1
|
Chen S, Zeng N, Liu GY, Wang H, Lin T, Tai Y, Chen C, Fang Y, Chuang Y, Kao C, Cheng H, Wu B, Sun P, Bayansan O, Chiu Y, Shih C, Chung W, Yang J, Wang LH, Chiang P, Chen C, Wagner OI, Wang Y, Lin Y. Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405568. [PMID: 39401410 PMCID: PMC11615828 DOI: 10.1002/advs.202405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Intracellular trafficking, an extremely complex network, dynamically orchestrates nearly all cellular activities. A versatile method that enables the manipulation of target transport pathways with high spatiotemporal accuracy in vitro and in vivo is required to study how this network coordinates its functions. Here, a new method called RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks) is presented. Utilizing inducible dimerization between target vesicles and selective cytoskeletons, RIVET can spatiotemporally halt numerous intracellular trafficking pathways within seconds in a reversible manner. Its highly specific perturbations allow for the real-time dissection of the dynamic relationships among different trafficking pathways. Moreover, RIVET is capable of inhibiting receptor-mediated endocytosis. This versatile system can be applied from the cellular level to whole organisms. RIVET opens up new avenues for studying intracellular trafficking under various physiological and pathological conditions and offers potential strategies for treating trafficking-related disorders.
Collapse
Affiliation(s)
- Shiau‐Chi Chen
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Neng‐Jie Zeng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Grace Y. Liu
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsien‐Chu Wang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Tzu‐Ying Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ling Tai
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Chiao‐Yun Chen
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yin Fang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Chien Chuang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ching‐Lin Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsuan Cheng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Bing‐Huang Wu
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Pin‐Chiao Sun
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yu‐Ting Chiu
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Chi‐Hsuan Shih
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Wen‐Hong Chung
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jia‐Bin Yang
- Institute of Molecular and Cellular BiologyNational Taiwan UniversityTaipei106319Taiwan
| | - Lily Hui‐Ching Wang
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
- School of MedicineNational Tsing Hua UniversityHsinChu300044Taiwan
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Po‐Han Chiang
- Institute of Biomedical EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Chun‐Hao Chen
- Institute of Molecular and Cellular BiologyNational Taiwan UniversityTaipei106319Taiwan
| | - Oliver I. Wagner
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ching Wang
- Department of PharmacologyCollege of MedicineNational Cheng Kung UniversityTainan701401Taiwan
| | - Yu‐Chun Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
2
|
Nakazato R, Matsuda Y, Ijaz F, Ikegami K. Circadian oscillation in primary cilium length by clock genes regulates fibroblast cell migration. EMBO Rep 2023; 24:e56870. [PMID: 37971148 DOI: 10.15252/embr.202356870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Various mammalian cells have autonomous cellular clocks that are produced by the transcriptional cycle of clock genes. Cellular clocks provide circadian rhythms for cellular functions via transcriptional and cytoskeletal regulation. The vast majority of mammalian cells possess a primary cilium, an organelle protruding from the cell surface. Here, we investigated the little-known relationship between circadian rhythm and primary cilia. The length and number of primary cilia showed circadian dynamics both in vitro and in vivo. The circadian rhythm of primary cilium length was abolished by SR9011 and Bmal1 knockout. A centrosomal protein, pericentrin, transiently accumulates in centriolar satellites, the base of primary cilia at the shortest cilia phase, and induces elongation of primary cilia at the longest cilia phase in the circadian rhythm of primary cilia. In addition, rhythmic cell migration during wound healing depends on the length of primary cilia and affects the rate of wound healing. Our findings demonstrate that the circadian dynamics of primary cilium length by clock genes control fibroblast migration and could provide new insights into chronobiology.
Collapse
Affiliation(s)
- Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Matsuda
- Hiroshima University School of Medicine, Hiroshima, Japan
| | - Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
3
|
Takahashi H, Fujimoto T, Yaoi T, Fushiki S, Itoh K. Leukemia inhibitory factor shortens primary cilia by upregulating C-C motif chemokine 2 in human neural stem/progenitor cells. Genes Cells 2023; 28:868-880. [PMID: 37837427 DOI: 10.1111/gtc.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Hisashi Takahashi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
4
|
Odabasi E, Conkar D, Deretic J, Batman U, Frikstad KAM, Patzke S, Firat-Karalar EN. CCDC66 regulates primary cilium length and signaling via interactions with transition zone and axonemal proteins. J Cell Sci 2023; 136:286879. [PMID: 36606424 DOI: 10.1242/jcs.260327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The primary cilium is a microtubule-based organelle that serves as a hub for many signaling pathways. It functions as part of the centrosome or cilium complex, which also contains the basal body and the centriolar satellites. Little is known about the mechanisms by which the microtubule-based ciliary axoneme is assembled with a proper length and structure, particularly in terms of the activity of microtubule-associated proteins (MAPs) and the crosstalk between the different compartments of the centrosome or cilium complex. Here, we analyzed CCDC66, a MAP implicated in cilium biogenesis and ciliopathies. Live-cell imaging revealed that CCDC66 compartmentalizes between centrosomes, centriolar satellites, and the ciliary axoneme and tip during cilium biogenesis. CCDC66 depletion in human cells causes defects in cilium assembly, length and morphology. Notably, CCDC66 interacts with the ciliopathy-linked MAPs CEP104 and CSPP1, and regulates axonemal length and Hedgehog pathway activation. Moreover, CCDC66 is required for the basal body recruitment of transition zone proteins and intraflagellar transport B (IFT-B) machinery. Overall, our results establish CCDC66 as a multifaceted regulator of the primary cilium and provide insight into how ciliary MAPs and subcompartments cooperate to ensure assembly of functional cilia.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Deniz Conkar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey.,School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
