1
|
Zhu M, Gu B, Thomas EC, Huang Y, Kim YK, Tao H, Yung TM, Chen X, Zhang K, Woolaver EK, Nevin MR, Huang X, Winklbauer R, Rossant J, Sun Y, Hopyan S. A fibronectin gradient remodels mixed-phase mesoderm. SCIENCE ADVANCES 2024; 10:eadl6366. [PMID: 39028807 PMCID: PMC11259159 DOI: 10.1126/sciadv.adl6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bin Gu
- Department of Obstetrics Gynecology and Reproductive Biology, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yunyun Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora M. Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Elizabeth K. Woolaver
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mikaela R. Nevin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rudolph Winklbauer
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yu Sun
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
2
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
3
|
Chan HC, Lau YT, Ding Q, Li CK, Wong CM, Shaw PC, Waye MMY, Tsang SY. PinX1t, a Novel PinX1 Transcript Variant, Positively Regulates Cardiogenesis of Embryonic Stem Cells. J Am Heart Assoc 2020; 9:e010240. [PMID: 32157956 PMCID: PMC7335523 DOI: 10.1161/jaha.118.010240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Pin2/TRF1‐interacting protein, PinX1, was previously identified as a tumor suppressor. Here, we discovered a novel transcript variant of mPinX1 (mouse PinX1), mPinX1t (mouse PinX1t), in embryonic stem cells (ESCs). The aims of this investigation were (1) to detect the presence of mPinX1 and mPinX1t in ESCs and their differentiation derivatives; (2) to investigate the role of mPinX1 and mPinX1t on regulating the characteristics of undifferentiated ESCs and the cardiac differentiation of ESCs; (3) to elucidate the molecular mechanisms of how mPinX1 and mPinX1t regulate the cardiac differentiation of ESCs. Methods and Results By 5′ rapid amplification of cDNA ends, 3′ rapid amplification of cDNA ends, and polysome fractionation followed by reverse transcription–polymerase chain reaction, mPinX1t transcript was confirmed to be an intact mRNA that is actively translated. Western blot confirmed the existence of mPinX1t protein. Overexpression or knockdown of mPinX1 (both decreased mPinX1t expression) both decreased while overexpression of mPinX1t increased the cardiac differentiation of ESCs. Although both mPinX1 and mPinX1t proteins were found to bind to cardiac transcription factor mRNAs, only mPinX1t protein but not mPinX1 protein was found to bind to nucleoporin 133 protein, a nuclear pore complex component. In addition, mPinX1t‐containing cells were found to have a higher cytosol‐to‐nucleus ratio of cardiac transcription factor mRNAs when compared with that in the control cells. Our data suggested that mPinX1t may positively regulate cardiac differentiation by enhancing export of cardiac transcription factor mRNAs through interacting with nucleoporin 133. Conclusions We discovered a novel transcript variant of mPinX1, the mPinX1t, which positively regulates the cardiac differentiation of ESCs.
Collapse
Affiliation(s)
- Hing Chung Chan
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Yuen Ting Lau
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Qianqian Ding
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Chun Kit Li
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Chi Ming Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR
| | - Pang Chui Shaw
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing The Chinese University of Hong Kong Hong Kong SAR.,The Croucher Laboratory for Human Genomics The Chinese University of Hong Kong Hong Kong SAR
| | - Suk Ying Tsang
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR.,State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong SAR.,Key Laboratory for Regenerative Medicine Ministry of Education The Chinese University of Hong Kong Hong Kong SAR.,Centre for Novel Biomaterials The Chinese University of Hong Kong Hong Kong SAR
| |
Collapse
|
4
|
smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Sci Rep 2018; 8:15369. [PMID: 30337622 PMCID: PMC6194089 DOI: 10.1038/s41598-018-33746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes and facilitate tissue-specific gene regulation during development. BAF57/SMARCE1 is a BAF complex subunit encoded in animals by a single gene and is a component of all mammalian BAF complexes. In vivo, the loss of SMARCE1 would lead to the formation of deficient combinations of the complex which might present limited remodeling activities. To address the specific contribution of SMARCE1 to the function of the BAF complex, we generated CRISPR/Cas9 mutations of smarce1 in zebrafish. Smarce1 mutants showed visible defects at 72 hpf, including smaller eyes, abnormal body curvature and heart abnormalities. Gene expression analysis revealed that the mutant embryos displayed defects in endocardial development since early stages, which led to the formation of a misshapen heart tube. The severe morphological and functional cardiac problems observed at 4 dpf were correlated with the substantially increased expression of different cardiac transcription factors. Additionally, we showed that Smarce1 binds to cis-regulatory regions of the gata5 gene and is necessary for the recruitment of the BAF complex to these regions.
