, 1.96 Å, and 1.95 Å, respectively. Interestingly, we found that baFabI with a His6-tag at its C-terminus exists as a dimer, whereas untagged-baFabI exists as a tetramer. The His6-tag may block the dimer-tetramer transition, since baFabI has relatively short-length amino acids (255LG256) after the 310-helix η7 compared to those of FabI of other organisms. The dimeric form of baFabI is catalytically inactive, because the α-helix α5 occupies the NADH-binding site. During the process of dimer-tetramer transition, this α5 helix rotates about 55° toward the tetramer interface and the active site is established. Therefore, tetramerization of baFabI is required for cofactor binding and catalytic activity.
Collapse
Affiliation(s)
- Hyun Tae Kim
- Crystalgenomics, Inc., 5F, Tower A, Korea Bio Park 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13524, South Korea; Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sulhee Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Byeong Kwan Na
- Crystalgenomics, Inc., 5F, Tower A, Korea Bio Park 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13524, South Korea
| | - Jiwoung Chung
- Crystalgenomics, Inc., 5F, Tower A, Korea Bio Park 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13524, South Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudangiro Ochang, Cheongwongu, Cheongju, Chungbuk 28119, South Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
29
|
Dautant A, Meyer P, Georgescauld F. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization. Biochemistry 2017; 56:2886-2896. [DOI: 10.1021/acs.biochem.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Dautant
- Université
de Bordeaux, CNRS, Institut de Biochimie et Génétique
Cellulaires, UMR 5095, Bordeaux, France
| | - Philippe Meyer
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Florian Georgescauld
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
30
|
Fallas JA, Ueda G, Sheffler W, Nguyen V, McNamara DE, Sankaran B, Pereira JH, Parmeggiani F, Brunette TJ, Cascio D, Yeates TR, Zwart P, Baker D. Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 2016; 9:353-360. [PMID: 28338692 PMCID: PMC5367466 DOI: 10.1038/nchem.2673] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Self-assembling cyclic protein homo-oligomers play important roles in biology and the ability to generate custom homo-oligomeric structures could enable new approaches to probe biological function. Here we report a general approach to design cyclic homo-oligomers that employs a new residue pair transform method for assessing the design ability of a protein-protein interface. This method is sufficiently rapid to enable systematic enumeration of cyclically docked arrangements of a monomer followed by sequence design of the newly formed interfaces. We use this method to design interfaces onto idealized repeat proteins that direct their assembly into complexes that possess cyclic symmetry. Of 96 designs that were experimentally characterized, 21 were found to form stable monodisperse homo-oligomers in solution, and 15 (4 homodimers, 6 homotrimers, 6 homotetramers and 1 homopentamer) had solution small angle X-ray scattering data consistent with the design models. X-ray crystal structures were obtained for five of the designs and each of these were shown to be very close to their design model.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Vanessa Nguyen
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Dan E McNamara
- Department of Chemistry and Biochemistry, University of California Los Angles, Los Angeles, California 90095, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA
| | - Jose Henrique Pereira
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA.,Joint BioEnergy Institute, Emeryville, California 94608, USA
| | - Fabio Parmeggiani
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California Los Angles, Los Angeles, California 90095, USA
| | - Todd R Yeates
- Department of Chemistry and Biochemistry, University of California Los Angles, Los Angeles, California 90095, USA
| | - Peter Zwart
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
31
|
Ewing TA, Gygli G, van Berkel WJH. A single loop is essential for the octamerization of vanillyl alcohol oxidase. FEBS J 2016; 283:2546-59. [PMID: 27214042 DOI: 10.1111/febs.13762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED The VAO/PCMH family of flavoenzymes is a family of structurally related proteins that catalyse a wide range of oxidation reactions. It contains a subfamily of enzymes that catalyse the oxidation of para-substituted phenols using covalently bound FAD cofactors (the 4PO subfamily). This subfamily is composed of two oxidases, vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO), and two flavocytochrome dehydrogenases, para-cresol methylhydroxylase (PCMH) and eugenol hydroxylase (EUGH). Although they catalyse similar reactions, these enzymes differ in terms of their electron acceptor preference and oligomerization state. For example, VAO forms homo-octamers that can be described as tetramers of stable dimers, whereas EUGO is exclusively dimeric in solution. A possible explanation for this difference is the presence of a loop at the dimer-dimer interface in VAO that is not present in EUGO. Here, the role played by this loop in determining the quaternary structure of these enzymes is investigated. A VAO variant where the loop was deleted, loopless VAO, exclusively formed dimers. However, introduction of the loop into EUGO was not sufficient to induce its octamerization. Neither variant displayed major changes in its catalytic properties as compared to the wild-type enzyme. Bioinformatic analysis revealed that the presence of the loop is conserved within putative fungal oxidases of the 4PO subgroup, but it is never found in putative bacterial oxidases or dehydrogenases. Our results shed light on the molecular mechanism of homo-oligomerization of VAO and the importance of oligomerization for its enzymatic function. ENZYMES p-cresol methylhydroxylase (4-methylphenol:acceptor oxidoreductase (methyl-hydroxylating), EC 1.17.99.1); vanillyl alcohol oxidase (vanillyl alcohol:oxygen oxidoreductase, EC 1.1.3.38).
