1
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
2
|
Kinoshita K, Uemura M, Shimizu T, Kinoshita S, Marusawa H. Stepwise generation of AID knock-in and conditional knockout mice from a single gene-targeting event. Int Immunol 2021; 33:387-398. [PMID: 33903914 DOI: 10.1093/intimm/dxab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) encoded by the Aicda gene initiates class-switch recombination and somatic hypermutation of immunoglobulin genes. In addition to this function, AID is also implicated in the epigenetic regulation in pluripotent stem cells and in the oncogenesis of lymphoid and non-lymphoid origins. To examine AID's role in specific cell types, we developed mouse strains of conditional knockout (Aicda-FL) and knock-in with a red fluorescent protein gene (RFP) inserted into the Aicda locus (Aicda-RFP). These two strains were obtained from a single targeting event in embryonic stem cells by a three-loxP or tri-lox strategy. Partial and complete recombination among the three loxP sites in the Aicda-RFP locus gave rise to Aicda-FL and AID-deficient loci (Aicda-KO), respectively, after mating Aicda-RFP mice with Cre-expressing mice driven by tissue-non-specific alkaline phosphate promoter. We confirmed RFP expression in B cells of germinal centers of intestine-associated lymphoid tissue. Mice homozygous for each allele were obtained and were checked for AID activity by class-switch and hypermutation assays. AID activity was normal for Aicda-FL but partially and completely absent for Aicda-RFP and Aicda-KO, respectively. Aicda-FL and Aicda-RFP mice would be useful for studying AID function in subpopulations of B cells and in non-lymphoid cells.
Collapse
Affiliation(s)
- Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, 4-27-2 Kita-ando, Aoi-ku, Shizuoka 420-0881, Japan.,Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Munehiro Uemura
- Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shun Kinoshita
- Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto 606-8501, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Abstract
The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.
Collapse
|
4
|
Husain A, Xu J, Fujii H, Nakata M, Kobayashi M, Wang JY, Rehwinkel J, Honjo T, Begum NA. SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination. EMBO J 2020; 39:e102931. [PMID: 32511795 DOI: 10.15252/embj.2019102931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jianliang Xu
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Branton SA, Ghorbani A, Bolt BN, Fifield H, Berghuis LM, Larijani M. Activation-induced cytidine deaminase can target multiple topologies of double-stranded DNA in a transcription-independent manner. FASEB J 2020; 34:9245-9268. [PMID: 32437054 DOI: 10.1096/fj.201903036rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) mutates immunoglobulin genes and acts genome-wide. AID targets robustly transcribed genes, and purified AID acts on single-stranded (ss) but not double-stranded (ds) DNA oligonucleotides. Thus, it is believed that transcription is the generator of ssDNA for AID. Previous cell-free studies examining the relationship between transcription and AID targeting have employed a bacterial colony count assay wherein AID reverts an antibiotic resistance stop codon in plasmid substrates, leading to colony formation. Here, we established a novel assay where kb-long dsDNA of varying topologies is incubated with AID, with or without transcription, followed by direct sequencing. This assay allows for an unselected and in-depth comparison of mutation frequency and pattern of AID targeting in the absence of transcription or across a range of transcription dynamics. We found that without transcription, AID targets breathing ssDNA in supercoiled and, to a lesser extent, in relaxed dsDNA. The most optimal transcription only modestly enhanced AID action on supercoiled dsDNA in a manner dependent on RNA polymerase speed. These data suggest that the correlation between transcription and AID targeting may reflect transcription leading to AID-accessible breathing ssDNA patches naturally occurring in de-chromatinized dsDNA, as much as being due to transcription directly generating ssDNA.
Collapse
Affiliation(s)
- Sarah A Branton
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Brittany N Bolt
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Heather Fifield
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lesley M Berghuis
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Singh GB, Byun H, Ali AF, Medina F, Wylie D, Shivram H, Nash AK, Lozano MM, Dudley JP. A Protein Antagonist of Activation-Induced Cytidine Deaminase Encoded by a Complex Mouse Retrovirus. mBio 2019; 10:e01678-19. [PMID: 31409681 PMCID: PMC6692512 DOI: 10.1128/mbio.01678-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes.IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.
Collapse
Affiliation(s)
- Gurvani B Singh
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hyewon Byun
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Almas F Ali
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Frank Medina
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Dennis Wylie
- Computational Biology and Bioinformatics and Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, USA
| | - Haridha Shivram
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea K Nash
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mary M Lozano
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jaquelin P Dudley
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
8
|
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell 2017; 67:361-373.e4. [PMID: 28757211 PMCID: PMC5771415 DOI: 10.1016/j.molcel.2017.06.034] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.
