1
|
Aghaee F, Abedinpour M, Anvari S, Saberi A, Fallah A, Bakhshi A. Natural killer cells in multiple sclerosis: foe or friends? Front Cell Neurosci 2025; 19:1500770. [PMID: 40255388 PMCID: PMC12006147 DOI: 10.3389/fncel.2025.1500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder involving the central nervous system (CNS), in which demyelination is caused. The initiation and progression of MS is thought to depend largely on CD4+ T lymphocytes, yet new data has emphasized the involvement of the innate immune system in the MS disease responses. Generally, several types of immune cells play a part, with natural killer (NK) cells being essential. Different subsets of natural killer cells function differently within the course of an autoimmune disease, such as MS. There are mainly two types of natural killers in humans: immature CD56 bright CD16- and mature CD56 dim CD16+ natural killers, together with their respective subtypes. Factors from natural killers expand the T cell population and control the process by which native CD4+ T cells differentiate into Th1 or Th2 lymphocytes, which affect autoimmune responses. Natural killer subsets CD56 bright and CD56 dim may have differing roles in MS development. The impact of these NK cell subsets is influenced by factors such as Granzymes, genetics, infections, TLR, and HSP. We reviewed and evaluated the relationship between natural killer cells and MS.
Collapse
Affiliation(s)
- Fatemeh Aghaee
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Abedinpour
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Anvari
- Department of Neurology, Neurosciences Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Department of Internal Medicine, Regenerative Medicine Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Fallah
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Tamanini JVG, Sabino JV, Cordeiro RA, Mizubuti V, Villarinho LDL, Duarte JÁ, Pereira FV, Appenzeller S, Damasceno A, Reis F. The Role of MRI in Differentiating Demyelinating and Inflammatory (not Infectious) Myelopathies. Semin Ultrasound CT MR 2023; 44:469-488. [PMID: 37555683 DOI: 10.1053/j.sult.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Demyelinating and inflammatory myelopathies represent a group of diseases with characteristic patterns in neuroimaging and several differential diagnoses. The main imaging patterns of demyelinating myelopathies (multiple sclerosis, neuromyelitis optica spectrum disorder, acute disseminated encephalomyelitis, and myelin oligodendrocyte glycoprotein antibody-related disorder) and inflammatory myelopathies (systemic lupus erythematosus-myelitis, sarcoidosis-myelitis, Sjögren-myelitis, and Behçet's-myelitis) will be discussed in this article, highlighting key points to the differential diagnosis.
Collapse
Affiliation(s)
| | - João Vitor Sabino
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Alves Cordeiro
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Sao Paulo University, SP, Brazil
| | - Vanessa Mizubuti
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Juliana Ávila Duarte
- Department of Radiology and Diagnostic Imaging, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Veloso Pereira
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alfredo Damasceno
- Department of Neurology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabiano Reis
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Crescioli C. Vitamin D, exercise, and immune health in athletes: A narrative review. Front Immunol 2022; 13:954994. [PMID: 36211340 PMCID: PMC9539769 DOI: 10.3389/fimmu.2022.954994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite immune regulatory ability, affecting both innate and adaptive immune responses through the modulation of immunocyte function and signaling. Remarkably, the immune function of working skeletal muscle, which is fully recognized to behave as a secretory organ with immune capacity, is under the tight control of vitamin D as well. Vitamin D status, meaning hormone sufficiency or insufficiency, can push toward strengthening/stabilization or decline of immune surveillance, with important consequences for health. This aspect is particularly relevant when considering the athletic population: while exercising is, nowadays, the recommended approach to maintain health and counteract inflammatory processes, “too much” exercise, often experienced by athletes, can increase inflammation, decrease immune surveillance, and expose them to a higher risk of diseases. When overexercise intersects with hypovitaminosis D, the overall effects on the immune system might converge into immune depression and higher vulnerability to diseases. This paper aims to provide an overview of how vitamin D shapes human immune responses, acting on the immune system and skeletal muscle cells; some aspects of exercise-related immune modifications are addressed, focusing on athletes. The crossroad where vitamin D and exercise meet can profile whole-body immune response and health.
Collapse
|
4
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Peerlings D, Mimpen M, Damoiseaux J. The IL-2 - IL-2 receptor pathway: Key to understanding multiple sclerosis. J Transl Autoimmun 2022; 4:100123. [PMID: 35005590 PMCID: PMC8716671 DOI: 10.1016/j.jtauto.2021.100123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The development, progression, diagnosis and treatment of autoimmune diseases, such as multiple sclerosis (MS), are convoluted processes which remain incompletely understood. Multiple studies demonstrated that the interleukin (IL)-2 – IL-2 receptor (IL-2R) pathway plays a pivotal role within these processes. The most striking functions of the IL-2 – IL-2R pathway are the differential induction of autoimmune responses and tolerance. This paradoxical function of the IL-2 – IL-2R pathway may be an attractive therapeutic target for autoimmune diseases such as MS. However, the exact mechanisms that lead to autoimmunity or tolerance remain to be elucidated. Furthermore, another factor of this pathway, the soluble form of the IL-2R (sIL-2R), further complicates understanding the role of the IL-2 – IL-2R pathway in MS. The challenge is to unravel these mechanisms to prevent, diagnose and recover MS. In this review, first, the current knowledge of MS and the IL-2 – IL-2R pathway are summarized. Second, the key findings of the relation between the IL-2 – IL-2R pathway and MS have been highlighted. Eventually, this review may launch broad interest in the IL-2 – IL-2R pathway propelling further research in autoimmune diseases, including MS. The IL-2 – IL-2R pathway determines the balance between immunity and tolerance. The IL-2 – IL-2R pathway is involved in the pathogenesis of multiple sclerosis. The role of soluble IL-2R is controversial and requires further investigation.