Collapse
Affiliation(s)
- Tom A Ewing
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Gudrun Gygli
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
32
|
Fraser NJ, Liu JW, Mabbitt PD, Correy GJ, Coppin CW, Lethier M, Perugini MA, Murphy JM, Oakeshott JG, Weik M, Jackson CJ. Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability. J Mol Biol 2016; 428:2359-2371. [DOI: 10.1016/j.jmb.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
33
|
An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability. J Struct Biol 2016; 194:434-45. [DOI: 10.1016/j.jsb.2016.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
|
34
|
Perdomo D, Möller C, Bubis J. Correlation of transducin photoaffinity labeling with the specific formation of intermolecular disulfide linkages in its α-subunit. Biochimie 2014; 108:120-32. [PMID: 25450251 DOI: 10.1016/j.biochi.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/08/2014] [Indexed: 11/28/2022]
Abstract
Transducin (T) is a heterotrimer of Tα, Tβ, and Tγ subunits. In the presence of light-activated rhodopsin, 8-azidoguanosine triphosphate (8-N3GTP) was covalently incorporated into T in a UV-light photodependent manner, with a low stoichiometry of 0.02 mol of 8-N3GTP per mol of T. Although Tα was preferentially labeled by 8-N3GTP, Tβ and Tγ were also modified. Photolabeling of T was specifically inhibited by GDP and GTP, but not by β,γ-imido-guanosine 5'-triphosphate (GMP-PNP), indicating that 8-N3GTP was modifying the GDP binding site of the holoenzyme. This was consistent with the observation that the photoaffinity probe was completely hydrolyzed to 8-N3GDP by T activated by illuminated rhodopsin. The formation of intermolecular disulfide associations in T was also determined because photolabeling of T was performed under non-reducing conditions. We established that Cys-347 of Tα was the major residue involved in the formation of disulfide-linked T oligomers. Other cysteines of Tα, such as Cys-321, also participated in the formation of disulfide bonds, revealing a complex pattern of intermolecular disulfide cross-links that led to the polymerization of T. The spontaneous generation of these cystines in Tα inhibited the light-dependent GTPase and GMP-PNP binding activities of T. A model was constructed illustrating that when two heterotrimers dimerize through the formation of disulfide bridges between the Cys-347 of their Tα subunits, the guanine ring of the 8-N3GDP bound to one T molecule might approach to the Tβγ-complex of the other heterotrimer. This model provides an explanation for the additional photolabeling of Tβ and Tγ by 8-N3GTP.
Collapse
Affiliation(s)
- Deisy Perdomo
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela.
| | - Carolina Möller
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela.
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela.
| |
Collapse
|
35
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
36
|
Bertoša B, Mikleušević G, Wielgus-Kutrowska B, Narczyk M, Hajnić M, Leščić Ašler I, Tomić S, Luić M, Bzowska A. Homooligomerization is needed for stability: a molecular modelling and solution study of Escherichia coli purine nucleoside phosphorylase. FEBS J 2014; 281:1860-71. [PMID: 24785777 DOI: 10.1111/febs.12746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Although many enzymes are homooligomers composed of tightly bound subunits, it is often the case that smaller assemblies of such subunits, or even individual monomers, seem to have all the structural features necessary to independently conduct catalysis. In this study, we investigated the reasons justifying the necessity for the hexameric form of Escherichia coli purine nucleoside phosphorylase - a homohexamer composed of three linked dimers - since it appears that the dimer is the smallest unit capable of catalyzing the reaction, according to the currently accepted mechanism. Molecular modelling was employed to probe mutations at the dimer-dimer interface that would result in a dimeric enzyme form. In this way, both in silico and in vitro, the hexamer was successfully transformed into dimers. However, modelling and solution studies show that, when isolated, dimers cannot maintain the appropriate three-dimensional structure, including the geometry of the active site and the position of the catalytically important amino acids. Analytical ultracentrifugation proves that E. coli purine nucleoside phosphorylase dimeric mutants tend to dissociate into monomers with dissociation constants of 20-80 μm. Consistently, the catalytic activity of these mutants is negligible, at least 6 orders of magnitude smaller than for the wild-type enzyme. We conclude that the hexameric architecture of E. coli purine nucleoside phosphorylase is necessary to provide stabilization of the proper three-dimensional structure of the dimeric assembly, and therefore this enzyme is the obligate (obligatory) hexamer. STRUCTURED DIGITAL ABSTRACT ●PNP and PNP bind by molecular sieving (1, 2, 3, 4).
Collapse
Affiliation(s)
- Branimir Bertoša
- Division of Physical Chemistry, Faculty of Science at University of Zagreb, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ptak CP, Hsieh CL, Weiland GA, Oswald RE. Role of stoichiometry in the dimer-stabilizing effect of AMPA receptor allosteric modulators. ACS Chem Biol 2014; 9:128-33. [PMID: 24152170 PMCID: PMC3947009 DOI: 10.1021/cb4007166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein dimerization provides a mechanism for the modulation of cellular signaling events. In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, the rapidly desensitizing, activated state has been correlated with a weakly dimeric, glutamate-binding domain conformation. Allosteric modulators can form bridging interactions that stabilize the dimer interface. While most modulators can only bind to one position with a one modulator per dimer ratio, some thiazide-based modulators can bind to the interface in two symmetrical positions with a two modulator per dimer ratio. Based on small-angle X-ray scattering (SAXS) experiments, dimerization curves for the isolated glutamate-binding domain show that a second modulator binding site produces both an increase in positive cooperativity and a decrease in the EC50 for dimerization. Four body binding equilibrium models that incorporate a second dimer-stabilizing ligand were developed to fit the experimental data. The work illustrates why stoichiometry should be an important consideration during the rational design of dimerizing modulators.
Collapse
Affiliation(s)
- Christopher P. Ptak
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Ching-Lin Hsieh
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gregory A. Weiland
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Robert E. Oswald
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|