1
|
Mo F, Tang Y, Shen H, Wu L, Liu Q, Nie S, Li M, Ling C. HIF1α/miR-146α/TRAF6/NF-κB axis modulates hepatic iron overload-induced inflammation. J Nutr Biochem 2024; 125:109499. [PMID: 37875229 DOI: 10.1016/j.jnutbio.2023.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Transfusional therapy is used to cure anemia but raises the risk of hepatic iron overload (IO), which triggers oxidative stress damage, inflammation, and failure even fibrosis. microRNAs play a vital role in developing hepatic diseases. This study presented the mechanism by which IO induce hepatic inflammation through microRNAs. In this study, microRNA expression profiling in the liver was observed after IO for 2 weeks, in which the target microRNA will be found. IO activating the miR-146α/TRAF6/NF-κB pathway was validated, and the molecular mechanism of the IO-induced decrease of miR-146α in the liver was studied in vivo and in vitro. The expression of TRAF6/NF-κB (p65)-dependent inflammatory factors increased, whereas the expression of miR-146α decreased during the IO-induced inflammatory response in the liver. The reduced expression of HNF4α caused by HIF1α and miR-34α may decrease the expression of miR-146α. Overexpression of miR-146α alleviated the hepatic inflammatory response caused by IO. Our findings indicate that miR-146α is a key factor in inducing hepatic IO inflammation, which will be another potential target to prevent IO-induced hepatic damage.
Collapse
Affiliation(s)
- Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lusha Wu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qing Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Min Li
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China; Institute of International Medical Science and Technology, Sanda University, Shanghai, China.
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Progressive Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10123401. [PMID: 34943908 PMCID: PMC8699709 DOI: 10.3390/cells10123401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive form of non-alcoholic fatty liver disease. Its global incidence is increasing and makes NASH an epidemic and a public health threat. Non-alcoholic fatty liver disease is associated with major morbidity and mortality, with a heavy burden on quality of life and liver transplant requirements. Due to repeated insults to the liver, patients are at risk for developing hepatocellular carcinoma. The progression of NASH was initially defined according to a two-hit model involving an initial development of steatosis, followed by a process of lipid peroxidation and inflammation. In contrast, current evidence proposes a “multi-hit” or “multi-parallel hit” model that includes multiple pathways promoting progressive fibrosis and oncogenesis. This model includes multiple cellular, genetic, immunological, metabolic, and endocrine pathways leading to hepatocellular carcinoma development, underscoring the complexity of this disease.
Collapse
|
3
|
The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases. Clin Chim Acta 2021; 523:374-379. [PMID: 34678296 DOI: 10.1016/j.cca.2021.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a range of conditions caused by a build-up of fat in the liver. It is usually seen in people who are overweight or obese. Increasingly common around the world, this disease is the most common chronic liver disease in the United States, affecting about a quarter of the population. Recently, the designation of NAFLD as 'metabolic dysfunction-associated fatty liver disease' (MAFLD) has been a subject of current debate. In this context, 'insulin resistance' is the underlying common and basic pathophysiological mechanism of metabolic dysfunction due to its association with obesity, type 2 diabetes mellitus (T2DM), metabolic syndrome, dyslipidemia and NAFLD. All these pathological conditions are among the metabolic risk factors for cardiovascular diseases, too. Also, due to the bidirectional causality between NAFLD and cardiovascular diseases, a liver-heart axis is suggested. Therefore, various factors such as insulin resistance as well as systemic inflammation, cytokines, oxidative stress, adipokines, hepatokines, genes and intestinal microbiota have been identified as possible pathogenic factors that play a role in the explanation of the complex NAFLD and cardiovascular risk relationship. Recent data and cumulative evidence show that electronegative low-density lipoprotein [LDL (-)/L5] cholesterol is a promising biomarker for complex organ interactions and diseases associated with liver-heart axis. In this mini review, we focus not only on recent data on NAFLD mechanisms, but also on the potential of the lipid mediator LDL (-)/L5 as a diagnostic and therapeutic target for liver-heart line diseases.