Collapse
|
5
|
Santos R, Kawauchi S, Jacobs RE, Lopez-Burks ME, Choi H, Wikenheiser J, Hallgrimsson B, Jamniczky HA, Fraser SE, Lander AD, Calof AL. Conditional Creation and Rescue of Nipbl-Deficiency in Mice Reveals Multiple Determinants of Risk for Congenital Heart Defects. PLoS Biol 2016; 14:e2000197. [PMID: 27606604 PMCID: PMC5016002 DOI: 10.1371/journal.pbio.2000197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form.
Collapse
Affiliation(s)
- Rosaysela Santos
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Shimako Kawauchi
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Russell E Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Martha E Lopez-Burks
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Hojae Choi
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Jamie Wikenheiser
- Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Scott E Fraser
- Departments of Biology and Bioengineering, University of Southern California, Los Angeles, California, United States of America
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| |
Collapse
|
6
|
Re A, Nanni S, Aiello A, Granata S, Colussi C, Campostrini G, Spallotta F, Mattiussi S, Pantisano V, D'Angelo C, Biroccio A, Rossini A, Barbuti A, DiFrancesco D, Trimarchi F, Pontecorvi A, Gaetano C, Farsetti A. Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine 2016; 53:681-8. [PMID: 26547215 DOI: 10.1007/s12020-015-0751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/19/2015] [Indexed: 10/22/2022]
Abstract
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T 3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
Collapse
Affiliation(s)
- Agnese Re
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Simona Nanni
- Institute of Medical Pathology, Catholic University, Rome, Italy
| | - Aurora Aiello
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Serena Granata
- Institute of Medical Pathology, Catholic University, Rome, Italy
| | - Claudia Colussi
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Internal Medicine Clinic III, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Stefania Mattiussi
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | | | - Carmen D'Angelo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Rossini
- Bolzano Center for Biomedicine (Affiliated Institute of the University of Lübeck), European Academy Bozen/Bolzano (EURAC), Bolzano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Trimarchi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Internal Medicine Clinic III, Goethe University Frankfurt, 60590, Frankfurt, Germany.
| | - Antonella Farsetti
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy.
- Internal Medicine Clinic III, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
7
|
Bloomekatz J, Galvez-Santisteban M, Chi NC. Myocardial plasticity: cardiac development, regeneration and disease. Curr Opin Genet Dev 2016; 40:120-130. [PMID: 27498024 DOI: 10.1016/j.gde.2016.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023]
Abstract
The adult mammalian heart is unable to recover from myocardial cell loss due to cardiac ischemia and infarction because terminally differentiated cardiomyocytes proliferate at a low rate. However, cardiomyocytes in other vertebrate animal models such as zebrafish, axolotls, newts and mammalian mouse neonates are capable of de-differentiating in order to promote cardiomyocyte proliferation and subsequent cardiac regeneration after injury. Although de-differentiation may occur in adult mammalian cardiomyocytes, it is typically associated with diseased hearts and pathologic remodeling rather than repair and regeneration. Here, we review recent studies of cardiac development, regeneration and disease that highlight how changes in myocardial identity (plasticity) is regulated and impacts adaptive and maladaptive cardiac responses.
