1
|
Singer M, Kandeel F, Husseiny MI. Salmonella-Based Vaccine: A Promising Strategy for Type 1 Diabetes. Vaccines (Basel) 2025; 13:405. [PMID: 40333284 PMCID: PMC12031388 DOI: 10.3390/vaccines13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in the pancreas. Currently, no therapy exists to halt or cure T1D. Vaccination with diabetic autoantigens may offer protection against T1D development. Genetically modified, attenuated Salmonella utilizing the Salmonella-Pathogenicity Island 2 (SPI2)-encoded Type Three Secretion System (T3SS) can elicit robust immune responses, making it an attractive vaccine platform. Using SPI2-T3SS to deliver an autoantigen alongside immunomodulators and anti-CD3 antibodies induces antigen-specific regulatory T-cells. Our preclinical studies demonstrated the efficacy of a Salmonella-based vaccine in both preventing and reversing autoimmune diabetes in non-obese diabetic (NOD) mice while also exploring its genetic modifications, underlying mechanisms, and delivery strategies. This review evaluates the advantages of an oral T1D vaccine employing live, attenuated Salmonella for autoantigen delivery. We also discuss future directions for advancing this strategy in the treatment of other autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Hashemi V, Baradaran B, Naseri B, Masoumi J, Baghbani E, Alizadeh N, Haris RS, Hosseini A. The effect of immunomodulatory celecoxsib on the gene expression of inhibitory receptors in dendritic cells generated from monocyte cells. BMC Res Notes 2025; 18:164. [PMID: 40223111 PMCID: PMC11995585 DOI: 10.1186/s13104-025-07226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Autoimmune diseases are characterized by irregular immune responses that disrupt self-tolerance. This research explores the effects of the immunomodulatory drug celecoxib on the expression of immune checkpoint receptors in monocyte-derived dendritic cells (DCs). Key receptors, including CTLA-4, VISTA, BTLA, PDL-1, B7H7, and LAG3, play critical roles in initiating and regulating immune responses and maintaining self-tolerance. Previous studies have highlighted the significance of immune checkpoints in preventing autoimmune conditions, with animal research supporting their effectiveness in immunotherapy. Our findings demonstrate that the upregulation of immune checkpoint receptors can enhance the inhibitory functions of DCs, thereby promoting self-tolerance. As a result, tolerogenic DCs present a promising therapeutic avenue for treating autoimmune diseases. Although these results are promising, further trials are required to validate this approach before it can be applied clinically. This study underscores the potential of targeting immune checkpoint receptors as a therapeutic strategy for autoimmune disorders.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Laboratory Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shiri Haris
- Department of Laboratory Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Arezoo Hosseini
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. EBioMedicine 2021; 70:103496. [PMID: 34280776 PMCID: PMC8318874 DOI: 10.1016/j.ebiom.2021.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Induction of autoantigen-specific Treg cells that suppress tissue-specific autoimmunity without compromising beneficial immune responses is the holy-grail for immunotherapy to autoimmune diseases. METHODS In a model of experimental autoimmune uveitis (EAU) that mimics human uveitis, ocular inflammation was induced by immunization with retinal antigen interphotoreceptor retinoid-binding protein (IRBP). Mice were given intraperitoneal injection of αCD4 antibody (Ab) after the onset of disease, followed by administration of IRBP. EAU was evaluated clinically and functionally. Splenocytes, CD4+CD25- and CD4+CD25+ T cells were sorted and cultured with IRBP or αCD3 Ab. T cell proliferation and cytokine production were assessed. FINDINGS The experimental approach resulted in remission of ocular inflammation and rescue of visual function in mice with established EAU. Mechanistically, the therapeutic effect was mediated by induction of antigen-specific Treg cells that inhibited IRBP-driven Th17 response in TGF-β and IL-10 dependent fashion. Importantly, the Ab-mediated immune tolerance could be achieved in EAU mice by administration of retinal autoantigens, arrestin but not limited to IRBP only, in an antigen-nonspecific bystander manner. Further, these EAU-suppressed tolerized mice did not compromise their anti-tumor T immunity in melanoma model. INTERPRETATION We successfully addressed a specific immunotherapy of EAU by in vivo induction of autoantigen-specific Treg cells without compromising host overall T cell immunity, which should have potential implication for patients with autoimmune uveitis. FUNDING This study was supported by the Natural Science Foundation of Guangdong Province and the Fundamental Research Fund of the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center.