Collapse
Affiliation(s)
- Daphne Peerlings
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
6
|
Boltjes R, Knippenberg S, Gerlach O, Hupperts R, Damoiseaux J. Vitamin D supplementation in multiple sclerosis: an expert opinion based on the review of current evidence. Expert Rev Neurother 2021; 21:715-725. [PMID: 34058936 DOI: 10.1080/14737175.2021.1935878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vitamin D has long been known for its immune-modulating effects, next to its function in calcium metabolism. As a consequence, poor vitamin D status has been associated with many diseases including multiple sclerosis (MS). Epidemiological studies suggest an association between a poor vitamin D status and development of MS and a poor vitamin D status is associated with more relapses and faster progression after patients are diagnosed with MS. AREA’S COVERED The aim of the authors was to review the role of vitamin D supplementation in the treatment of MS. Pubmed was used to review literature with a focus of vitamin D supplementation trials and meta-analyses in MS. EXPERT OPINION There is no solid evidence to support the application of vitamin D therapy, based on current available supplementation trials, although there are some promising results in the clinically isolated syndrome (CIS) patients and young MS patients early after initial diagnosis. The authors recommend further larger clinical trials with selected patient groups, preferable CIS patients and young patients at the time of diagnosis, using vitamin D3 supplements to reach a 100 nmol/l level, to further investigate the effects of vitamin D supplementation in MS.
Collapse
Affiliation(s)
- Robin Boltjes
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Stephanie Knippenberg
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Oliver Gerlach
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond Hupperts
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Damoiseaux
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Killick J, Hay J, Morandi E, Vermeren S, Kari S, Angles T, Williams A, Damoiseaux J, Astier AL. Vitamin D/CD46 Crosstalk in Human T Cells in Multiple Sclerosis. Front Immunol 2020; 11:598727. [PMID: 33329593 PMCID: PMC7732696 DOI: 10.3389/fimmu.2020.598727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), in which T-cell migration into the CNS is key for pathogenesis. Patients with MS exhibit impaired regulatory T cell populations, and both Foxp3+ Tregs and type I regulatory T cells (Tr1) are dysfunctional. MS is a multifactorial disease and vitamin D deficiency is associated with disease. Herein, we examined the impact of 1,25(OH)2D3 on CD4+ T cells coactivated by either CD28 to induce polyclonal activation or by the complement regulator CD46 to promote Tr1 differentiation. Addition of 1,25(OH)2D3 led to a differential expression of adhesion molecules on CD28- and CD46-costimulated T cells isolated from both healthy donors or from patients with MS. 1,25(OH)2D3 favored Tr1 motility though a Vitamin D-CD46 crosstalk highlighted by increased VDR expression as well as increased CYP24A1 and miR-9 in CD46-costimulated T cells. Furthermore, analysis of CD46 expression on T cells from a cohort of patients with MS supplemented by vitamin D showed a negative correlation with the levels of circulating vitamin D. Moreover, t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis allowed the visualization and identification of clusters increased by vitamin D supplementation, but not by placebo, that exhibited similar adhesion phenotype to what was observed in vitro. Overall, our data show a crosstalk between vitamin D and CD46 that allows a preferential effect of Vitamin D on Tr1 cells, providing novel key insights into the role of an important modifiable environmental factor in MS.
Collapse
Affiliation(s)
- Justin Killick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanne Hay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Morandi
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Saniya Kari
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Thibault Angles
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Anna Williams
- Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| |
Collapse
|
8
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
9
|
Holton KF, Kirkland AE. Moving past antioxidant supplementation for the dietary treatment of multiple sclerosis. Mult Scler 2019; 26:1012-1023. [PMID: 31823691 DOI: 10.1177/1352458519893925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current research has demonstrated the definitive presence of oxidative stress in multiple sclerosis (MS). This finding has led to clinical trial research which has indicated that specific antioxidants have the ability to effectively reduce markers of oxidative stress. However, few interventions testing antioxidant supplements have shown efficacy for reducing the symptom burden in the disorder. This paper quickly reviews what is currently known about oxidative stress and antioxidants in MS, explains which nutrients are critical for the creation and maintenance of the myelin sheath, describes potential negative effectors in the diet which may be contributing to oxidative stress, and how these aspects of diet, combined with current knowledge on antioxidants, may be able to be combined into a whole food dietary intervention which can be tested for efficacy in MS.