Collapse
Affiliation(s)
- Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fei-Long Meng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Mohri T, Nagata K, Kuwamoto S, Matsushita M, Sugihara H, Kato M, Horie Y, Murakami I, Hayashi K. Aberrant expression of AID and AID activators of NF-κB and PAX5 is irrelevant to EBV-associated gastric cancers, but is associated with carcinogenesis in certain EBV-non-associated gastric cancers. Oncol Lett 2017; 13:4133-4140. [PMID: 28588701 PMCID: PMC5452920 DOI: 10.3892/ol.2017.5978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is a distinct subtype of gastric cancer characterized by clinicopathological features including lymphoepithelioma-like histology. Aberrant expression of activation-induced cytidine deaminase (AID) as a genomic modulator was demonstrated through pathogen-related nuclear factor κB (NF-κB) signaling in Helicobacter pylori-associated gastric cancer. To elucidate whether or not AID expression is relevant to carcinogenesis in EBVaGC, immunohistochemical expression of AID and AID-regulatory factors between EBVaGC and EBV-non-associated gastric carcinoma (GC) were evaluated, each using 15 cases of GC with lymphoid stroma (GCLS) and other types of GC. Aberrant expression of AID, NF-κB and paired box 5 (PAX5) were significantly decreased in EBVaGC (0/11, 1/11 and 1/11) compared with in EBV-non-associated GC (7/19, 12/19 and 11/19) (P=0.025, 0.005 and 0.01, respectively); however, no significant difference in c-Myb proto-oncogene expression was identified. AID expression was also decreased in EBV-associated GCLS (0/10) compared with in EBV-non-associated GCLS (3/5). Unexpectedly, decreased expression of NF-κB and PAX5 was observed in GCLS (1/15 and 2/15) compared with in GC without LS (12/15 and 10/15) (P<0.001 and P=0.003, respectively). Decreased AID expression observed in EBVaGC is consistent with the reported molecular characterization of hypermethylation and rare somatic gene mutation in EBVaGC. Only PAX5 was identified to be significantly associated with venous invasion (P=0.022). The results of the present study suggest that pathogen-induced AID expression may be irrelevant to carcinogenesis of EBVaGC, whereas it contributes to carcinogenesis in certain types of EBV-non-associated GC.
Collapse
Affiliation(s)
- Takashi Mohri
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Keiko Nagata
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Satoshi Kuwamoto
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.,Department of Diagnostic Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Michiko Matsushita
- Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Hirotsugu Sugihara
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Masako Kato
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Yasushi Horie
- Department of Diagnostic Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Ichiro Murakami
- Department of Pathology, Faculty of Medicine, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Kazuhiko Hayashi
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
10
|
Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst) 2016; 45:1-24. [DOI: 10.1016/j.dnarep.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
|
11
|
Lindley RA, Humbert P, Larner C, Akmeemana EH, Pendlebury CRR. Association between targeted somatic mutation (TSM) signatures and HGS-OvCa progression. Cancer Med 2016; 5:2629-40. [PMID: 27485054 PMCID: PMC5055158 DOI: 10.1002/cam4.825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
Evidence already exists that the activation‐induced cytidine deaminase (AID/APOBEC) and the adenosine deaminase (ADAR) families of enzymes are implicated as powerful mutagens in oncogenic processes in many somatic tissues. Each deaminase is identified by the DNA or RNA nucleotide sequence (“motif”) surrounding the nucleotide targeted for deamination. The primary objective of this study is to develop an in silico approach to identify nucleotide sequence changes of the target motifs of key deaminases during oncogenesis. If successful, a secondary objective is to investigate if such changes are associated with disease progression indicators that include disease stage and progression‐free survival time. Using a discovery cohort of 194 high‐grade serous ovarian adenocarcinoma (HGS‐OvCa) exomes, the results confirm the ability of the novel in silico approach used to identify changes in the preferred target motifs for AID, APOBEC3G, APOBEC3B, and ADAR1 during oncogenesis. Using this approach, a set of new cancer‐progression associated signatures (C‐PASs) were identified. Furthermore, it was found that the C‐PAS identified can be used to differentiate between the cohort of patients that remained progression‐free for longer than 60 months, from those in which disease progressed within 60 months (sensitivity 95%, specificity 90%). The spectrum of outcomes observed here could provide a foundation for future clinical assessment of susceptibility variants in ovarian, and several other cancers as disease progresses. The ability of the in silico methodology used to identify changes in deaminase motifs during oncogenesis also suggests new links between immune system function and tumorigenesis.
