1
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
2
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
3
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:ph13110388. [PMID: 33202534 PMCID: PMC7696972 DOI: 10.3390/ph13110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
- Correspondence:
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
4
|
Casadó-Anguera V, Moreno E, Mallol J, Ferré S, Canela EI, Cortés A, Casadó V. Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacol Res 2018; 139:337-347. [PMID: 30472462 DOI: 10.1016/j.phrs.2018.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/01/2022]
Abstract
An increasing number of G protein-coupled receptors (GPCRs) have been reported to be expressed in the plasma membrane as dimers. Since most ligand binding data are currently fitted by classical equations developed only for monomeric receptors, the interpretation of data could be misleading in the presence of GPCR dimers. On the other hand, the equations developed from dimer receptor models assuming the existence of two orthosteric binding sites within the dimeric molecule offer the possibility to directly calculate macroscopic equilibrium dissociation constants for the two sites, an index of cooperativity (DC) that reflects the molecular communication within the dimer and, importantly, a constant of radioligand-competitor allosteric interaction (KDAB) in competitive assays. Here, we provide a practical way to fit competitive binding data that allows the interpretation of apparently anomalous results, such as competition curves that could be either bell-shaped, monophasic or biphasic depending on the assay conditions. The consideration of a radioligand-competitor allosteric interaction allows fitting these curve patterns both under simulation conditions and in real radioligand binding experiments, obtaining competitor affinity parameters closer to the actual values. Our approach is the first that, assuming the formation of receptor homodimers, is able to explain several experimental results previously considered erroneous due to their impossibility to be fitted. We also deduce the radioligand concentration responsible for the conversion of biphasic to monophasic or to bell-shaped curves in competitive radioligand binding assays. In conclusion, bell-shaped curves in competitive binding experiments constitute evidence for GPCR homodimerization.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Sergi Ferré
- National Institute on Drug Abuse, I.R.P., N.I.H., D.H.H.S., Baltimore, MD, 21224, USA.
| | - Enric I Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev 2018; 106:73-90. [PMID: 30278192 DOI: 10.1016/j.neubiorev.2018.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome. Physical association between two different GPCRs is linked to functional interactions which generates a novel entity, called heteromer, with specific ligand binding and signaling properties. Heteromerization is increasingly recognized to take place in the mesocorticolimbic pathway and to contribute to various aspects related to substance use disorder. This review focuses on heteromers identified in brain areas relevant to drug addiction. We report changes at the molecular and cellular levels that establish specific functional impact and highlight behavioral outcome in preclinical models. Finally, we briefly discuss selective targeting of native heteromers as an innovative therapeutic option.
Collapse
Affiliation(s)
- Lyes Derouiche
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|
6
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
7
|
Rossi M, Fasciani I, Marampon F, Maggio R, Scarselli M. The First Negative Allosteric Modulator for Dopamine D 2 and D 3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs. Mol Pharmacol 2017; 91:586-594. [PMID: 28265019 PMCID: PMC5438131 DOI: 10.1124/mol.116.107607] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2- and D3-receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound.
Collapse
Affiliation(s)
- Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Irene Fasciani
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Francesco Marampon
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Roberto Maggio
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Marco Scarselli
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| |
Collapse
|
8
|
Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 2016; 44:589-94. [PMID: 27068974 DOI: 10.1042/bst20150239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/11/2023]
Abstract
Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.
Collapse
|