Collapse
Affiliation(s)
- Kathleen F Holton
- Department of Health Studies and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Anna E Kirkland
- Department of Psychology, American University, Washington, DC, USA
| |
Collapse
|
10
|
Abstract
Vitamin D and its main active metabolite 1,25-dihydroxyvitamin D serve a crucial role in maintenance of a healthy calcium metabolism, yet have additional roles in immune and central nervous system cell homeostasis. Serum levels of 25-hydroxyvitamin D are a biomarker of future disease activity in patients with early relapsing-remitting multiple sclerosis (RRMS), and vitamin D supplementation in patients with low circulating 25-dihydroxyvitamin D levels has been anticipated as a potential efficacious treatment strategy. The results of the first large randomized clinical trials (RCTs), the SOLAR and CHOLINE studies, have now been published. The SOLAR study compared 14,000 IU of vitamin D3 (cholecalciferol) per day with placebo for 48 weeks in 232 randomized patients, whereas CHOLINE compared vitamin D3 100,000 IU every other week with placebo for 96 weeks in 129 randomized patients. All patients in both studies also used interferon-β-1a. None of the studies met their primary endpoints, which were no evidence of disease activity (NEDA-3) at 48 weeks in SOLAR and annualized relapse rate at 96 weeks in CHOLINE. Both studies did, however, suggest modest effects on secondary endpoints. Thus, vitamin D reduced the number of new or enlarging lesions and new T2 lesions in SOLAR, and the annualized relapse rate and number of new T1 lesions, volume of hypointense T1 lesions, and disability progression in the 90 patients who completed 96 weeks' follow-up in CHOLINE. We conclude that none of the RCTs on vitamin supplementation in MS have met their primary clinical endpoint in the intention to treat cohorts. This contrasts the observation studies, where each 25 nmol/l increase in 25-hydroxyvitamin D levels were associated with 14-34% reduced relapse risk and 15-50% reduced risk of new lesions on magnetic resonnance imaging. This discrepancy may have several explanations, including confounding and reverse causality in the observational studies. The power calculations of the RCTs have been based on the observational studies, and the RCTs may have been underpowered to detect less prominent yet important effects of vitamin D supplementation. Although the effect of vitamin D supplementation is uncertain and less pronounced than suggested by observational studies, current evidence still support that people with MS should avoid vitamin D insufficiency, and preferentially aim for vitamin D levels around 100 nmol/L or somewhat higher.
Collapse
Affiliation(s)
- Joost Smolders
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Institute for Clinical Medicine, University of Bergen, Bergen, Norway
| | - William Camu
- Centre de Référence SLA, CHU Gui de Chauliac et Univ Montpellier, Montpellier, France
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Box 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Vlot MC, Boekel L, Kragt J, Killestein J, van Amerongen BM, de Jonge R, den Heijer M, Heijboer AC. Multiple Sclerosis Patients Show Lower Bioavailable 25(OH)D and 1,25(OH) 2D, but No Difference in Ratio of 25(OH)D/24,25(OH) 2D and FGF23 Concentrations. Nutrients 2019; 11:nu11112774. [PMID: 31731605 PMCID: PMC6893545 DOI: 10.3390/nu11112774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VitD) insufficiency is common in multiple sclerosis (MS). VitD has possible anti-inflammatory effects on the immune system. The ratio between VitD metabolites in MS patients and the severity of the disease are suggested to be related. However, the exact effect of the bone-derived hormone fibroblast-growth-factor-23 (FGF23) and VitD binding protein (VDBP) on this ratio is not fully elucidated yet. Therefore, the aim is to study differences in total, free, and bioavailable VD metabolites and FGF23 between MS patients and healthy controls (HCs). FGF23, vitD (25(OH)D), active vitD (1,25(OH)2D), inactive 24,25(OH)D, and VDBP were measured in 91 MS patients and 92 HCs. Bioavailable and free concentrations were calculated. No difference in FGF23 (p = 0.65) and 25(OH)D/24.25(OH)2D ratio (p = 0.21) between MS patients and HCs was observed. Bioavailable 25(OH)D and bioavailable 1.25(OH)2D were lower (p < 0.01), while VDBP concentrations were higher in MS patients (p = 0.02) compared with HCs, specifically in male MS patients (p = 0.01). In conclusion, FGF23 and 25(OH)D/24.25(OH)2D did not differ between MS patients and HCs, yet bioavailable VitD concentrations are of potential clinical relevance in MS patients. The possible immunomodulating role of VDBP and gender-related differences in the VD-FGF23 axis in MS need further study.
Collapse
Affiliation(s)
- Mariska C Vlot
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands; (M.C.V.); (L.B.); (R.d.J.)
- Department of Internal Medicine, Amsterdam UMC, Amsterdam University medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Laura Boekel
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands; (M.C.V.); (L.B.); (R.d.J.)
| | - Jolijn Kragt
- Department of Neurology, Reinier de Graaf Gasthuis, 2625 AD Delft, The Netherlands;
| | - Joep Killestein
- Department of Neurology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, 1081 HV, Amsterdam, The Netherlands;
| | - Barbara M. van Amerongen
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Robert de Jonge
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands; (M.C.V.); (L.B.); (R.d.J.)
| | - Martin den Heijer
- Department of Internal Medicine, Amsterdam UMC, Amsterdam University medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Annemieke C. Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands; (M.C.V.); (L.B.); (R.d.J.)