6
|
Moruzzi N, Valladolid-Acebes I, Kannabiran SA, Bulgaro S, Burtscher I, Leibiger B, Leibiger IB, Berggren PO, Brismar K. Mitochondrial impairment and intracellular reactive oxygen species alter primary cilia morphology. Life Sci Alliance 2022; 5:5/12/e202201505. [PMID: 36104081 PMCID: PMC9475181 DOI: 10.26508/lsa.202201505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
This work shows how altering energetic status and promoting intracellular/mitochondrial ROS induces cell-dependent ciliary impairments, which is relevant in diseases characterized by these features. Primary cilia have recently emerged as cellular signaling organelles. Their homeostasis and function require a high amount of energy. However, how energy depletion and mitochondria impairment affect cilia have barely been addressed. We first studied the spatial relationship between a mitochondria subset in proximity to the cilium in vitro, finding similar mitochondrial activity measured as mitochondrial membrane potential compared with the cellular network. Next, using common primary cilia cell models and inhibitors of mitochondrial energy production, we found alterations in cilia number and/or length due to energy depletion and mitochondrial reactive oxygen species (ROS) overproduction. Finally, by using a mouse model of type 2 diabetes mellitus, we provided in vivo evidence that cilia morphology is impaired in diabetic nephropathy, which is characterized by ROS overproduction and impaired mitochondrial metabolism. In conclusion, we showed that energy imbalance and mitochondrial ROS affect cilia morphology and number, indicating that conditions characterized by mitochondria and radicals imbalances might lead to ciliary impairment.
Collapse
Affiliation(s)
- Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sukanya A Kannabiran
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Bulgaro
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Ignatenko O, Malinen S, Rybas S, Vihinen H, Nikkanen J, Kononov A, Jokitalo ES, Ince-Dunn G, Suomalainen A. Mitochondrial dysfunction compromises ciliary homeostasis in astrocytes. J Biophys Biochem Cytol 2022; 222:213692. [PMID: 36383135 PMCID: PMC9674092 DOI: 10.1083/jcb.202203019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Astrocytes, often considered as secondary responders to neurodegeneration, are emerging as primary drivers of brain disease. Here we show that mitochondrial DNA depletion in astrocytes affects their primary cilium, the signaling organelle of a cell. The progressive oxidative phosphorylation deficiency in astrocytes induces FOXJ1 and RFX transcription factors, known as master regulators of motile ciliogenesis. Consequently, a robust gene expression program involving motile cilia components and multiciliated cell differentiation factors are induced. While the affected astrocytes still retain a single cilium, these organelles elongate and become remarkably distorted. The data suggest that chronic activation of the mitochondrial integrated stress response (ISRmt) in astrocytes drives anabolic metabolism and promotes ciliary elongation. Collectively, our evidence indicates that an active signaling axis involving mitochondria and primary cilia exists and that ciliary signaling is part of ISRmt in astrocytes. We propose that metabolic ciliopathy is a novel pathomechanism for mitochondria-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Olesia Ignatenko
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Malinen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sofiia Rybas
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joni Nikkanen
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | | | - Eija S. Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gulayse Ince-Dunn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Inaba M, Ridwan SM, Antel M. Removal of cellular protrusions. Semin Cell Dev Biol 2022; 129:126-134. [PMID: 35260295 PMCID: PMC9378436 DOI: 10.1016/j.semcdb.2022.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.
Collapse
Affiliation(s)
- Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
9
|
Schmidt S, Luecken MD, Trümbach D, Hembach S, Niedermeier KM, Wenck N, Pflügler K, Stautner C, Böttcher A, Lickert H, Ramirez-Suastegui C, Ahmad R, Ziller MJ, Fitzgerald JC, Ruf V, van de Berg WDJ, Jonker AJ, Gasser T, Winner B, Winkler J, Vogt Weisenhorn DM, Giesert F, Theis FJ, Wurst W. Primary cilia and SHH signaling impairments in human and mouse models of Parkinson's disease. Nat Commun 2022; 13:4819. [PMID: 35974013 PMCID: PMC9380673 DOI: 10.1038/s41467-022-32229-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sina Hembach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Kristina M Niedermeier
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Nicole Wenck
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Klaus Pflügler
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Constantin Stautner
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Ciro Ramirez-Suastegui
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Ruhel Ahmad
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
| | - Julia C Fitzgerald
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking (CNAB), Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Allert J Jonker
- Section Clinical Neuroanatomy and Biobanking (CNAB), Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, 91054, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Daniela M Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748, Garching bei München, Germany.