Collapse
|
4
|
Zhang Q, Wang J, Huang F, Yao Y, Xu L. Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages. Dig Liver Dis 2021; 53:598-605. [PMID: 33172809 DOI: 10.1016/j.dld.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease, which causes serious health problems worldwide. Hyperleptinemia and inflammatory stress are crucial in the progression of NAFLD. However, the relationship between leptin and immune cells or hepatocytes is still unclear. AIMS This study aimed to clarify the regulatory mechanism of leptin-mediated disease progression through immune cells and its relationship with hepatocytes. METHODS An NAFLD rat model was established to verify the relationship between hyperleptinemia and CD8+ T lymphocytes and cytokines in liver tissue. CD8+ T lymphocytes isolated from blood mononuclear cells were co-cultured with macrophages or hepatocytes stimulated with leptin or treated with granzyme inhibitors to observe target cell morphology and expression of pivotal protein family members. RESULTS CD8+ T lymphocyte infiltration positively correlated with blood leptin, IL-18 and IL-1β levels and was related to macrophage recruitment and differentiation in a rat model of NAFLD. Leptin could induce activated caspase-1 and caspase-3 in hepatocytes and trigger hepatocyte pyroptosis. CONCLUSIONS Leptin may regulate the pyroptotic-like death of macrophages and hepatocytes through CD8+ T lymphocytes in NAFLD progression. The intervention of related pathways of leptin and immune cells may provide a promising strategy for treating NAFLD.
Collapse
Affiliation(s)
- Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan 215300, China.
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan 215300, China
| | - Feng Huang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan 215300, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan 215300, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
5
|
Lu HF, Lai YH, Huang HC, Lee IJ, Lin LC, Liu HK, Tien HH, Huang C. Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice. J Ginseng Res 2020; 44:238-246. [PMID: 32148405 PMCID: PMC7031743 DOI: 10.1016/j.jgr.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/17/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. METHODS This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. RESULTS GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. CONCLUSION GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.
Collapse
Affiliation(s)
- Hsu-Feng Lu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu, Taiwan
| | - I-Jung Lee
- Department of Kampo Medicine, Yokohama University of Pharmacy, Kanagawa, Japan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Hsuan Tien
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| |
Collapse
|
6
|
Qiu Y, Wang S, Wan T, Ye M, Jiang R, Pei L, Yang L. Blood-based novel biomarkers for nonalcoholic steatohepatitis. Biomark Med 2018; 12:501-515. [PMID: 29712439 DOI: 10.2217/bmm-2017-0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nonalcoholic fatty liver disease has become a social health challenge of global concern. The term nonalcoholic steatohepatitis (NASH) is a more severe condition than simple steatosis and distinguishing NASH from nonalcoholic fatty liver disease is particularly important. Liver biopsy remains a gold standard in diagnosing NASH. Meanwhile, radiological techniques such as ultrasonography and MRI are also applied widely. However, the invasive and expensive examination is not suitable for screening, and there is a great need for reliable and appropriate biomarkers to screen patients for NASH. Based on the current studies of blood-based novel biomarkers, we attempt to summarize the latest findings on biomarkers for NASH, including blood biomarkers encompassing proteins, lipids and miRNAs; the correlation between extracellular vesicles and NASH; and treatment strategies for NASH.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Sufan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Ting Wan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Mingtong Ye
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Rui Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Lei Pei
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| | - Lili Yang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China
| |
Collapse
|
7
|
Wong GLH. Non-invasive assessments for liver fibrosis: The crystal ball we long for. J Gastroenterol Hepatol 2018; 33:1009-1015. [PMID: 29380413 DOI: 10.1111/jgh.14103] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022]
Abstract
Non-invasive assessment of liver fibrosis has been one of the most rapidly advancing fields in hepatology in the last decade. Progressive liver fibrosis results in cirrhosis, hepatocellular carcinoma (HCC), and various liver-related complications in essentially all chronic liver diseases. Assessment of liver fibrosis allows clinicians to determine the prognosis, need of treatment, disease progression, and response to treatment in patients with chronic liver disease. Liver biopsy has been the gold standard in last few decades and most adopted diagnostic tool in clinical trials. Nonetheless, it is impractical to apply the test in a large number of patients or to do it serially. Hence, various non-invasive assessments have been developed and adopted in some international management guidelines. Liver stiffness measurement (LSM) with transient elastography is one of the most widely validated non-invasive assessments for liver fibrosis. It is an accurate and reproducible method to predict advanced fibrosis in chronic hepatitis B. Using transient elastography, it is possible to perform repeated liver fibrosis assessments on a large number of asymptomatic patients. The key challenge of his tool is the confounding effect of alanine aminotransferase (ALT) level, such that decrease in LSM may only reflect ALT normalization, hence not accurate enough to indicate regression of liver fibrosis. This may be partially handled by combining LSM with a serum-based formula, which is independent of ALT such as the Forns index and enhanced liver fibrosis test. An LSM-based HCC risk score is useful to prioritize patients for HCC surveillance.