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205665940
| |
Collapse
|
12
|
Vitamin D supplementation could reduce the risk of acute cellular rejection and infection in vitamin D deficient liver allograft recipients. Int Immunopharmacol 2019; 75:105811. [DOI: 10.1016/j.intimp.2019.105811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
|
13
|
Bettencourt A, Boleixa D, Reguengo H, Samões R, Santos E, Oliveira JC, Silva B, Costa PP, da Silva AM. Serum 25-hydroxyvitamin D levels in multiple sclerosis patients from the north of Portugal. J Steroid Biochem Mol Biol 2018; 180:137-141. [PMID: 28951256 DOI: 10.1016/j.jsbmb.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 02/04/2023]
Abstract
Increasing evidence has shown that individuals with Multiple Sclerosis (MS) have lower 25-hydroxyvitamin D [25(OH)D] levels compared to healthy controls. There is no information regarding 25(OH)D levels and MS in Portugal. Therefore the aim of the current study was to examine the levels of 25(OH)D in a group of patients with MS and in healthy matched controls, as well as the association of 25(OH)D levels with disease course, disability and severity. A group of 244 unrelated Portuguese patients, with a definitive diagnosis of MS, and 198 ethnically matched healthy controls were included in the study. A sub-group of patients with recent disease onset was included. Serum 25(OH)D was measured using an electrochemiluminescence binding assay. The mean serum level of 25(OH)D in patients with MS was 39.9±22.0 nmol/L, which was significantly lower (p<0.0001) than those in healthy controls, 55.4±23.4 nmol/L. There was a negative correlation between 25(OH)D levels and EDSS (r=-0.293, p<0.0001) and MSSS scores (r=-0.293, p<0.0001). In multiple logistic regression analysis adjusted for age, gender, disease form, EDSS, disease duration and MSSS, 25(OH)D levels were independently associated with EDSS (p=0.004) and disease duration (p=0.016), and with MSSS (p=0.001). In accordance with the majority of the literature, low serum 25(OH)D levels were associated with susceptibility and disability in MS patients from Portugal. Lower serum 25(OH)D levels were also found in patients with a recent disease onset, supporting vitamin D levels as a risk factor for MS.
Collapse
Affiliation(s)
- Andreia Bettencourt
- Immunogenetics Laboratory, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal.
| | - Daniela Boleixa
- Immunogenetics Laboratory, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Henrique Reguengo
- Clinical Chemistry Department, Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Raquel Samões
- Department of Neurology, Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Ernestina Santos
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Department of Neurology, Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - José Carlos Oliveira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Clinical Chemistry Department, Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Berta Silva
- Immunogenetics Laboratory, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Paulo Pinho Costa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Department of Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Porto, Portugal
| | - Ana Martins da Silva
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Department of Neurology, Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal; Unidade de Imunologia Clínica (UIC), Centro Hospitalar do Porto-Hospital de Santo António (CHP-HSA), Porto, Portugal
| |
Collapse
|
14
|
Damoiseaux J, Smolders J. The Engagement Between Vitamin D and the Immune System: Is Consolidation by a Marriage to Be Expected? EBioMedicine 2018; 31:9-10. [PMID: 29685791 PMCID: PMC6013778 DOI: 10.1016/j.ebiom.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Joost Smolders
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; Neuroimmunology research group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Lu M, Taylor BV, Körner H. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Front Immunol 2018; 9:477. [PMID: 29593729 PMCID: PMC5857605 DOI: 10.3389/fimmu.2018.00477] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin D has a plethora of functions that are important for the maintenance of general health and in particular, the functional integrity of the immune system, such as promoting an anti-inflammatory cytokine profile and reducing the Treg/Th17 ratio. Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative central nervous system (CNS) disorder of probable autoimmune origin. MS is characterized by recurring or progressive demyelination and degeneration of the CNS due in part to a misguided immune response to as yet undefined (CNS) antigens, potentially including myelin basic protein and proteolipid protein. MS has also been shown to be associated significantly with environmental factors such as the lack of vitamin D. The role of vitamin D in the pathogenesis and progression of MS is complex. Recent genetic studies have shown that various common MS-associated risk-single-nucleotide polymorphisms (SNPs) are located within or in the vicinity of genes associated with the complex metabolism of vitamin D. The functional aspects of these genetic associations may be explained either by a direct SNP-associated loss- or gain-of-function in a vitamin D-associated gene or due to a change in the regulation of gene expression in certain immune cell types. The development of new genetic tools using next-generation sequencing: e.g., chromatin immunoprecipitation sequencing (ChIP-seq) and the accompanying rapid progress of epigenomics has made it possible to recognize that the association between vitamin D and MS could be based on the extensive and characteristic genomic binding of the vitamin D receptor (VDR). Therefore, it is important to analyze comprehensively the spatiotemporal VDR binding patterns that have been identified using ChIP-seq in multiple immune cell types to reveal an integral profile of genomic VDR interaction. In summary, the aim of this review is to connect genomic effects vitamin D has on immune cells with MS and thus, to contribute to a better understanding of the influence of vitamin D on the etiology and the pathogenesis of this complex autoimmune disease.