Collapse
Affiliation(s)
- Joshua Bloomekatz
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manuel Galvez-Santisteban
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Rodgers K, Papinska A, Mordwinkin N. Regulatory aspects of small molecule drugs for heart regeneration. Adv Drug Deliv Rev 2016; 96:245-52. [PMID: 26150343 DOI: 10.1016/j.addr.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023]
Abstract
Even though recent discoveries prove the existence of cardiac progenitor cells, internal regenerative capacity of the heart is minimal. As cardiovascular disease is the leading cause of deaths in the United States, a number of approaches are being used to develop treatments for heart repair and regeneration. Small molecule drugs are of particular interest as they are suited for oral administration and can be chemically synthesized. However, the regulatory process for the development of new treatment modalities is protracted, complex and expensive. One of the hurdles to development of appropriate therapies is the need for predictive preclinical models. The use of patient-derived cardiomyocytes from iPSC cells represents a novel tool for this purpose. Among other concepts for induction of heart regeneration, the most advanced is the combination of DPP-IV inhibitors with stem cell mobilizers. This review will focus on regulatory aspects as well as preclinical hurdles of development of new treatments for heart regeneration.
Collapse
Affiliation(s)
- Kathleen Rodgers
- Titus Family Department of Clinical Pharmacy and Pharmacoeconomics and Policy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, United States.
| | - Anna Papinska
- Titus Family Department of Clinical Pharmacy and Pharmacoeconomics and Policy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, United States
| | - Nicholas Mordwinkin
- Miltenyi Biotec, Inc., 2303 Lindbergh Street, Auburn, CA 95602, United States
| |
Collapse
|
9
|
Maternal and zygotic Zfp57 modulate NOTCH signaling in cardiac development. Proc Natl Acad Sci U S A 2015; 112:E2020-9. [PMID: 25848000 DOI: 10.1073/pnas.1415541112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zfp57 is a maternal-zygotic effect gene that maintains genomic imprinting. Here we report that Zfp57 mutants exhibited a variety of cardiac defects including atrial septal defect (ASD), ventricular septal defect (VSD), thin myocardium, and reduced trabeculation. Zfp57 maternal-zygotic mutant embryos displayed more severe phenotypes with higher penetrance than the zygotic ones. Cardiac progenitor cells exhibited proliferation and differentiation defects in Zfp57 mutants. ZFP57 is a master regulator of genomic imprinting, so the DNA methylation imprint was lost in embryonic heart without ZFP57. Interestingly, the presence of imprinted DLK1, a target of ZFP57, correlated with NOTCH1 activation in cardiac cells. These results suggest that ZFP57 may modulate NOTCH signaling during cardiac development. Indeed, loss of ZFP57 caused loss of NOTCH1 activation in embryonic heart with more severe loss observed in the maternal-zygotic mutant. Maternal and zygotic functions of Zfp57 appear to play redundant roles in NOTCH1 activation and cardiomyocyte differentiation. This serves as an example of a maternal effect that can influence mammalian organ development. It also links genomic imprinting to NOTCH signaling and particular developmental functions.
Collapse
|
10
|
Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors--a developmental perspective. Dev Biol 2015; 400:169-79. [PMID: 25624264 DOI: 10.1016/j.ydbio.2015.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells can now be routinely differentiated into cardiac cell types including contractile cardiomyocytes, enabling the study of heart development and disease in vitro, and creating opportunities for the development of novel therapeutic interventions for patients. Our grasp of the system, however, remains partial, and a significant reason for this has been our inability to effectively purify and expand the intermediate cardiovascular progenitor cells (CPCs) equivalent to those studied in heart development. Doing so could facilitate the construction of a cardiac lineage cell fate map, boosting our capacity to more finely control stem cell lineage commitment to functionally distinct cardiac identities, as well as providing a model for identifying which genes confer cardiac potential on CPCs. This review offers a perspective on CPC development as understood from model organisms and pluripotent stem cell systems, focusing on issues of identity as well as the signalling implicated in inducing, expanding and patterning these cells.