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
| |
Collapse
|
10
|
Tiryaki F, Deretic J, Firat-Karalar EN. ENKD1 is a centrosomal and ciliary microtubule-associated protein important for primary cilium content regulation. FEBS J 2022; 289:3789-3812. [PMID: 35072334 DOI: 10.1111/febs.16367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Centrioles and cilia are conserved, microtubule-based structures critical for cell function and development. Their dysfunction causes cancer and developmental disorders. How microtubules are organized into ordered structures by microtubule-associated proteins (MAPs) and tubulin modifications is best understood during mitosis but is largely unexplored for the centrioles and the ciliary axoneme, which are composed of stable microtubules that maintain their length at a steady-state. In particular, we know little about the identity of the centriolar and ciliary MAPs and how they work together during the assembly and maintenance of the cilium and centriole. Here, we identified the Enkurin domain containing 1 (ENKD1) as a component of the centriole wall and the axoneme in mammalian cells and showed that it has extensive proximity interactions with these compartments and MAPs. Using in vitro and cellular assays, we found that ENKD1 is a new MAP that regulates microtubule organization and stability. Consistently, we observed an increase in tubulin polymerization and microtubule stability, as well as disrupted microtubule organization in ENKD1 overexpression. Cells depleted for ENKD1 were defective in ciliary length and content regulation and failed to respond to Hedgehog pathway activation. Together, our results advance our understanding of the functional and regulatory relationship between MAPs and the primary cilium.
Collapse
Affiliation(s)
- Fatmanur Tiryaki
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Cardenas-Rodriguez M, Austin-Tse C, Bergboer JGM, Molinari E, Sugano Y, Bachmann-Gagescu R, Sayer JA, Drummond IA. Genetic compensation for cilia defects in cep290 mutants by upregulation of cilia-associated small GTPases. J Cell Sci 2021; 134:jcs258568. [PMID: 34155518 PMCID: PMC8325957 DOI: 10.1242/jcs.258568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects. Here, we show that milder phenotypes in genetic mutants were associated with the upregulation of genes encoding the cilia-associated small GTPases arl3, arl13b and unc119b. Upregulation of UNC119b was also observed in urine-derived renal epithelial cells from human Joubert syndrome CEP290 patients. Ectopic expression of arl3, arl13b and unc119b in cep290 morphant zebrafish embryos rescued Kupffer's vesicle cilia and partially rescued photoreceptor outer segment defects. The results suggest that genetic compensation by upregulation of genes involved in a common subcellular process, lipidated protein trafficking to cilia, may be a conserved mechanism contributing to genotype-phenotype variations observed in CEP290 deficiencies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Magdalena Cardenas-Rodriguez
- Department of Medicine, Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Christina Austin-Tse
- Department of Pathology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | | | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Yuya Sugano
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - John A. Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle NE7 7DN, UK
| | - Iain A. Drummond
- Department of Medicine, Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, ME 04609, USA
| |
Collapse
|
12
|
Atkins M, Týč J, Shafiq S, Ahmed M, Bertiaux E, De Castro Neto AL, Sunter J, Bastin P, Dean SD, Vaughan S. CEP164C regulates flagellum length in stable flagella. J Cell Biol 2021; 220:211523. [PMID: 33165561 PMCID: PMC7833213 DOI: 10.1083/jcb.202001160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to “lock” at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.
Collapse
Affiliation(s)
- Madison Atkins
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jiří Týč
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Shahaan Shafiq
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Manu Ahmed
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit and Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, Paris, France.,Sorbonne Université école doctorale complexité du vivant, Paris, France
| | | | - Jack Sunter
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit and Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, Paris, France
| | | | - Sue Vaughan
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
13
|
Yusifov E, Dumoulin A, Stoeckli ET. Investigating Primary Cilia during Peripheral Nervous System Formation. Int J Mol Sci 2021; 22:3176. [PMID: 33804711 PMCID: PMC8003989 DOI: 10.3390/ijms22063176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.
Collapse
Affiliation(s)
| | | | - Esther T. Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (E.Y.); (A.D.)
| |
Collapse
|
14
|
Zhang Y, Zhang X, Dai Y, Song M, Zhou Y, Zhou J, Yan X, Shen Y. The decrease of intraflagellar transport impairs sensory perception and metabolism in ageing. Nat Commun 2021; 12:1789. [PMID: 33741976 PMCID: PMC7979750 DOI: 10.1038/s41467-021-22065-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Sensory perception and metabolic homeostasis are known to deteriorate with ageing, impairing the health of aged animals, while mechanisms underlying their deterioration remain poorly understood. The potential interplay between the declining sensory perception and the impaired metabolism during ageing is also barely explored. Here, we report that the intraflagellar transport (IFT) in the cilia of sensory neurons is impaired in the aged nematode Caenorhabditis elegans due to a daf-19/RFX-modulated decrease of IFT components. We find that the reduced IFT in sensory cilia thus impairs sensory perception with ageing. Moreover, we demonstrate that whereas the IFT-dependent decrease of sensory perception in aged worms has a mild impact on the insulin/IGF-1 signalling, it remarkably suppresses AMP-activated protein kinase (AMPK) signalling across tissues. We show that upregulating daf-19/RFX effectively enhances IFT, sensory perception, AMPK activity and autophagy, promoting metabolic homeostasis and longevity. Our study determines an ageing pathway causing IFT decay and sensory perception deterioration, which in turn disrupts metabolism and healthy ageing.