Collapse
Affiliation(s)
- Grace Lai-Hung Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
8
|
Zeman M, Macášek J, Burda M, Tvrzická E, Vecka M, Krechler T, Staňková B, Hrabák P, Žák A. Chronic pancreatitis and the composition of plasma phosphatidylcholine fatty acids. Prostaglandins Leukot Essent Fatty Acids 2016; 108:38-44. [PMID: 27154363 DOI: 10.1016/j.plefa.2016.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Chronic pancreatitis (CP) is an irreversible inflammatory disorder characterized by the destruction of both exocrine and endocrine tissue. There is growing evidence that dysregulation of fatty acid (FA) metabolism is connected with many diseases; however, there are few data concerning FA composition in CP. Therefore, we analyzed FA profiles in plasma phosphatidylcholines in 96 patients with CP and in 108 control subjects (CON). The patients with CP had, in comparison with CON, increased sum of monounsaturated FA (ΣMUFA) and decreased content of polyunsaturated FA (PUFA) in both n-6 and n-3 families. Moreover, CP patients had increased indexes for delta-9, delta-6 desaturases, and fall in activity of delta-5 desaturase. Increased ratio of 16:1n-7/18:2n-6 (marker of essential n-6 FA deficiency), was more prevalent among CP patients. These changes implicated decreased fat intake, including n-3 as well as n-6 PUFA, and intrinsic changes in FA metabolism due to the alteration of delta desaturase activities.
Collapse
Affiliation(s)
- Miroslav Zeman
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Jaroslav Macášek
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, CE IT4Innovations, University of Ostrava, Czech Republic
| | - Eva Tvrzická
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Marek Vecka
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic.
| | - Tomáš Krechler
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Barbora Staňková
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Petr Hrabák
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| | - Aleš Žák
- Fourth Department of Medicine, First Medical Faculty, Charles University, General University Hospital in Prague, Czech Republic
| |
Collapse
|
9
|
Forn-Cuní G, Varela M, Fernández-Rodríguez CM, Figueras A, Novoa B. Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish. J Endocrinol 2015; 224:159-70. [PMID: 25371540 DOI: 10.1530/joe-14-0398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity- and metabolic syndrome-related diseases are becoming important medical challenges for the western world. Non-alcoholic fatty liver disease (NAFLD) is a manifestation of these altered conditions in the liver, and inflammation appears to be a factor that is tightly connected to its evolution. In this study, we used a diet-induced obesity approach in zebrafish (Danio rerio) based on overfeeding to analyze liver transcriptomic modulation in the disease and to determine how obesity affects the immune response against an acute inflammatory stimulus such as lipopolysaccharide (LPS). Overfed zebrafish developed an obese phenotype, showed signs of liver steatosis, and its modulation profile resembled that observed in humans, with overexpression of tac4, col4a3, col4a5, lysyl oxidases, and genes involved in retinoid metabolism. In response to LPS, healthy fish exhibited a typical host defense reaction comparable to that which occurs in mammals, whereas there was no significant gene modulation when comparing expression in the liver of LPS-stimulated and non-stimulated obese zebrafish at the same statistical level. The stimulation of obese fish represents a double-hit to the already damaged liver and can help understand the evolution of the disease. Finally, a comparison of the differential gene activation between stimulated healthy and obese zebrafish revealed the expected difference in the metabolic state between healthy and diseased liver. The differentially modulated genes are currently being studied as putative new pathological markers in NAFLD-stimulated liver in humans.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Monica Varela
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Conrado M Fernández-Rodríguez