Collapse
Affiliation(s)
- Ming Lu
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, China
| |
Collapse
|
16
|
Vitamin D 3 supplementation and the IL-2/IL-2R pathway in multiple sclerosis: Attenuation of progressive disturbances? J Neuroimmunol 2017; 314:50-57. [PMID: 29153546 DOI: 10.1016/j.jneuroim.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/26/2022]
Abstract
Vitamin D3 upregulates IL-2 receptor alpha (IL2RA, CD25)-expression on CD4+ T cells in vitro. We investigated effects of 48-weeks vitamin D3 supplements on CD25-expression by CD4+ T cells of patients with multiple sclerosis (MS). There was no significant difference between the vitamin D3 (n=30) and placebo group (n=23) in IL2RA mRNA-expression by PBMC. Likewise, CD25 cell surface-expression by conventional or regulatory T cells (Treg) did not differ between groups, although Treg CD25-expression and circulating soluble-CD25 levels decreased significantly in the placebo but not vitamin D3-group. We speculate that vitamin D3 may promote the maintenance of CD25-related immune homeostasis in MS.
Collapse
|
17
|
Bettencourt A, Boleixa D, Guimarães AL, Leal B, Carvalho C, Brás S, Samões R, Santos E, Costa PP, Silva B, da Silva AM. The vitamin D receptor gene FokI polymorphism and Multiple Sclerosis in a Northern Portuguese population. J Neuroimmunol 2017; 309:34-37. [DOI: 10.1016/j.jneuroim.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
|
18
|
Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Costa AS, Clerici M. Vitamin D-binding protein gene polymorphisms are not associated with MS risk in an Italian cohort. J Neuroimmunol 2017; 305:92-95. [DOI: 10.1016/j.jneuroim.2017.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
|
19
|
Amato MP, Derfuss T, Hemmer B, Liblau R, Montalban X, Soelberg Sørensen P, Miller DH, Alfredsson L, Aloisi F, Amato MP, Ascherio A, Baldin E, Bjørnevik K, Comabella M, Correale J, Cortese M, Derfuss T, D’Hooghe M, Ghezzi A, Gold J, Hellwig K, Hemmer B, Koch-Henricksen N, Langer Gould A, Liblau R, Linker R, Lolli F, Lucas R, Lünemann J, Magyari M, Massacesi L, Miller A, Miller DH, Montalban X, Monteyne P, Mowry E, Münz C, Nielsen NM, Olsson T, Oreja-Guevara C, Otero S, Pugliatti M, Reingold S, Riise T, Robertson N, Salvetti M, Sidhom Y, Smolders J, Soelberg Sørensen P, Sollid L, Steiner I, Stenager E, Sundstrom P, Taylor BV, Tremlett H, Trojano M, Uccelli A, Waubant E, Wekerle H. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler 2017; 24:590-603. [DOI: 10.1177/1352458516686847] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative demyelinating disease of the central nervous system (CNS), most likely autoimmune in origin, usually beginning in early adulthood. The aetiology of the disease is not well understood; it is viewed currently as a multifactorial disease which results from complex interactions between genetic predisposition and environmental factors, of which a few are potentially modifiable. Improving our understanding of these factors can lead to new and more effective approaches to patient counselling and, possibly, prevention and management of the disease. The 2016 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) addressed the topic of environmental, modifiable risk factors for MS, gathering experts from around the world, to collate experimental and clinical research into environmental factors that have been associated with the disease onset and, in a few cases, disease activity and progression. A number of factors, including infections, vitamin D deficiency, diet and lifestyle factors, stress and comorbidities, were discussed. The meeting provided a forum to analyse available evidence, to identify inconsistencies and gaps in current knowledge and to suggest avenues for future research.
Collapse
Affiliation(s)
- Maria Pia Amato
- Department of NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Roland Liblau
- Faculte de Medecine Purpan, Universite Toulouse III – Paul Sabatier, Toulouse, France
| | | | | | - David H Miller
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK*
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Immune regulatory effects of high dose vitamin D 3 supplementation in a randomized controlled trial in relapsing remitting multiple sclerosis patients receiving IFNβ; the SOLARIUM study. J Neuroimmunol 2016; 300:47-56. [PMID: 27806875 DOI: 10.1016/j.jneuroim.2016.09.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is characterized by a disturbed immune homeostasis and low serum vitamin D levels are associated with an increased disease activity. While vitamin D has been hypothesized to promote the maintenance of immune homeostasis, vitamin D supplementation could be of benefit to patients with MS. The SOLAR study investigated the effects of high dose vitamin D3 supplementation on clinical outcomes in a randomized controlled trial. Here we present the immune regulatory effects, investigated in the SOLARIUM sub-study. Thirty Dutch relapsing remitting (RR) MS patients treated with IFNβ-1a received high dose vitamin D3 supplementation and 23 patients received placebo during a period of 48weeks. Lymphocytes were phenotypically characterized by flow cytometry and in vitro cytokine secretion was assessed in the presence or absence of 1,25(OH)2D3 using Luminex technology. Changes in immune regulatory parameters were determined within subjects as well as between treatment groups. The proportion of cells in the immune regulatory cell compartment (nTreg, iTreg and Breg) was not altered upon high dose vitamin D3 supplementation. Proportions of T helper subsets were not affected by vitamin D3, except for the proportion of IL4+ Th cells, which decreased in the placebo but not in the vitamin D3 group. T cell cytokine secretion increased, most pronounced for IL5 and latency activated protein of TGFβ, in the placebo group but not in the vitamin D3 group. Lymphocytes remained equally reactive to in vitro 1,25(OH)2D3. In conclusion, high dose vitamin D3 supplementation did not result in a relative increase in lymphocytes with a regulatory phenotype. However, this study supports the hypothesis that vitamin D contributes to the maintenance of immune homeostasis by preventing further disturbance of the T cell compartment early in the disease course of MS.