Collapse
Affiliation(s)
- Robyn A Lindley
- Department of Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,GMDx Pty Ltd, Melbourne, Victoria, 3000, Australia.
| | - Patrick Humbert
- Department of Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Cliff Larner
- Swinburne University of Technology, Hawthorn, Victoria, 3132, Australia
| | | | | |
Collapse
|
12
|
Nonaka T, Toda Y, Hiai H, Uemura M, Nakamura M, Yamamoto N, Asato R, Hattori Y, Bessho K, Minato N, Kinoshita K. Involvement of activation-induced cytidine deaminase in skin cancer development. J Clin Invest 2016; 126:1367-82. [PMID: 26974156 DOI: 10.1172/jci81522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/04/2016] [Indexed: 01/30/2023] Open
Abstract
Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.
Collapse
|
13
|
Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1545-54. [PMID: 26929374 DOI: 10.1073/pnas.1601678113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Collapse
|
14
|
Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nat Commun 2016; 7:10549. [PMID: 26842758 PMCID: PMC4742980 DOI: 10.1038/ncomms10549] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/25/2015] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage. Topoisomerase 1 (TOP1) relieves superhelical tension when DNA strands are unwound during transcription. Here, Husain et al. report that SMARCA4, an ATP-dependent chromatin remodeller, is associated with TOP1 and suppresses transcription-associated genomic instability.
Collapse
|
15
|
Qiao Y, Han X, Guan G, Wu N, Sun J, Pak V, Liang G. TGF-β triggers HBV cccDNA degradation through AID-dependent deamination. FEBS Lett 2016; 590:419-27. [PMID: 26867650 DOI: 10.1002/1873-3468.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/18/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is a viral center molecule for HBV infection and persistence. However, the cellular restriction factors of HBV cccDNA are not well understood. Here, we show that TGF-β can induce nuclear viral cccDNA degradation and hypermutation via activation-induced cytidine deaminase (AID) deamination activity in hepatocytes. This suppression by TGF-β is abrogated when AID or the activity of uracil-DNA glycosylase (UNG) is absent, which indicates that AID deamination and the UNG-mediated excision of uracil act in concert to degrade viral cccDNA. Moreover, the HBV core protein promotes the interaction between AID and viral cccDNA. Overall, our results indicate a novel molecular mechanism that allows cytokine TGF-β to restrict viral nuclear cccDNA in innate immunity, thereby suggesting a novel method for potentially eliminating cccDNA.
Collapse
Affiliation(s)
- Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of the National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Na Wu
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianbo Sun
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Vladimir Pak
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Guoxin Liang
- Key Laboratory of AIDS Immunology of the National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Lin JL, Lee WI, Huang JL, Chen PKT, Chan KC, Lo LJ, You YJ, Shih YF, Tseng TY, Wu MC. Immunologic assessment and KMT2D mutation detection in Kabuki syndrome. Clin Genet 2014; 88:255-60. [PMID: 25142838 DOI: 10.1111/cge.12484] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 12/31/2022]
Abstract
Kabuki or Niikawa-Kuroki syndrome (KS) is a rare disorder with multiple malformations and recurrent infections, especially otitis media. This study aimed to investigate the genetic defects in Kabuki syndrome and determine if immune status is related to recurrent otitis media. Fourteen patients from 12 unrelated families were enrolled in the 9-year study period (2005-2013). All had Kabuki faces, cleft palate, developmental delay, mental retardation, and the short fifth finger. Recurrent otitis media (12/14) and hearing impairment (8/14) were also more common features. Immunologic analysis revealed lower memory CD19+ cells (11/13), lower memory CD4+ cells (8/13), undetectable anti-HBs antibodies (7/13), and antibody deficiency (7/13), including lower IgA (4), IgG (2), and IgG2 (1). Naïve emigrant lymphocytes, lymphocyte proliferation function, complement activity, and superoxide production in polymorphonuclear cells were all normal. All the patients had KMT2D mutations and 10 novel mutations of R1252X, R1757X,Y1998C, P2550R fs2604X, Q4013X, G5379X, E5425K, R5432X, R5432W, and R5500W. Resembling the phenotype of common variable immunodeficiency, KS patients with antibody deficiency, decreased memory cells, and poor vaccine response increased susceptibility to recurrent otitis media. Large-scale prospective studies are warranted to determine if regular immunoglobulin supplementation decreases the frequency of otitis media and severity of hearing impairment.