Collapse
Affiliation(s)
- Yincong Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaona Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
16
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
17
|
Bertiaux E, Mallet A, Rotureau B, Bastin P. Intraflagellar transport during assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies. J Cell Sci 2020; 133:jcs248989. [PMID: 32843573 DOI: 10.1242/jcs.248989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. Trypanosoma brucei assembles flagella of 3 to 30 µm during its development in the tsetse fly. This provides an opportunity to examine how cells naturally modulate organelle length. Flagella are constructed by addition of new blocks at their distal end via intraflagellar transport (IFT). Immunofluorescence assays, 3D electron microscopy and live-cell imaging revealed that IFT was present in all T. brucei life cycle stages. IFT proteins are concentrated at the base, and IFT trains are located along doublets 3-4 and 7-8 and travel bidirectionally in the flagellum. Quantitative analysis demonstrated that the total amount of flagellar IFT proteins correlates with the length of the flagellum. Surprisingly, the shortest flagellum exhibited a supplementary large amount of dynamic IFT material at its distal end. The contribution of IFT and other factors to the regulation of flagellum length is discussed.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
- Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
18
|
Fulmer D, Toomer KA, Glover J, Guo L, Moore K, Moore R, Stairley R, Gensemer C, Abrol S, Rumph MK, Emetu F, Lipschutz JH, McDowell C, Bian J, Wang C, Beck T, Wessels A, Renault MA, Norris RA. Desert hedgehog-primary cilia cross talk shapes mitral valve tissue by organizing smooth muscle actin. Dev Biol 2020; 463:26-38. [PMID: 32151560 DOI: 10.1016/j.ydbio.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.
Collapse
Affiliation(s)
- Diana Fulmer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Katelynn A Toomer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA; Department of Genetic Medicine, John Hopkins, Baltimore, MD, USA
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Kelsey Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sameer Abrol
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Kate Rumph
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Faith Emetu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Colin McDowell
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Justin Bian
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Christina Wang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Tyler Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
MIP-T3 Expression Associated with Defects of Ciliogenesis in Airway of COPD Patients. Can Respir J 2020; 2020:1350872. [PMID: 32104517 PMCID: PMC7035511 DOI: 10.1155/2020/1350872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction. Some studies have found that cilia were shorter in COPD smokers than in nonsmokers or healthy smokers. However, the structural abnormalities of cilia and the cause of such abnormalities in COPD patients still remain unknown. Tumor necrosis factor alpha receptor 3 interacting protein 1 (MIP-T3) may play an important role in the progress of ciliary protein transporting.
Collapse
|
20
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
21
|
King CR, A A Quadros AR, Chazeau A, Saarloos I, van der Graaf AJ, Verhage M, Toonen RF. Fbxo41 Promotes Disassembly of Neuronal Primary Cilia. Sci Rep 2019; 9:8179. [PMID: 31160656 PMCID: PMC6546786 DOI: 10.1038/s41598-019-44589-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
Neuronal primary cilia are signaling organelles with crucial roles in brain development and disease. Cilia structure is decisive for their signaling capacities but the mechanisms regulating it are poorly understood. We identify Fbxo41 as a novel Skp1/Cullin1/F-box (SCF) E3-ligase complex subunit that targets to neuronal centrioles where its accumulation promotes disassembly of primary cilia, and affects sonic hedgehog signaling, a canonical ciliary pathway. Fbxo41 targeting to centrioles requires its Coiled-coil and F-box domains. Levels of Fbxo41 at the centrioles inversely correlate with neuronal cilia length, and mutations that disrupt Fbxo41 targeting or assembly into SCF-complexes also disturb its function in cilia disassembly and signaling. Fbxo41 dependent cilia disassembly in mitotic and post-mitotic cells requires rearrangements of the actin-cytoskeleton, but requires Aurora A kinase activation only in mitotic cells, highlighting important mechanistical differences controlling cilia size between mitotic and post-mitotic cells. Phorbol esters induce recruitment of overexpressed Fbxo41 to centrioles and cilia disassembly in neurons, but disassembly can also occur in absence of Fbxo41. We propose that Fbxo41 targeting to centrosomes regulates neuronal cilia structure and signaling capacity in addition to Fbxo41-independent pathways controlling cilia size.
Collapse
Affiliation(s)
- Cillian R King
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ana R A A Quadros
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anaël Chazeau
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anne Jolien van der Graaf
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Tiosano D, Baris HN, Chen A, Hitzert MM, Schueler M, Gulluni F, Wiesener A, Bergua A, Mory A, Copeland B, Gleeson JG, Rump P, van Meer H, Sival DA, Haucke V, Kriwinsky J, Knaup KX, Reis A, Hauer NN, Hirsch E, Roepman R, Pfundt R, Thiel CT, Wiesener MS, Aslanyan MG, Buchner DA. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet 2019; 15:e1008088. [PMID: 31034465 PMCID: PMC6508738 DOI: 10.1371/journal.pgen.1008088] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe’s syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease. Identifying the genetic basis of rare disorders can provide insight into gene function, susceptibility to disease, guide the development of new therapeutics, improve opportunities for genetic counseling, and help clinicians evaluate and potentially treat complicated clinical presentations. However, it is estimated that the genetic basis of approximately one-half of all rare genetic disorders remains unknown. We describe one such rare disorder based on genetic and clinical evaluations of individuals from 3 unrelated consanguineous families with a similar constellation of features including short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations including stroke, among other findings. We discovered that these features were due to deficiency of the PIK3C2A enzyme. PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of the lipids phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2 that are essential for a variety of cellular processes including cilia formation and vesicle trafficking. This syndrome is the first monogenic disorder caused by mutations in a class II PI3K family member and thus sheds new light on their role in human development.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hagit N. Baris
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marrit M. Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Bergua
- Department of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Brett Copeland
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
| | - Joseph G. Gleeson
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hester van Meer
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Berlin Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josh Kriwinsky
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karl X. Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadine N. Hauer
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian T. Thiel
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Institute for Children’s Health, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Biological active matter aggregates: Inspiration for smart colloidal materials. Adv Colloid Interface Sci 2019; 263:38-51. [PMID: 30504078 DOI: 10.1016/j.cis.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Aggregations of social organisms exhibit a remarkable range of properties and functionalities. Multiple examples, such as fire ants or slime mold, show how a population of individuals is able to overcome an existential threat by gathering into a solid-like aggregate with emergent functionality. Surprisingly, these aggregates are driven by simple rules, and their mechanisms show great parallelism among species. At the same time, great effort has been made by the scientific community to develop active colloidal materials, such as microbubbles or Janus particles, which exhibit similar behaviors. However, a direct connection between these two realms is still not evident, and it would greatly benefit future studies. In this review, we first discuss the current understanding of living aggregates, point out the mechanisms in their formation and explore the vast range of emergent properties. Second, we review the current knowledge in aggregated colloidal systems, the methods used to achieve the aggregations and their potential functionalities. Based on this knowledge, we finally identify a set of over-arching principles commonly found in biological aggregations, and further suggest potential future directions for the creation of bio-inspired colloid aggregations.
