1
|
Shetty S, Wu Y, Lloyd CZ, Mehta N, Liu Y, Woodruff ME, Segura T, Collier JH. Anti-Cytokine Active Immunotherapy Based on Supramolecular Peptides for Alleviating IL-1β-Mediated Inflammation. Adv Healthc Mater 2025; 14:e2401444. [PMID: 39113323 PMCID: PMC11802897 DOI: 10.1002/adhm.202401444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/08/2024] [Indexed: 02/08/2025]
Abstract
IL-1β is a principal proinflammatory cytokine underlying multiple local and systemic chronic inflammatory conditions including psoriasis, rheumatoid arthritis, inflammatory bowel disease, and type 2 diabetes. Passive immunotherapies and biologic drugs targeting IL-1β, while offering significant clinical benefit, nevertheless have limitations such as significant non-response rates, induction of anti-drug antibodies, and high costs. Here, an active immunotherapy raising antibody responses against IL-1β employing self-assembling peptide nanofibers is described. The nanofibers contain defined quantities of B-cell epitopes from IL-1β and exogenous T helper epitopes and employ the Q11 self-assembling peptide platform. Without adjuvant, the nanofibers raised durable anti-IL-1β antibody responses that inhibit IL-1β activity in vitro and in vivo. In a mouse model of imiquimod-induced psoriasis, prophylactic immunizations with the nanofibers diminished symptoms of epidermal thickening. This therapeutic effect is associated with biasing the immune response toward an anti-inflammatory IgG1/Th2 phenotype and a lowered expression of proinflammatory genes in the skin. Further, anti-IL-1β nanofibers induced therapeutic immunosuppressive CD62L+ Treg cells. This technology represents a potential alternative for passive immunotherapies and other biologics for treating chronic inflammatory conditions.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Christopher Z Lloyd
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Nalini Mehta
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Yining Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
2
|
Xie H, Shu C, Bai H, Sun P, Liu H, Qi J, Li S, Ye C, Gao F, Yuan M, Chen Y, Pan M, Yang X, Ma Y. A therapeutic HPV16 E7 vaccine in combination with active anti-FGF-2 immunization synergistically elicits robust antitumor immunity in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102254. [PMID: 32615335 DOI: 10.1016/j.nano.2020.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
FGF-2 accumulates in many tumor tissues and is closely related to the development of tumor angiogenesis and the immunosuppressive microenvironment. This study aimed to investigate whether active immunization against FGF-2 could modify antitumor immunity and enhance the efficacy of an HPV16 E7-specific therapeutic vaccine. Combined immunization targeting both FGF-2 and E7 significantly suppressed tumor growth, which was accompanied by significantly increased levels of IFN-γ-expressing splenocytes and effector CD8 T cells and decreased levels of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells(MDSCs) in both the spleen and tumor; in addition, the levels of FGF-2 and neovascularization in tumors were decreased in the mice receiving the combined immunization, and tumor cell apoptosis was promoted. The combination of an HPV16 E7-specific vaccine and active immunization against FGF-2 significantly enhances antitumor immune responses in mice with TC-1 tumors, indicating a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hanghang Xie
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Congyan Shu
- Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Pengyan Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Center for Disease Control and Prevention; Kunming, China
| | - Hongxian Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Sijin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Fulan Gao
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Mingcui Yuan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yongjun Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Manchang Pan
- Department of Burn, The Second Affiliated Hospital, Kunming Medical University,Kunming, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease.
| |
Collapse
|
3
|
Ko Y, Lee G, Kim B, Park M, Jang Y, Lim W. Modification of the RANKL-RANK-binding site for the immunotherapeutic treatment of osteoporosis. Osteoporos Int 2020; 31:983-993. [PMID: 31863125 DOI: 10.1007/s00198-019-05200-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
UNLABELLED Here, we proposed the use of mutated RANKL as an immunogen for active immunization and to induce anti-cytokine antibodies for osteoporosis treatment. INTRODUCTION Osteoclasts are responsible for bone resorption in bone-related disorders. Anti-cytokine therapeutic antibodies such as denosumab are effective for the treatment of osteoporosis. However, problems with antibody manufacturing and the immunogenicity caused by multiple antibody doses have led to the use of auto-cytokines as immunogens to induce anti-cytokine antibodies. METHODS RANKL was point-mutated based on the crystal structure of the complex of RANKL and its receptor RANK. RESULTS As a proof of concept, immunization with RANKL produced high levels of specific antibodies and blocked osteoclast development in vitro and inhibited osteoporosis in RANKL-treated or ovariectomized mouse models. CONCLUSIONS The results demonstrate the successful use of mutated RANKL as an immunogen for the induction of anti-RANKL immune response. This strategy is useful in general anti-cytokine immunotherapy to avoid toxic side effects of osteoporosis treatment.