Collapse
|
4
|
Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 2019; 37:238-251. [PMID: 30804535 DOI: 10.1038/s41587-019-0015-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The main function of the immune system in health is to protect the host from infection by microbes and parasites. Because immune responses to nonself bear the risk of unleashing accidental immunity against self, evolution has endowed the immune system with central and peripheral mechanisms of tolerance, including regulatory T and B cells. Although the past two decades have witnessed the successful clinical translation of a whole host of novel therapies for the treatment of chronic inflammation, the development of antigen-based approaches capable of selectively blunting autoimmune inflammation without impairing normal immunity has remained elusive. Earlier autoantigen-specific approaches employing peptides or whole antigens have evolved into strategies that seek to preferentially deliver these molecules to autoreactive T cells either indirectly, via antigen-presenting cells, or directly, via major histocompatibility complex molecules, in ways intended to promote clonal deletion and/or immunoregulation. The disease specificity, mechanistic underpinnings, developability and translational potential of many of these strategies remain unclear.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. .,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Kälin S, Becker M, Ott VB, Serr I, Hosp F, Mollah MMH, Keipert S, Lamp D, Rohner-Jeanrenaud F, Flynn VK, Scherm MG, Nascimento LFR, Gerlach K, Popp V, Dietzen S, Bopp T, Krishnamurthy P, Kaplan MH, Serrano M, Woods SC, Tripal P, Palmisano R, Jastroch M, Blüher M, Wolfrum C, Weigmann B, Ziegler AG, Mann M, Tschöp MH, Daniel C. A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metab 2017; 26:475-492.e7. [PMID: 28877454 PMCID: PMC5627977 DOI: 10.1016/j.cmet.2017.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3+ regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown. Here, we report that enhancing sympathetic tone by cold exposure, beta3-adrenergic receptor (ADRB3) stimulation or a short-term high-calorie diet enhances Treg induction in vitro and in vivo. CD4+ T cell proteomes revealed higher expression of Foxp3 regulatory networks in response to cold or ADRB3 stimulation in vivo reflecting Treg induction. Specifically, Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated in CD4+ T cells by either ADRB3 stimulation or cold exposure, suggesting contribution to Treg induction. By loss- and gain-of-function studies, including Treg depletion and transfers in vivo, we demonstrated that a T cell-specific Stat6/Pten axis links cold exposure or ADRB3 stimulation with Foxp3+ Treg induction and adipose tissue function. Our findings offer a new mechanistic model in which tissue-specific Tregs maintain adipose tissue function.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Maike Becker
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Verena B Ott
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Isabelle Serr
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Fabian Hosp
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mohammad M H Mollah
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Francoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension, and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Victoria K Flynn
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Martin G Scherm
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Lucas F R Nascimento
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Katharina Gerlach
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Sarah Dietzen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Purna Krishnamurthy
- Department of Pediatrics and HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics and HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Philipp Tripal
- OICE (Optical Imaging Centre Erlangen), University Erlangen, 91052 Erlangen, Germany
| | - Ralf Palmisano
- OICE (Optical Imaging Centre Erlangen), University Erlangen, 91052 Erlangen, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Matthias Blüher
- Department of Medicine, Research Group Molecular Endocrinology, University of Leipzig, 04103 Leipzig, Germany
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Anette-Gabriele Ziegler
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Klinikum rechts der Isar, Technische Universität München, 80333 Munich, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany.