Collapse
|
24
|
A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol 2018; 28:3802-3814.e3. [DOI: 10.1016/j.cub.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
25
|
Reynolds MJ, Phetruen T, Fisher RL, Chen K, Pentecost BT, Gomez G, Ounjai P, Sui H. The Developmental Process of the Growing Motile Ciliary Tip Region. Sci Rep 2018; 8:7977. [PMID: 29789632 PMCID: PMC5964098 DOI: 10.1038/s41598-018-26111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic motile cilia/flagella play vital roles in various physiological processes in mammals and some protists. Defects in cilia formation underlie multiple human disorders, known as ciliopathies. The detailed processes of cilia growth and development are still far from clear despite extensive studies. In this study, we characterized the process of cilium formation (ciliogenesis) by investigating the newly developed motile cilia of deciliated protists using complementary techniques in electron microscopy and image analysis. Our results demonstrated that the distal tip region of motile cilia exhibit progressive morphological changes as cilia develop. This developmental process is time-dependent and continues after growing cilia reach their full lengths. The structural analysis of growing ciliary tips revealed that B-tubules of axonemal microtubule doublets terminate far away from the tip end, which is led by the flagellar tip complex (FTC), demonstrating that the FTC might not directly mediate the fast turnover of intraflagellar transport (IFT).
Collapse
Affiliation(s)
- Matthew J Reynolds
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Biology Department, University of Scranton, Scranton, PA, 18510, USA
| | - Tanaporn Phetruen
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rebecca L Fisher
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Ke Chen
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Brian T Pentecost
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, 18510, USA
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12201, USA.
| |
Collapse
|
26
|
Canning P, Park K, Gonçalves J, Li C, Howard CJ, Sharpe TD, Holt LJ, Pelletier L, Bullock AN, Leroux MR. CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function. Cell Rep 2018; 22:885-894. [PMID: 29420175 PMCID: PMC5846859 DOI: 10.1016/j.celrep.2017.12.083] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Various kinases, including a cyclin-dependent kinase (CDK) family member, regulate the growth and functions of primary cilia, which perform essential roles in signaling and development. Neurological disorders linked to CDK-Like (CDKL) proteins suggest that these underexplored kinases may have similar functions. Here, we present the crystal structures of human CDKL1, CDKL2, CDKL3, and CDKL5, revealing their evolutionary divergence from CDK and mitogen-activated protein kinases (MAPKs), including an unusual ?J helix important for CDKL2 and CDKL3 activity. C. elegans CDKL-1, most closely related to CDKL1-4 and localized to neuronal cilia transition zones, modulates cilium length; this depends on its kinase activity and ?J helix-containing C terminus. Human CDKL5, linked to Rett syndrome, also localizes to cilia, and it impairs ciliogenesis when overexpressed. CDKL5 patient mutations modeled in CDKL-1 cause localization and/or cilium length defects. Together, our studies establish a disease model system suggesting cilium length defects as a pathomechanism for neurological disorders, including epilepsy.
Collapse
Affiliation(s)
- Peter Canning
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Conor J Howard
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy D Sharpe
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Liam J Holt
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
27
|
Hamze-Komaiha O, Sarr S, Arlot-Bonnemains Y, Samuel D, Gassama-Diagne A. SHIP2 Regulates Lumen Generation, Cell Division, and Ciliogenesis through the Control of Basolateral to Apical Lumen Localization of Aurora A and HEF 1. Cell Rep 2017; 17:2738-2752. [PMID: 27926875 DOI: 10.1016/j.celrep.2016.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022] Open
Abstract
Lumen formation during epithelial morphogenesis requires the creation of a luminal space at cell interfaces named apical membrane-initiation sites (AMISs). This is dependent upon integrated signaling from mechanical and biochemical cues, vesicle trafficking, cell division, and processes tightly coupled to ciliogenesis. Deciphering relationships between polarity determinants and lumen or cilia generation remains a fundamental issue. Here, we report that Src homology 2 domain-containing inositol 5-phosphatase 2 (SHIP2), a basolateral determinant of polarity, regulates RhoA-dependent actin contractility and cell division to form AMISs. SHIP2 regulates mitotic spindle alignment. SHIP2 is expressed in G1 phase, whereas Aurora A kinase is enriched in mitosis. SHIP2 binds Aurora A kinase and the scaffolding protein HEF1 and promotes their basolateral localization at the expense of their luminal expression connected with cilia resorption. Furthermore, SHIP2 expression increases cilia length. Thus, our findings offer new insight into the relationships among basolateral proteins, lumen generation, and ciliogenesis.