Collapse
Affiliation(s)
- Y Ko
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - G Lee
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - B Kim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - M Park
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - Y Jang
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea
| | - W Lim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea.
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea.
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
4
|
Cha HR, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res 2020; 80:1615-1623. [PMID: 32066566 DOI: 10.1158/0008-5472.can-19-2948] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Therapeutic interventions to harness the immune system against tumor cells have provided mixed results in the past for several solid tumors and hematologic malignancies. However, immunotherapy has advanced considerably over the last decade and is becoming an integral combination for treating patients with advanced solid tumors. In particular, prostate cancer immunotherapy has shown modest efficacy for patients in the past. With several key discoveries on immune mechanisms and advanced molecular diagnostic platforms recently, immunotherapy is re-emerging as a viable option for prostate cancer, especially castration-resistant prostate cancer (CRPC), to stimulate antitumor immunity. Combination of patient-tailored immunotherapy and immune checkpoint blockers with conventional cytotoxic agents and androgen receptor-targeted therapies should move the field forward. With a recent adaptation that the application of immune checkpoint inhibitors has been successful in the treatment of more than a dozen solid tumors, including melanoma, lymphoma, liver, cervical, gastrointestinal, and breast cancers, it is a timely endeavor to harness immunotherapy for prostate cancer. Here, we provide an account on the progression of immunotherapy with new discoveries and precision approaches for tumors, in particular CRPC, from mechanistic standpoint to emerging limitations and future directions.
Collapse
Affiliation(s)
- Ha-Ram Cha
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,McWhorter School of Pharmacy, Samford University, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,PharmAbcine Inc., Yuseong-gu Daejeon, Republic of Korea
| | | |
Collapse
|
5
|
Liu C, Zhao Y, He W, Wang W, Chen Y, Zhang S, Ma Y, Gohda J, Ishida T, Walter TS, Owens RJ, Stuart DI, Ren J, Gao B. A RANKL mutant used as an inter-species vaccine for efficient immunotherapy of osteoporosis. Sci Rep 2015; 5:14150. [PMID: 26412210 PMCID: PMC4585926 DOI: 10.1038/srep14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023] Open
Abstract
Anti-cytokine therapeutic antibodies have been demonstrated to be effective in the treatment of several auto-immune disorders. However, The problems in antibody manufacture and the immunogenicity caused by multiple doses of antibodies inspire people to use auto-cytokine as immunogen to induce anti-cytokine antibodies. Nevertheless, the tolerance for inducing immune response against self-antigen has hindered the wide application of the strategy. To overcome the tolerance, here we proposed a strategy using the inter-species cytokine as immunogen for active immunization (TISCAI) to induce anti-cytokine antibody. As a proof of concept, an inter-species cytokine RANKL was successfully used as immunogen to induce anti-RANKL immune response. Furthermore, to prevent undesirable side-effects, the human RANKL was mutated based on the crystal structure of the complex of human RANKL and its rodent counterpart receptor RANK. We found, the antibodies produced blocked the osteoclast development in vitro and osteoporosis in OVX rat models. The results demonstrated this strategy adopted is very useful for general anti-cytokine immunotherapy for different diseases settings.