| | - Carolin Daniel
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany.
| |
Collapse
|
6
|
Pan Z, Horton CG, Lawrence C, Farris AD. Plasmacytoid dendritic cells and type 1 interferon promote peripheral expansion of forkhead box protein 3(+) regulatory T cells specific for the ubiquitous RNA-binding nuclear antigen La/Sjögren's syndrome (SS)-B. Clin Exp Immunol 2016; 186:18-29. [PMID: 27227559 PMCID: PMC5011359 DOI: 10.1111/cei.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 02/06/2023] Open
Abstract
RNA-binding nuclear antigens are a major class of self-antigen to which immune tolerance is lost in rheumatic diseases. Serological tolerance to one such antigen, La/Sjögren's syndrome (SS)-B (La), is controlled by CD4(+) T cells. This study investigated peripheral tolerance to human La (hLa) by tracking the fate of hLa-specific CD4(+) T cells expressing the transgenic (Tg) 3B5.8 T cell receptor (TCR) after adoptive transfer into lymphocyte-replete recipient mice expressing hLa as a neo-self-antigen. After initial antigen-specific cell division, hLa-specific donor CD4(+) T cells expressed forkhead box protein 3 (FoxP3). Donor cells retrieved from hLa Tg recipients displayed impaired proliferation and secreted interleukin (IL)-10 in vitro in response to antigenic stimulation. Transfer of highly purified FoxP3-negative donor cells demonstrated that accumulation of hLa-specific regulatory T cells (Treg ) was due primarily to expansion of small numbers of donor Treg . Depletion of recipient plasmacytoid dendritic cells (pDC), but not B cells, severely hampered the accumulation of FoxP3(+) donor Treg in hLa Tg recipients. Recipient pDC expressed tolerogenic markers and higher levels of co-stimulatory and co-inhibitory molecules than B cells. Adoptive transfer of hLa peptide-loaded pDC into mice lacking expression of hLa recapitulated the accumulation of hLa-specific Treg . Blockade of the type 1 interferon (IFN) receptor in hLa Tg recipients of hLa-specific T cells impaired FoxP3(+) donor T cell accumulation. Therefore, peripheral expansion of Treg specific for an RNA-binding nuclear antigen is mediated by antigen-presenting pDC in a type 1 IFN-dependent manner. These results reveal a regulatory function of pDC in controlling autoreactivity to RNA-binding nuclear antigens.
Collapse
Affiliation(s)
- Z.‐J. Pan
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - C. G. Horton
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
- Department of Biological SciencesSouthwestern Oklahoma State UniversityWeatherfordOKUSA
| | - C. Lawrence
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - A. D. Farris
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
| |
Collapse
|
7
|
Vitamin D supplementation effects on FoxP3 expression in T cells and FoxP3+/IL-17A ratio and clinical course in systemic lupus erythematosus patients: a study in a Portuguese cohort. Immunol Res 2016; 65:197-206. [DOI: 10.1007/s12026-016-8829-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun 2016; 7:10991. [PMID: 26975663 PMCID: PMC4796321 DOI: 10.1038/ncomms10991] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. Type 1 diabetes is associated with the loss of self-tolerance to the insulin-producing β-cells in the pancreas. Here the authors show that vaccination with insulin mimetopes can induce human insulin-specific regulatory T cells to mediate tolerance in a humanized mouse model.