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Antonio Figueras
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| |
Collapse
|
10
|
Sapp V, Gaffney L, EauClaire SF, Matthews RP. Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 2014; 60:1581-92. [PMID: 25043405 DOI: 10.1002/hep.27284] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD), the accumulation of lipid within hepatocytes, is increasing in prevalence. Increasing fructose consumption correlates with this increased prevalence, and rodent studies directly support fructose leading to NAFLD. The mechanisms of NAFLD and in particular fructose-induced lipid accumulation remain unclear, although there is evidence for a role for endoplasmic reticulum (ER) stress and oxidative stress. We have evidence that NAFLD models demonstrate activation of the target of rapamycin complex 1 (Torc1) pathway. We set out to assess the contribution of ER stress, oxidative stress, and Torc1 up-regulation in the development of steatohepatitis in fructose-treated larval zebrafish. Zebrafish were treated with fructose or glucose as a calorie-matched control. We also treated larvae with rapamycin, tunicamycin (ER stress), or valinomycin (oxidative stress). Fish were stained with oil red O to assess hepatic lipid accumulation, and we also performed quantitative polymerase chain reaction (qPCR)and western blot analysis. We performed immunostaining on samples from patients with NAFLD and nonalcoholic steatohepatitis (NASH). Treatment with fructose induced hepatic lipid accumulation, mitochondrial abnormalities, and ER defects. In addition, fructose-treated fish showed activation of inflammatory and lipogenic genes. Treatment with tunicamycin or valinomycin also induced hepatic lipid accumulation. Expression microarray studies of zebrafish NAFLD models showed an elevation of genes downstream of Torc1 signaling. Rapamycin treatment of fructose-treated fish prevented development of hepatic steatosis, as did treatment of tunicamycin- or valinomycin-treated fish. Examination of liver samples from patients with hepatic steatosis demonstrated activation of Torc1 signaling. CONCLUSION Fructose treatment of larval zebrafish induces hepatic lipid accumulation, inflammation, and oxidative stress. Our results indicate that Torc1 activation is required for hepatic lipid accumulation across models of NAFLD, and in patients.
Collapse
Affiliation(s)
- Valerie Sapp
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | | | | | | |
Collapse
|
11
|
Abstract
Liver fat, iron, and combined overload are common manifestations of diffuse liver disease and may cause lipotoxicity and iron toxicity via oxidative hepatocellular injury, leading to progressive fibrosis, cirrhosis, and eventually, liver failure. Intracellular fat and iron cause characteristic changes in the tissue magnetic properties in predictable dose-dependent manners. Using dedicated magnetic resonance pulse sequences and postprocessing algorithms, fat and iron can be objectively quantified on a continuous scale. In this article, we will describe the basic physical principles of magnetic resonance fat and iron quantification and review the imaging techniques of the "past, present, and future." Standardized radiological metrics of fat and iron are introduced for numerical reporting of overload severity, which can be used toward objective diagnosis, grading, and longitudinal disease monitoring. These noninvasive imaging techniques serve an alternative or complimentary role to invasive liver biopsy. Commercial solutions are increasingly available, and liver fat and iron quantitative imaging is now within reach for routine clinical use and may soon become standard of care.
Collapse
Affiliation(s)
- Takeshi Yokoo
- From the *Department of Radiology, †Advanced Imaging Research Center, and ‡Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
12
|
Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N. Delta-5 and Delta-6 Desaturases: Crucial Enzymes in Polyunsaturated Fatty Acid-Related Pathways with Pleiotropic Influences in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:61-81. [DOI: 10.1007/978-3-319-07320-0_7] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|