Collapse
|
21
|
Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev 2016; 15:900-10. [DOI: 10.1016/j.autrev.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
|
22
|
Immunomodulation by vitamin D in multiple sclerosis: More than IL-17. J Neuroimmunol 2016; 292:79-80. [DOI: 10.1016/j.jneuroim.2016.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 01/24/2023]
|
23
|
Røsjø E, Steffensen LH, Jørgensen L, Lindstrøm JC, Šaltytė Benth J, Michelsen AE, Aukrust P, Ueland T, Kampman MT, Torkildsen Ø, Holmøy T. Vitamin D supplementation and systemic inflammation in relapsing-remitting multiple sclerosis. J Neurol 2015; 262:2713-21. [PMID: 26429571 DOI: 10.1007/s00415-015-7902-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
Observational studies have suggested that vitamin D may reduce inflammation in relapsing-remitting multiple sclerosis (RRMS), but this has not been clearly confirmed in randomized controlled trials. To further explore the possible anti-inflammatory effects of vitamin D in RRMS, we examined the effect of high-dose oral vitamin D3 on eleven markers of systemic inflammation in 68 RRMS patients enrolled in a double-blinded randomized placebo-controlled trial of vitamin D3 supplementation (20,000 IU/week) (NCT00785473). Serum inflammation markers and 25-hydroxyvitamin D (25(OH)D) were measured at baseline and week 96, and no restrictions were set on additional standard immunomodulatory treatment for RRMS. The mean 25(OH)D level rose from 56 ± 29 to 123 ± 34 nmol/L among patients receiving vitamin D3 supplementation, whereas only a minor increase from 57 ± 22 to 63 ± 24 nmol/L was seen in the placebo group. However, no significant differences appeared between the vitamin D group and the placebo group for any of the inflammation markers. Patients on immunomodulatory therapy had significantly higher levels of interleukin-1 receptor antagonist and chemokine (C-X-C motif) ligand 16 than patients without immunomodulatory treatment, but there were no clear synergistic effects between immunomodulatory therapy and vitamin D3 supplementation on any of the inflammation markers. The rise in 25(OH)D levels after vitamin D3 supplementation was unaffected by immunomodulatory treatment. We conclude that in this study of RRMS patients, high-dose oral vitamin D3 supplementation prominently increased serum 25(OH)D levels without affecting markers of systemic inflammation, while a more anti-inflammatory phenotype was found among patients on immunomodulatory treatment.
Collapse
Affiliation(s)
- Egil Røsjø
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Linn H Steffensen
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Lone Jørgensen
- Department of Health and Care Sciences, University of Tromsø, Tromsø, Norway.,Department of Clinical Therapeutic Services, University Hospital of North Norway, Tromsø, Norway
| | - Jonas C Lindstrøm
- Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,KG Jebsen Inflammatory Research Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Margitta T Kampman
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Øivind Torkildsen
- KG Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Løken-Amsrud KI, Lossius A, Torkildsen Ø, Holmøy T. Impact of the environment on multiple sclerosis. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:856-60. [PMID: 25991624 DOI: 10.4045/tidsskr.14.0751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Epidemiological studies suggest that environmental factors play a significant role in the development of multiple sclerosis. This article presents current knowledge on the impact of the environment on disease risk and disease course. METHOD We have conducted searches in PubMed for «multiple sclerosis» combined with «environment» as well as relevant environmental factors. RESULTS It is highly likely that an interaction between genetic and environmental factors determines who will develop multiple sclerosis. Epstein-Barr virus infection, smoking, and low vitamin D levels are the environmental factors that have shown the strongest and most consistent association with development of the disease. Low vitamin D levels are also associated with high disease activity. Other risk factors include obesity and high salt intake. INTERPRETATION Although epidemiological studies have identified a number of environmental factors with potential aetiological relevance, and the importance of these is supported by experimental studies, there is still insufficient evidence to establish a causal role for these factors in multiple sclerosis.
Collapse
Affiliation(s)
| | - Andreas Lossius
- Avdeling for immunologi og transfusjonsmedisin Oslo universitetssykehus, Rikshospitalet
| | - Øivind Torkildsen
- Nevrologisk avdeling Haukeland universitetssykehus og KG Jebsen senter for MS-forskning Klinisk institutt 1 Universitetet i Bergen
| | - Trygve Holmøy
- Nevroklinikken Akershus universitetssykehus og Institutt for klinisk medisin Universitetet i Oslo
| |
Collapse
|
25
|
Hayes CE, Hubler SL, Moore JR, Barta LE, Praska CE, Nashold FE. Vitamin D Actions on CD4(+) T Cells in Autoimmune Disease. Front Immunol 2015; 6:100. [PMID: 25852682 PMCID: PMC4364365 DOI: 10.3389/fimmu.2015.00100] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease.