Collapse
|
9
|
van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial. PLoS One 2015; 10:e0143366. [PMID: 26599332 PMCID: PMC4657879 DOI: 10.1371/journal.pone.0143366] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5. Trial Registration: ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Collapse
|
10
|
Kasagi S, Zhang P, Che L, Abbatiello B, Maruyama T, Nakatsukasa H, Zanvit P, Jin W, Konkel JE, Chen W. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci Transl Med 2015; 6:241ra78. [PMID: 24944193 DOI: 10.1126/scitranslmed.3008895] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Harnessing regulatory T (Treg) cells is a promising approach for treating autoimmune disease. However, inducing antigen-specific Treg cells that target inflammatory immune cells without compromising beneficial immune responses has remained an unmet challenge. We developed a pathway to generate autoantigen-specific Treg cells in vivo, which showed therapeutic effects on experimental autoimmune encephalomyelitis and nonobese diabetes in mice. Specifically, we induced apoptosis of immune cells by systemic sublethal irradiation or depleted B and CD8(+) T cells with specific antibodies and then administered autoantigenic peptides in mice with established autoimmune diseases. We demonstrated mechanistically that apoptotic cells triggered professional phagocytes to produce transforming growth factor-β, under which the autoantigenic peptides directed naïve CD4(+) T cells to differentiate into Foxp3(+) Treg cells instead of into T effector cells in vivo. These antigen-specific Treg cells specifically ameliorated autoimmunity without compromising immune responses to bacterial antigen. We have thus successfully generated antigen-specific Treg cells with therapeutic activity toward autoimmunity. The findings may lead to the development of antigen-specific Treg cell-mediated immunotherapy for multiple sclerosis and type 1 diabetes and also other autoimmune diseases.
Collapse
Affiliation(s)
- Shimpei Kasagi
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pin Zhang
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Che
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brittany Abbatiello
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takashi Maruyama
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroko Nakatsukasa
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanne E Konkel
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - WanJun Chen
- Mucosal Immunology Section, Oral Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
McPherson SW, Heuss ND, Pierson MJ, Gregerson DS. Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells. J Neuroinflammation 2014; 11:205. [PMID: 25498509 PMCID: PMC4268905 DOI: 10.1186/s12974-014-0205-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously reported that the peripheral regulatory T cells (pTregs) generated 'on-demand' in the retina were crucial to retinal immune privilege, and in vitro analysis of retinal dendritic cells (DC) showed they possessed antigen presenting cell (APC) activity that promoted development of the Tregs and effector T cells (Teffs). Here, we expanded these findings by examining whether locally generated, locally acting pTregs were protective against spontaneous autoimmunity and autoimmunity mediated by interphotoreceptor retinoid-binding protein (IRBP). We also examined the APC capacity of retinal DC in vivo. METHODS Transgenic (Tg) mice expressing diphtheria toxin receptor (DTR) and/or green fluorescent protein (GFP) under control of the endogenous FoxP3 promoter (GFP only in FG mice, GFP and DTR in FDG mice) or the CD11c promoter (GFP and DTR in CDG mice) were used in conjunction with Tg mice expressing beta-galactosidase (βgal) as retinal neo-self antigen and βgal-specific TCR Tg mice (BG2). Retinal T cell responses were assayed by flow cytometry and retinal autoimmune disease assessed by histological examination. RESULTS Local depletion of the Tregs enhanced actively induced experimental autoimmune uveoretinitis to the highly expressed retinal self-antigen IRBP in FDG mice and spontaneous autoimmunity in βgal-FDG-BG2 mice, but not in mice lacking autoreactive T cells or their target antigen in the retina. The presence of retinal βgal downregulated the generation of antigen-specific Teffs and pTregs within the retina in response to local βgal challenge. Retinal DC depletion prevented generation of Tregs and Teffs within retina after βgal injection. Microglia remaining after DC depletion did not make up for loss of DC-dependent antigen presentation. CONCLUSIONS Our results suggest that local retinal Tregs protect against spontaneous organ-specific autoimmunity and that T cell responses within the retina require the presence of local DC.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Rm, 310, Lion's Research Bldg,,2001 6th St, SE,, Minneapolis 55455-3007, Minnesota, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells. Immunol Res 2014; 58:101-5. [PMID: 24371009 DOI: 10.1007/s12026-013-8476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the therapeutic approaches to type 1 diabetes (T1D) focuses on enhancement of regulatory T cell (Treg) activity, either by adoptive transfer or supplementation of supporting cytokines such as interleukin-2 (IL-2). In principle, this therapeutic design would greatly benefit of concomitant reduction in pathogenic cell burden. Experimental evidence indicates that physiological recovery from lymphopenia is dominated by evolution of effector and cytotoxic cells, which abolishes the therapeutic efficacy of Treg cells. Targeted and selective depletion of effector T cells has been achieved with killer Treg using Fas ligand protein and a fusion protein composed of IL-2 and caspase-3, which showed remarkable efficacy in modulating the course of inflammatory insulitis in NOD mice. We emphasize a critical consideration in design of therapeutic approaches to T1D, immunomodulation without lymphoreduction to avoid the detrimental consequences of rebound recovery from lymphopenia.