Collapse
Affiliation(s)
- Ola Hamze-Komaiha
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | - Sokavuth Sarr
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | | | - Didier Samuel
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France; AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, 94800 Villejuif, France
| | - Ama Gassama-Diagne
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France.
| |
Collapse
|
28
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
29
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Ding J, Shao L, Yao Y, Tong X, Liu H, Yue S, Xie L, Cheng SY. DGKδ triggers endoplasmic reticulum release of IFT88-containing vesicles destined for the assembly of primary cilia. Sci Rep 2017; 7:5296. [PMID: 28706295 PMCID: PMC5509727 DOI: 10.1038/s41598-017-05680-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022] Open
Abstract
The morphogenic factor Sonic hedgehog (Shh) signals through the primary cilium, which relies on intraflagellar transport to maintain its structural integrity and function. However, the process by which protein and lipid cargos are delivered to the primary cilium from their sites of synthesis still remains poorly characterized. Here, we report that diacylglycerol kinase δ (DGKδ), a residential lipid kinase in the endoplasmic reticulum, triggers the release of IFT88-containing vesicles from the ER exit sites (ERES), thereby setting forth their movement to the primary cilium. Encoded by the gene whose mutations originally implicated the primary cilium as the venue of Shh signaling, IFT88 is known to be part of the complex B that drives the anterograde transport within cilia. We show that IFT88 interacts with DGKδ, and is associated with COPII-coated vesicles at the ERES. Using a combination of RNAi silencing and gene knockout strategies, we further show that DGKδ is required for supporting Shh signaling both in vitro and in vivo, demonstrating the physiological significance of this regulation.
Collapse
Affiliation(s)
- Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lei Shao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Yixing Yao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xin Tong
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Huaize Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lu Xie
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
31
|
Toomer KA, Fulmer D, Guo L, Drohan A, Peterson N, Swanson P, Brooks B, Mukherjee R, Body S, Lipschutz JH, Wessels A, Norris RA. A role for primary cilia in aortic valve development and disease. Dev Dyn 2017; 246:625-634. [PMID: 28556366 DOI: 10.1002/dvdy.24524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) disease is the most common congenital heart defect, affecting 0.5-1.2% of the population and causing significant morbidity and mortality. Only a few genes have been identified in pedigrees, and no single gene model explains BAV inheritance, thus supporting a complex genetic network of interacting genes. However, patients with rare syndromic diseases that stem from alterations in the structure and function of primary cilia ("ciliopathies") exhibit BAV as a frequent cardiovascular finding, suggesting primary cilia may factor broadly in disease etiology. RESULTS Our data are the first to demonstrate that primary cilia are expressed on aortic valve mesenchymal cells during embryonic development and are lost as these cells differentiate into collagen-secreting fibroblastic-like cells. The function of primary cilia was tested by genetically ablating the critical ciliogenic gene Ift88. Loss of Ift88 resulted in abrogation of primary cilia and increased fibrogenic extracellular matrix (ECM) production. Consequentially, stratification of ECM boundaries normally present in the aortic valve were lost and a highly penetrant BAV phenotype was evident at birth. CONCLUSIONS Our data support cilia as a novel cellular mechanism for restraining ECM production during aortic valve development and broadly implicate these structures in the etiology of BAV disease in humans. Developmental Dynamics 246:625-634, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katelynn A Toomer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Diana Fulmer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alex Drohan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Neal Peterson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Paige Swanson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Brittany Brooks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua H Lipschutz
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
32
|
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C. Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 2017; 130:938-949. [PMID: 28104815 DOI: 10.1242/jcs.199091] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.
Collapse
Affiliation(s)
- Montserrat Bosch Grau
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Christel Masson
- CERTO Centre d'Etudes et de Recherches Thérapeutiques en Ophtalmologie, Université Paris Sud, Université Paris-Saclay, CNRS UMR9197, Orsay F-91405, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Cecilia Rocha
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Olivia Tort
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Patricia Marques Sousa
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Sophie Vacher
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris F-75005, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
33
|
Abstract
Primary cilia are small, antenna-like structures that detect mechanical and chemical cues and transduce extracellular signals. While mammalian primary cilia were first reported in the late 1800s, scientific interest in these sensory organelles has burgeoned since the beginning of the twenty-first century with recognition that primary cilia are essential to human health. Among the most common clinical manifestations of ciliary dysfunction are renal cysts. The molecular mechanisms underlying renal cystogenesis are complex, involving multiple aberrant cellular processes and signaling pathways, while initiating molecular events remain undefined. Autosomal Dominant Polycystic Kidney Disease is the most common renal cystic disease, caused by disruption of polycystin-1 and polycystin-2 transmembrane proteins, which evidence suggests must localize to primary cilia for proper function. To understand how the absence of these proteins in primary cilia may be remediated, we review intracellular trafficking of polycystins to the primary cilium. We also examine the controversial mechanisms by which primary cilia transduce flow-mediated mechanical stress into intracellular calcium. Further, to better understand ciliary function in the kidney, we highlight the LKB1/AMPK, Wnt, and Hedgehog developmental signaling pathways mediated by primary cilia and misregulated in renal cystic disease.