Collapse
Affiliation(s)
- J-L Lin
- Division of Genetics and Endocrinology
| | - W-I Lee
- Primary Immunodeficiency Care and Research (PICAR) Institute.,Division of Allergy, Asthma and Rheumatology, Department of Pediatrics
| | - J-L Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute.,Division of Allergy, Asthma and Rheumatology, Department of Pediatrics
| | - P K-T Chen
- Division of Plasty, Department of Surgery
| | - K-C Chan
- Division of Ear, Nose and Throat, Department of Surgery, Chang Gung University College of Medicine and Chang Gung Children's and Memorial Hospital, Taoyuan, Taiwan
| | - L-J Lo
- Division of Plasty, Department of Surgery
| | - Y-J You
- Division of Genetics and Endocrinology
| | - Y-F Shih
- Primary Immunodeficiency Care and Research (PICAR) Institute
| | - T-Y Tseng
- Primary Immunodeficiency Care and Research (PICAR) Institute
| | - M-C Wu
- Division of Genetics and Endocrinology
| |
Collapse
|
17
|
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6:427-43. [DOI: 10.2217/epi.14.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations and genomic recombinations are the origin of oncogenesis, yet parts of developmental programs as well as immunity are intimately linked to, or even depend on, such DNA damages. Therefore, the balance between deleterious DNA damages and organismal survival utilizing DNA editing (modification and repair) is in continuous flux. The cytosine deaminases AID/APOBEC are a DNA editing family and actively participate in various biological processes. In conjunction with altered DNA repair, the mutagenic potential of the family allows for APOBEC3 proteins to restrict viral infection and transposons propagation, while AID can induce somatic hypermutation and class switch recombination in antibody genes. On the other hand, the synergy between effective DNA repair and the nonmutagenic potential of the DNA deaminases can induce local DNA demethylation to support epigenetic cellular identity. Here, we review the current state of knowledge on the mechanisms of action of the AID/APOBEC family in immunity and epigenetics.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
18
|
Hanada K, Graham DY. Helicobacter pylori and the molecular pathogenesis of intestinal-type gastric carcinoma. Expert Rev Anticancer Ther 2014; 14:947-54. [PMID: 24802804 DOI: 10.1586/14737140.2014.911092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is an inflammation-related cancer caused by long-term infection with the human bacterial pathogen, Helicobacter pylori. The pattern of acute-on-chronic inflammation causes progressive mucosal damage which may result in atrophy with metaplastic epithelia and eventually gastric cancer. Recently, it has been recognized that H. pylori can also cause genetic instability such as double-stranded DNA breaks and can produce gene activation and silencing via epigenetic pathways. As genetic instability is the hallmark of cancer, we highlight recent progress in understanding the gastric carcinogenesis in relation to H. pylori-related inflammation, H. pylori-induced double-stranded DNA breakage and aberrant gene expression as well as the mechanisms and role of H. pylori-associated epigenetic change in gene expression.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | |
Collapse
|
19
|
Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, Zhang H, Zou P, Zhong Z, Wang H, Wu Y, Li Q, Kong F, Chen Z. BCR-ABL1–positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia 2014; 28:1666-75. [DOI: 10.1038/leu.2014.51] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
|
20
|
C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion. Proc Natl Acad Sci U S A 2014; 111:2253-8. [PMID: 24469810 DOI: 10.1073/pnas.1324057111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR.
Collapse
|
21
|
Galashevskaya A, Sarno A, Vågbø CB, Aas PA, Hagen L, Slupphaug G, Krokan HE. A robust, sensitive assay for genomic uracil determination by LC/MS/MS reveals lower levels than previously reported. DNA Repair (Amst) 2013; 12:699-706. [PMID: 23742752 DOI: 10.1016/j.dnarep.2013.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
Considerable progress has been made in understanding the origins of genomic uracil and its role in genome stability and host defense; however, the main question concerning the basal level of uracil in DNA remains disputed. Results from assays designed to quantify genomic uracil vary by almost three orders of magnitude. To address the issues leading to this inconsistency, we explored possible shortcomings with existing methods and developed a sensitive LC/MS/MS-based method for the absolute quantification of genomic 2'-deoxyuridine (dUrd). To this end, DNA was enzymatically hydrolyzed to 2'-deoxyribonucleosides and dUrd was purified in a preparative HPLC step and analyzed by LC/MS/MS. The standard curve was linear over four orders of magnitude with a quantification limit of 5 fmol dUrd. Control samples demonstrated high inter-experimental accuracy (94.3%) and precision (CV 9.7%). An alternative method that employed UNG2 to excise uracil from DNA for LC/MS/MS analysis gave similar results, but the intra-assay variability was significantly greater. We quantified genomic dUrd in Ung(+/+) and Ung(-/-) mouse embryonic fibroblasts and human lymphoblastoid cell lines carrying UNG mutations. DNA-dUrd is 5-fold higher in Ung(-/-) than in Ung(+/+) fibroblasts and 11-fold higher in UNG2 dysfunctional than in UNG2 functional lymphoblastoid cells. We report approximately 400-600 dUrd per human or murine genome in repair-proficient cells, which is lower than results using other methods and suggests that genomic uracil levels may have previously been overestimated.