Collapse
|
14
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
15
|
McPherson SW, Heuss ND, Gregerson DS. Local "on-demand" generation and function of antigen-specific Foxp3+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4971-81. [PMID: 23585681 DOI: 10.4049/jimmunol.1202625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extrathymically derived regulatory T cells (iTregs) protect against autoimmunity to tissue-specific Ags. However, whether Ag-specific iTreg generation and function is limited to secondary lymphoid tissue or whether it can occur within the tissue-specific local environment of the cognate Ag remains unresolved. Mice expressing β-galactosidase (βgal) on a retina-specific promoter (βgal mice) in conjunction with mice expressing GFP and diphtheria toxin (DTx) receptor (DTR) under control of the Foxp3 promoter, and βgal-specific TCR transgenic (BG2) mice were used to examine this question. Local depletion (ocular DTx), but not systemic depletion (i.p. DTx), of βgal-specific iTregs enhanced experimental autoimmune uveoretinitis induced by activated βgal-specific effector T cells. Injections of small amounts of βgal into the anterior chamber of the eye produced similar numbers of βgal-specific iTregs in the retina whether the mouse was depleted of pre-existing, circulating Tregs. Taken together, these results suggest that protection from tissue-specific autoimmunity depends on the function of local Ag-specific iTregs and that the retina is capable of local, "on-demand" iTreg generation that is independent of circulating Tregs.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
16
|
Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming. PLoS One 2012; 7:e51845. [PMID: 23272178 PMCID: PMC3525659 DOI: 10.1371/journal.pone.0051845] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC), are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR) can function in a cell-extrinsic manner via the transmission of ER stress (TERS) to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+) T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+) T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.
Collapse
Affiliation(s)
- Navin R. Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Veronika Anufreichik
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey J. Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kevin T. Chiu
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | | | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease affecting millions of people worldwide. The disease is characterized by the loss of self-tolerance to the insulin-producing β-cells in the pancreas, the destruction of β-cells, and finally the development of chronic hyperglycemia at diagnosis of T1D. Its incidence and prevalence are rising dramatically, highlighting the need for immunotherapeutic strategies able to prevent or treat the disease in a safe and specific manner. Immunotherapeutic strategies are being developed, and aim to restore immunological self-tolerance, thereby limiting unwanted immunity and β-cell destruction. Foxp3+ regulatory T (Treg) cells exert essential functions to maintain and restore immunological self-tolerance. The identification of the transcription factor Foxp3 as the specification factor for the Treg cell lineage facilitated our understanding in the biology of Treg generation and function. This review highlights the current understanding of immunotherapeutic approaches as preventative and curative measures for autoimmune T1D. It includes an overview on early immunointervention studies, which made use of general immunosuppressive agents such as cyclosporin A, followed by a discussion on newly emerging clinical trials. Besides non-antigen-specific therapies, particular attention is given to antigen-specific generation of Foxp3+ Treg cells and their potential use to limit autoimmunity such as T1D.
Collapse
Affiliation(s)
- Benno Weigmann
- Research Campus of the Friedrich-Alexander University Erlangen-Nuernberg, Medical Clinic I, 91052 Erlangen, Germany
| | | | | |
Collapse
|