Collapse
Affiliation(s)
- Changzhen Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, NO.16, Dongzhimennei South Street, Dongcheng District, Beijing 100700, China
| | - Yunfeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wen He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yuan Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Shiqian Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yijing Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Takaomi Ishida
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Thomas S Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Raymond J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Science and Innovation Campus, Oxfordshire, OX11 0FA, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
6
|
Long Q, Huang W, Yao Y, Yang X, Sun W, Jin X, Li Y, Chu X, Liu C, Peng Z, Ma Y. Virus-like particles presenting interleukin-33 molecules: immunization characteristics and potentials of blockingIL-33/ST2 pathway in allergic airway inflammation. Hum Vaccin Immunother 2015; 10:2303-11. [PMID: 25424936 DOI: 10.4161/hv.29425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We sought to develop an IL-33 vaccine and evaluate its efficacy in a mouse model of asthma. The full-length molecules of putative mature IL-33 were inserted into the immunodominant epitope region of hepatitis B core antigen using gene recombination techniques. The expressed chimeric protein presented as virus-like particles (VLPs) under observation using an electron microscopy. To investigate immunization characteristics of the VLPs, mice were immunized by using different doses, adjuvants, and routes. The VLPs induced sustained and high titers of IL-33-specific IgG and IgA even without the use of a conventional adjuvant, and the lowered ratio of IgG1/IgG2a in vaccinated mice indicated a shift from Th2 to Th1-like responses. To assess the vaccine effects on blocking the signaling of IL-33/ST2 pathway, mice receiving 3 vaccinations subjected to intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). Control animals received carrier or PBS in place of the vaccine. Immunization with the VLPs significantly suppressed inflammatory cell number and IL-33 level in BALF. OVA -induced goblet cell hyperplasia and lung tissue inflammatory cell infiltration were significantly suppressed in vaccinated mice. Our data indicate that IL-33 molecule-based vaccine, which may block IL-33/ST2 signaling pathway on a persistent basis, holds potential for treatment of asthma and, by extension, other diseases where overexpressed IL-33 plays a pivotal role in pathogenesis.
Collapse
Affiliation(s)
- Qiong Long
- a Lab of Molecular Immunology; Institute of Medical Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Kunming, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jia T, Pan Y, Li J, Wang L. Strategies for active TNF-α vaccination in rheumatoid arthritis treatment. Vaccine 2013; 31:4063-8. [PMID: 23845805 DOI: 10.1016/j.vaccine.2013.06.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022]
Abstract
Local overexpression of tumor necrosis factors alpha (TNF-α) is critically involved in the inflammatory response and tissue destruction of rheumatoid arthritis (RA). Currently, the blockade of TNF-α by passive immunotherapy is indeed efficacious in the treatment of RA, but it still present some disadvantages. Induction of high level of anti-TNF-α neutralizing autoantibodies by TNF-α autovaccine has been developed to avoid these shortcomings. This review is to briefly introduce several vaccination approaches that have been used to induce a B cell response, including coupled TNF-α (entire/peptide) with a carrier protein, modified TNF-α with foreign Th cell epitopes, and engineered DNA vaccine. These methods showed remarkable therapeutic efficiency in experimental animals which indicated that active TNF-α immunization would be a promising and cost-effective new treatment option for RA.
Collapse
Affiliation(s)
- Tingting Jia
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Bouaziz JD, Buanec HL, Zagury D, Bagot M, Bensussan A. Actualités sur l’immunothérapie anti-cytokine par les vaccins kinoïdes dans le traitement des maladies inflammatoires. Med Sci (Paris) 2013; 29:669-70. [DOI: 10.1051/medsci/2013296023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Uyttenhove C, van Snick J. [Auto-vaccines: an immunological alternative to gene silencing]. Med Sci (Paris) 2013; 29:425-9. [PMID: 23621939 DOI: 10.1051/medsci/2013294017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Auto-vaccination is a procedure that recently attracted the interest of a growing number of investigators as an alternative to gene inactivation for functional studies of cytokines or other mediators. It is based on the observation that autologous cytokines cross-linked to a foreign protein or peptide are recognized by self-reactive B cells that present foreign peptides, and by doing so attract illicit help from helper T cells that recognize the foreign peptide on the self-reactive B cell MHC Class II complex. This leads to the production of antibodies reacting with self-proteins and thus to neutralization of the targeted factor. Here, we summarize the different techniques that were successful in breaking this self-tolerance and provide several examples of the functional consequences of these auto-vaccines. An additional output of auto-vaccination is the production of mouse monoclonal antibodies against mouse factors. Such antibodies have obvious advantages for long-term use in vivo.
Collapse
Affiliation(s)
- Catherine Uyttenhove
- Institut Ludwig pour la Recherche sur le Cancer et Unité de Génétique Cellulaire, Université Catholique de Louvain, 74 Avenue Hippocrate, 1200 Bruxelles, Belgique
| | | |
Collapse
|