Collapse
Affiliation(s)
- Colleen Elizabeth Hayes
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Shane L Hubler
- Department of Statistics, College of Letters and Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Jerott R Moore
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Lauren E Barta
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Corinne E Praska
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Faye E Nashold
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| |
Collapse
|
26
|
Damoiseaux J, Andrade LE, Fritzler MJ, Shoenfeld Y. Autoantibodies 2015: From diagnostic biomarkers toward prediction, prognosis and prevention. Autoimmun Rev 2015; 14:555-63. [PMID: 25661979 DOI: 10.1016/j.autrev.2015.01.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
At the 12th International Workshop on Autoantibodies and Autoimmunity (IWAA), organized in August 2014 in Sao Paulo, Brazil, more than 300 autoimmunologists gathered to discuss the status of many novel autoantibodies in clinical practice, and to envisage additional value of autoantibodies in terms of prediction, prognosis and prevention of autoimmune diseases. Two separate workshops were dedicated to standardization and harmonization of autoantibody testing and nomenclature: International Autoantibody Standardization (IAS) and International Consensus on ANA Patterns (ICAP). It was apparent to all in attendance that the discovery and elucidation of novel autoantibodies did not slow down, but that multiple challenges lay ahead of us in order to apply these discoveries to effective and efficient clinical practice. Importantly, this requires optimal bidirectional communication between clinicians and laboratory specialists, as well as close collaboration with the diagnostic industry. This paper is a report on the 12th IWAA in combination with a review of the recent developments in the field of autoantibodies.
Collapse
Affiliation(s)
- Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo, Brazil
| | - Marvin J Fritzler
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
27
|
Bhargava P, Gocke A, Calabresi PA. 1,25-Dihydroxyvitamin D3 impairs the differentiation of effector memory T cells in vitro in multiple sclerosis patients and healthy controls. J Neuroimmunol 2015; 279:20-4. [PMID: 25669995 DOI: 10.1016/j.jneuroim.2014.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/20/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency is associated with increased susceptibility to multiple sclerosis (MS) and increased disease activity. Vitamin D is a potent immunomodulator but the effects of vitamin D treatment on T cell memory have not been explored. We studied the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on T cell memory in MS patients (n = 10) and healthy controls (n = 10). In vitro treatment of PBMC cultures with 1,25(OH)2D3, led to a decrease in the proportion of effector memory T cells with an increase in naïve T cells, compared to vehicle in both groups. Further studies to unravel the mechanism of this effect and to understand its long-term implications are required.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Gocke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. J Neuroimmunol 2014; 271:60-5. [DOI: 10.1016/j.jneuroim.2014.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 12/27/2022]
|
29
|
Rolf L, Muris AH, Hupperts R, Damoiseaux J. Vitamin D effects on B cell function in autoimmunity. Ann N Y Acad Sci 2014; 1317:84-91. [DOI: 10.1111/nyas.12440] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Linda Rolf
- School for Mental Health and Neuroscience; Maastricht University Medical Center; Maastricht the Netherlands
- Academic MS Center Limburg; Orbis Medical Center; Sittard the Netherlands
| | - Anne-Hilde Muris
- School for Mental Health and Neuroscience; Maastricht University Medical Center; Maastricht the Netherlands
- Academic MS Center Limburg; Orbis Medical Center; Sittard the Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience; Maastricht University Medical Center; Maastricht the Netherlands
- Academic MS Center Limburg; Orbis Medical Center; Sittard the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory; Maastricht University Medical Center; Maastricht the Netherlands
| |
Collapse
|
30
|
Genomic Binding Sites and Biological Effects of the Vitamin D: VDR Complex in Multiple Sclerosis. Neuromolecular Med 2014; 16:265-79. [DOI: 10.1007/s12017-014-8301-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/29/2014] [Indexed: 01/14/2023]
|
31
|
Holmøy T, Kampman MT, Smolders J. Vitamin D in multiple sclerosis: implications for assessment and treatment. Expert Rev Neurother 2014; 12:1101-12. [DOI: 10.1586/ern.12.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
33
|
Effect of high-dose vitamin D3 intake on ambulation, muscular pain and bone mineral density in a woman with multiple sclerosis: a 10-year longitudinal case report. Int J Mol Sci 2012. [PMID: 23202962 PMCID: PMC3497336 DOI: 10.3390/ijms131013461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mounting evidence correlate vitamin D3 (cholecalciferol) supplementation or higher serum levels of vitamin D (25(OH)D) with a lower risk of developing multiple sclerosis (MS), reduced relapse rate, slower progression or fewer new brain lesions. We present here the case of a woman who was diagnosed with MS in 1990. From 1980 to 2000, her ability to walk decreased from ~20 to 1 km per day. Since January 2001, a vitamin D3 supplement was ingested daily. The starting dose was 20 mcg (800 IU)/day and escalated to 100 mcg (4000 IU)/day in September 2004 and then to 150 mcg (6000 IU)/day in December 2005. Vitamin D3 intake reduced muscular pain and improved ambulation from 1 (February 2000) to 14 km/day (February 2008). Vitamin D intake over 10 years caused no adverse effects: no hypercalcaemia, nephrolithiasis or hypercalciuria were observed. Bowel problems in MS may need to be addressed as they can cause malabsorption including calcium, which may increase serum PTH and 1,25(OH)2D levels, as well as bone loss. We suggest that periodic assessment of vitamin D3, calcium and magnesium intake, bowel problems and the measurement of serum 25(OH)D, PTH, Ca levels, UCa/Cr and bone health become part of the integral management of persons with MS.