Collapse
|
34
|
Delmaghani S, Aghaie A, Bouyacoub Y, El Hachmi H, Bonnet C, Riahi Z, Chardenoux S, Perfettini I, Hardelin JP, Houmeida A, Herbomel P, Petit C. Mutations in CDC14A, Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness. Am J Hum Genet 2016; 98:1266-1270. [PMID: 27259055 DOI: 10.1016/j.ajhg.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.
Collapse
Affiliation(s)
- Sedigheh Delmaghani
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Asadollah Aghaie
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Yosra Bouyacoub
- Institut Pasteur de Tunis, LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory, Tunis 1002, Tunisia; Université de Monastir, Institut Supérieur de Biotechnologie, BP 56 Monastir 5000, Tunisia
| | - Hala El Hachmi
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Nouakchott 5026, Mauritania
| | - Crystel Bonnet
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Zied Riahi
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Sebastien Chardenoux
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Isabelle Perfettini
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Ahmed Houmeida
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Nouakchott 5026, Mauritania
| | - Philippe Herbomel
- Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Unité des Macrophages et Développement de l'Immunité, Institut Pasteur, 75015 Paris, France; UMR 3738, Centre National de la Recherche Scientifique, 75015 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
35
|
Dummer A, Poelma C, DeRuiter MC, Goumans MJTH, Hierck BP. Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 2016; 5:7. [PMID: 26870322 PMCID: PMC4750300 DOI: 10.1186/s13630-016-0028-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Primary cilia are cellular protrusions involved in mechanic and chemical sensing on almost all cells of our body. Important signaling pathways, including Hedgehog, TGFβ, and Ca(2+), are linked to cilia and/or cilia function. Cilia can vary in length, which has functional implications. To measure these lengths correctly, a standardized method with high reliability and throughput is required. To date, methods for length measurements in cultured cells after fluorescent staining for ciliary components are error prone with a possible human selection bias, primarily caused by the orientation of cilia with respect of the imaging plane. In tissue sections, accurate measurements become an even larger challenge due to additional random sectioning plane. Cilia can be reconstructed in 3D and measured one by one, but this is a labor-intensive procedure. Therefore, we developed a new, high-throughput method with less selection bias. RESULTS To identify the optimal type of measurement of straight and relatively short cilia, three methods were compared. The first method is based on maximum intensity projection (MIP), the second method is based on the Pythagorean theorem (PyT), and the third is based on 3D alternative angled slicing (DAAS). We investigated whether cilia visible in the plane of focus ('flat cilia'), and the ones that are angled with respect to the plane of focus are represented differently among the various methods. To test the agreement between the methods, intraclass correlations are calculated. To measure flat cilia, MIP and DAAS provided representative results, with the MIP method allowing for higher throughput. However, when measuring the angled cilia with MIP, the actual cilium length is overtly underestimated. DAAS and PyT are exchangeable methods for length measurements of the angled cilia, while PyT exhibits higher throughput and is therefore the preferred method for measuring the length of an angled cilium. CONCLUSION PyT is a universal measuring method to measure straight cilia, without selection bias. MIP provides similar results for flat cilia, but underestimates the length of angled cilia. In addition, PyT facilitates high-throughput length measurements. Manual tracking or reconstruction will be the method of choice to measure irregularly shaped cilia.
Collapse
Affiliation(s)
- Anneloes Dummer
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Poelma
- Laboratory for Aero & Hydrodynamics, Delft University of Technology, Delft, The Netherlands
| | - Marco C DeRuiter
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José T H Goumans
- Department Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Beerend P Hierck
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005733. [PMID: 26657059 PMCID: PMC4686109 DOI: 10.1371/journal.pgen.1005733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/19/2015] [Indexed: 01/11/2023] Open
Abstract
Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis. Cells detect cues in their environment using many different receptor and channel proteins, most of which localize to the plasma membrane of the cell. Some of these receptors and channels localize to a specialized sensory organelle, the primary cilium, that extends from the cell like a small antenna. Almost all cells of the human body have one or more cilia. Defects in cilium structure or function have been implicated in many diseases. Many studies have shown that the length of cilia is regulated and can be modulated by environmental signals. Several genes have been identified that function in cilium length regulation and it is clear that transport of proteins inside the cilium plays an important role. Here, we identify several genes of a MAP kinase cascade that modulate the length of cilia of the nematode Caenorhabditis elegans. Interestingly, this regulation seems not to be mediated by the transport system in the cilia, but by modulation of endocytosis. Our results suggest that regulated delivery and removal of proteins and/or lipids at the base of the cilium contributes to the regulation of cilium length.