Collapse
Affiliation(s)
- Matthew J Birket
- Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | |
Collapse
|
11
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
12
|
The key enzyme of the sialic acid metabolism is involved in embryoid body formation and expression of marker genes of germ layer formation. Int J Mol Sci 2013; 14:20555-63. [PMID: 24129184 PMCID: PMC3821630 DOI: 10.3390/ijms141020555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022] Open
Abstract
The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB) within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.
Collapse
|
13
|
Abstract
The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease.
Collapse
|
14
|
Hoebaus J, Heher P, Gottschamel T, Scheinast M, Auner H, Walder D, Wiedner M, Taubenschmid J, Miksch M, Sauer T, Schultheis M, Kuzmenkin A, Seiser C, Hescheler J, Weitzer G. Embryonic stem cells facilitate the isolation of persistent clonal cardiovascular progenitor cell lines and leukemia inhibitor factor maintains their self-renewal and myocardial differentiation potential in vitro. Cells Tissues Organs 2013; 197:249-68. [PMID: 23343517 PMCID: PMC7615845 DOI: 10.1159/000345804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2012] [Indexed: 11/19/2022] Open
Abstract
Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.
Collapse
Affiliation(s)
- Julia Hoebaus
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Philipp Heher
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Teresa Gottschamel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Matthias Scheinast
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Harmen Auner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Diana Walder
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Marc Wiedner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Jasmin Taubenschmid
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Maximilian Miksch
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Sauer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Martina Schultheis
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Alexey Kuzmenkin
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Juergen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Georg Weitzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Camp E, Dietrich S, Münsterberg A. Fate mapping identifies the origin of SHF/AHF progenitors in the chick primitive streak. PLoS One 2012; 7:e51948. [PMID: 23272192 PMCID: PMC3521730 DOI: 10.1371/journal.pone.0051948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/13/2012] [Indexed: 12/15/2022] Open
Abstract
Heart development depends on the spatio-temporally regulated contribution of progenitor cells from the primary, secondary and anterior heart fields. Primary heart field (PHF) cells are first recruited to form a linear heart tube; later, they contribute to the inflow myocardium of the four-chambered heart. Subsequently cells from the secondary (SHF) and anterior heart fields (AHF) are added to the heart tube and contribute to both the inflow and outflow myocardium. In amniotes, progenitors of the linear heart tube have been mapped to the anterior-middle region of the early primitive streak. After ingression, these cells are located within bilateral heart fields in the lateral plate mesoderm. On the other hand SHF/AHF field progenitors are situated anterior to the linear heart tube, however, the origin and location of these progenitors prior to the development of the heart tube remains elusive. Thus, an unresolved question in the process of cardiac development is where SHF/AHF progenitors originate from during gastrulation and whether they come from a region in the primitive streak distinct from that which generates the PHF. To determine the origin and location of SHF/AHF progenitors we used vital dye injection and tissue grafting experiments to map the location and ingression site of outflow myocardium progenitors in early primitive streak stage chicken embryos. Cells giving rise to the AHF ingressed from a rostral region of the primitive streak, termed region 'A'. During development these cells were located in the cranial paraxial mesoderm and in the pharyngeal mesoderm. Furthermore we identified region 'B', located posterior to 'A', which gave rise to progenitors that contributed to the primary heart tube and the outflow tract. Our studies identify two regions in the early primitive streak, one which generates cells of the AHF and a second from which cardiac progenitors of the PHF and SHF emerge.
Collapse
Affiliation(s)
- Esther Camp
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
16
|
el-Fiky SM, Kolkaila AM, Dawd DS, Wahab RM. Histochemical aspects of hydatidiform mole and choriocarcinoma. Acta Histochem 1974; 64:436-48. [PMID: 4134946 DOI: 10.1016/j.jacc.2014.04.056] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023]
|