Collapse
|
34
|
Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabryšová L, Christensen J, Gupta A, Saglani S, Bush A, O’Garra A, Brown Z, Hawrylowicz CM. The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol 2012; 42:2697-708. [PMID: 22903229 PMCID: PMC3471131 DOI: 10.1002/eji.201242370] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/08/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023]
Abstract
1α,25-Dihydroxyvitamin D3 (1α25VitD3) has potent immunomodulatory properties. We have previously demonstrated that 1α25VitD3 promotes human and murine IL-10-secreting CD4(+) T cells. Because of the clinical relevance of this observation, we characterized these cells further and investigated their relationship with Foxp3(+) regulatory T (Treg) cells. 1α25VitD3 increased the frequency of both Foxp3(+) and IL-10(+) CD4(+) T cells in vitro. However, Foxp3 was increased at high concentrations of 1α25VitD3 and IL-10 at more moderate levels, with little coexpression of these molecules. The Foxp3(+) and IL-10(+) T-cell populations showed comparable suppressive activity. We demonstrate that the enhancement of Foxp3 expression by 1α25VitD3 is impaired by IL-10. 1α25VitD3 enables the selective expansion of Foxp3(+) Treg cells over their Foxp3(-) T-cell counterparts. Equally, 1α25VitD3 maintains Foxp3(+) expression by sorted populations of human and murine Treg cells upon in vitro culture. A positive in vivo correlation between vitamin D status and CD4(+) Foxp3(+) T cells in the airways was observed in a severe pediatric asthma cohort, supporting the in vitro observations. In summary, we provide evidence that 1α25VitD3 enhances the frequency of both IL-10(+) and Foxp3(+) Treg cells. In a translational setting, these data suggest that 1α25VitD3, over a broad concentration range, will be effective in enhancing the frequency of Treg cells.
Collapse
Affiliation(s)
- Zoë Urry
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
| | - Emma S. Chambers
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
| | - Emmanuel Xystrakis
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
| | - Sarah Dimeloe
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
| | - David F. Richards
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
| | - Leona Gabryšová
- Division of Immunoregulation, MRC National Institute for Medical Research (NIMR), London, UK
| | - Jillian Christensen
- Division of Immunoregulation, MRC National Institute for Medical Research (NIMR), London, UK
| | - Atul Gupta
- MRC and Asthma-UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, UK
- Imperial School of Medicine, Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Imperial School of Medicine, Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Andrew Bush
- Imperial School of Medicine, Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Anne O’Garra
- Division of Immunoregulation, MRC National Institute for Medical Research (NIMR), London, UK
| | - Zarin Brown
- Novartis Institute for Biomedical Research, Horsham, West Sussex, UK
| | | |
Collapse
|
35
|
Waisberg M, Vickers BK, Yager SB, Lin CK, Pierce SK. Testing in mice the hypothesis that melanin is protective in malaria infections. PLoS One 2012; 7:e29493. [PMID: 22242171 PMCID: PMC3252320 DOI: 10.1371/journal.pone.0029493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023] Open
Abstract
Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in some instances melanin has been implicated to play an immunoregulatory role in vertebrates. Thus, we tested the hypothesis that melanization may be protective in malaria infections using mouse models. Congenic C57BL/6 mice that differed only in the gene encoding tyrosinase, a key enzyme in the synthesis of melanin, showed no difference in the clinical course of infection by Plasmodium yoelii 17XL, that causes severe anemia, Plasmodium berghei ANKA, that causes severe cerebral malaria or Plasmodium chabaudi AS that causes uncomplicated chronic disease. Moreover, neither genetic deficiencies in vitamin D synthesis nor vitamin D supplementation had an effect on survival in cerebral malaria. Taken together, these results indicate that neither melanin nor vitamin D production improve survival in severe malaria.
Collapse
Affiliation(s)
- Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (MW); (SKP)
| | - Brandi K. Vickers
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephanie B. Yager
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Christina K. Lin
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (MW); (SKP)
| |
Collapse
|
36
|
Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmøy T. Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci 2011; 311:37-43. [PMID: 21862439 DOI: 10.1016/j.jns.2011.07.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/25/2011] [Accepted: 07/18/2011] [Indexed: 11/16/2022]
Abstract
High exposure to vitamin D may protect against development and progression of multiple sclerosis (MS), possibly through the immunomodulatory properties of its biologically active metabolite 1,25-dihydroxyvitamin D. So far, most studies on the possible mechanisms for vitamin D involvement in MS have focused on immune modulation outside the central nervous system (CNS). However, vitamin D may also interfere with the pathophysiology of MS within the CNS. In this review, the potential presence and functions of vitamin D in the inflamed and healthy CNS are explored. We discuss that vitamin D, vitamin D binding protein (DBP), the vitamin D receptor (VDR) and enzymes needed for metabolism (CYP27B1) are present in the CNS. Both VDR and CYP27B1 are expressed on a variety of cells, including neurons, glial cells, and invading lymphocytes. Additionally, vitamin D has been postulated to play a modulating role in several key-processes in MS pathophysiology, including inflammation, demyelination, axonal damage, and remyelination. We conclude that a local role of vitamin D in the inflamed CNS is likely and potentially relevant to MS. Future studies should further characterize the impact of vitamin D on the local disease process of MS in the CNS.
Collapse
Affiliation(s)
- Joost Smolders
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|