Collapse
Affiliation(s)
- Anastasia Galashevskaya
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
22
|
The importance of codon context for understanding the Ig-like somatic hypermutation strand-biased patterns in TP53 mutations in breast cancer. Cancer Genet 2013; 206:222-6. [DOI: 10.1016/j.cancergen.2013.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 01/24/2023]
|
23
|
Huong LT, Kobayashi M, Nakata M, Shioi G, Miyachi H, Honjo T, Nagaoka H. In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression. PLoS One 2013; 8:e61433. [PMID: 23613851 PMCID: PMC3628980 DOI: 10.1371/journal.pone.0061433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/08/2013] [Indexed: 12/12/2022] Open
Abstract
The Aicda gene encodes activation-induced cytidine deaminase (AID). Aicda is strongly transcribed in activated B cells to diversify immunoglobulin genes, but expressed at low levels in various other cells in response to physiological or pathological stimuli. AID’s mutagenic nature has been shown to be involved in tumor development. Here, we used a transgenic strategy with bacterial artificial chromosomes (BACs) to examine the in vivo functions of Aicda regulatory elements, which cluster in two regions: in the first intron (region 2), and approximately 8-kb upstream of the transcription start site (region 4). Deleting either of these regions completely abolished the expression of Aicda-BAC reporters, demonstrating these elements’ critical roles. Furthermore, we found that selectively deleting two C/EBP-binding sites in region 4 inactivated the enhancer activity of the region despite the presence of intact NF-κB-, STAT6- and Smad-binding sites. On the other hand, selectively deleting E2F- and c-Myb-binding sites in region 2 increased the frequency of germinal-center B cells in which the Aicda promoter was active, indicating that E2F and c-Myb act as silencers in vivo. Interestingly, the silencer deletion did not cause ectopic activation of the Aicda promoter, indicating that Aicda activation requires enhancer-specific stimulation. In summary, precise regulation of the Aicda promoter appears to depend on a coordinated balance of activities between enhancer and silencer elements.
Collapse
Affiliation(s)
- Le Thi Huong
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute of Virus Research, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoshi Nagaoka
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| |
Collapse
|
24
|
RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2013; 110:2246-51. [PMID: 23341589 DOI: 10.1073/pnas.1221921110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.
Collapse
|
25
|
Critical Analysis of Strand-Biased Somatic Mutation Signatures in TP53 versus Ig Genes, in Genome-Wide Data and the Etiology of Cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/921418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous analyses of rearranged immunoglobulin (Ig) variable genes (VDJs) concluded that the mechanism of Ig somatic hypermutation (SHM) involves the Ig pre-mRNA acting as a copying template resulting in characteristic strand biased somatic mutation patterns at A:T and G:C base pairs. We have since analysed cancer genome data and found the same mutation strand-biases, in toto or in part, in nonlymphoid cancers. Here we have analysed somatic mutations in a single well-characterised gene TP53. Our goal is to understand the genesis of the strand-biased mutation patterns in TP53—and in genome-wide data—that may arise by “endogenous” mechanisms as opposed to adduct-generated DNA-targeted strand-biased mutations caused by well-characterised “external” carcinogenic influences in cigarette smoke, UV-light, and certain dietary components. The underlying strand-biased mutation signatures in TP53, for many non-lymphoid cancers, bear a striking resemblance to the Ig SHM pattern. A similar pattern can be found in genome-wide somatic mutations in cancer genomes that have also mutated TP53. The analysis implies a role for base-modified RNA template intermediates coupled to reverse transcription in the genesis of many cancers. Thus Ig SHM may be inappropriately activated in many non-lymphoid tissues via hormonal and/or inflammation-related processes leading to cancer.
Collapse
|
26
|
Kato L, Stanlie A, Begum NA, Kobayashi M, Aida M, Honjo T. An evolutionary view of the mechanism for immune and genome diversity. THE JOURNAL OF IMMUNOLOGY 2012; 188:3559-66. [PMID: 22492685 DOI: 10.4049/jimmunol.1102397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.
Collapse
Affiliation(s)
- Lucia Kato
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|