Collapse
|
37
|
Flannery RJ, Kleene NK, Kleene SJ. A TRPM4-dependent current in murine renal primary cilia. Am J Physiol Renal Physiol 2015; 309:F697-707. [PMID: 26290373 PMCID: PMC4609916 DOI: 10.1152/ajprenal.00294.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Defects in primary cilia lead to a variety of human diseases. One of these, polycystic kidney disease, can be caused by defects in a Ca²⁺-gated ion channel (TRPP2) found on the cilium. Other ciliary functions also contribute to cystogenesis, and defects in apical Ca²⁺ homeostasis have been implicated. By recording directly from the native cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, we have identified a second Ca²⁺-gated channel in the ciliary membrane: the transient receptor potential cation channel, subfamily M, member 4 (TRPM4). In excised primary cilia, TRPM4 was found to have a low sensitivity to Ca²⁺, with an EC₅₀ of 646 μM at +100 mV. It was inhibited by MgATP and by 9-phenanthrol. The channel was not permeable to Ca²⁺ or Cl⁻ and had a permeability ratio PK/PNa of 1.42. Reducing the expression of Trpm4 mRNA with short hairpin (sh) RNA reduced the TRPM4 current by 87% and shortened primary cilia by 43%. When phospholipase C was inhibited, the sensitivity to cytoplasmic Ca²⁺ greatly increased (EC₅₀ = 26 μM at +100 mV), which is consistent with previous reports that phosphatidylinositol 4,5-bisphosphate (PIP2) modulates the channel. MgATP did not restore the channel to a preinactivation state, suggesting that the enzyme or substrate necessary for making PIP2 is not abundant in primary cilia of mIMCD-3 cells. The function of TRPM4 in renal primary cilia is not yet known, but it is likely to influence the apical Ca²⁺ dynamics of the cell, perhaps in tandem with TRPP2.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nancy K Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Steven J Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
38
|
TTBK2: a tau protein kinase beyond tau phosphorylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575170. [PMID: 25950000 PMCID: PMC4407412 DOI: 10.1155/2015/575170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.
Collapse
|
39
|
Sanders AAWM, Kennedy J, Blacque OE. Image analysis of Caenorhabditis elegans ciliary transition zone structure, ultrastructure, molecular composition, and function. Methods Cell Biol 2015; 127:323-47. [PMID: 25837399 DOI: 10.1016/bs.mcb.2015.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transition zone (TZ) at the ciliary base has emerged as an important regulator of the composition and functions of cilia, which are microtubule-based structures extending from the surfaces of most eukaryotic cells, serving motility, chemo-/mechano-/photosensation and developmental signaling roles. Possessing distinct ultrastructural features such as microtubule-membrane spanning Y-links, the ∼0.2-1.0-μm long TZ is thought to act as a gated cytosolic (size dependent) and membrane diffusion barrier that drives ciliary compartmentalization by preventing unregulated protein exchange between the cilium and the rest of the cell. Multiple proteins associated with ciliary diseases (ciliopathies) such as Meckel-Gruber syndrome (MKS) and nephronophthisis are specifically found in the TZ, and work from a number of model systems, including Chlamydomonas reinharditii, Caenorhabditis elegans and the mouse indicates TZ-gating and associated ciliogenic functions for a number of these proteins. Here we present a suite of assays for probing the structure, function, and molecular composition of the C. elegans TZ, with emphasis on TZ ultrastructure, diffusion barrier kinetics, MKS module assembly hierarchy, and TZ-dependent behaviors.
Collapse
Affiliation(s)
- Anna A W M Sanders
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Julie Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
40
|
Abstract
A characteristic feature of the human airway epithelium is the presence of ciliated cells bearing motile cilia, specialized cell surface projections containing axonemes composed of microtubules and dynein arms, which provide ATP-driven motility. In the airways, cilia function in concert with airway mucus to mediate the critical function of mucociliary clearance, cleansing the airways of inhaled particles and pathogens. The prototypical disorder of respiratory cilia is primary ciliary dyskinesia, an inherited disorder that leads to impaired mucociliary clearance, to repeated chest infections, and to the progressive destruction of lung architecture. Numerous acquired lung diseases are also marked by abnormalities in both cilia structure and function. In this review we summarize current knowledge regarding airway ciliated cells and cilia, how they function to maintain a healthy epithelium, and how disorders of cilia structure and function contribute to inherited and acquired lung disease.
Collapse
|
41
|
Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One 2014; 9:e108470. [PMID: 25243405 PMCID: PMC4171540 DOI: 10.1371/journal.pone.0108470] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.
Collapse
Affiliation(s)
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
42
|
Molnar AO, Yuen DA, Tangri N, Jensen VL. Bridging the gap: a Canadian perspective on translational kidney research. Can J Kidney Health Dis 2014; 1:18. [PMID: 25780610 PMCID: PMC4349779 DOI: 10.1186/s40697-014-0018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/08/2014] [Indexed: 11/10/2022] Open
Abstract
PURPOSE OF REVIEW Chronic kidney disease affects approximately 3 million Canadians. Ongoing investment in high quality kidney research is needed to improve the care of patients with kidney disease. The barriers to translating such research are discussed in this review. SOURCES OF INFORMATION Personal knowledge, research funding body websites, and published reports. FINDINGS In this review, we discuss the meaning of the term translational research and present some of the programs aimed at ensuring efficient translation of scientific discoveries with a discussion of the barriers to translation. We highlight some successes and barriers to kidney research translation using recent examples of research in Canadian nephrology. We present the following examples of kidney research: (1) research aimed at identifying the causative genes for inherited kidney diseases; (2) recent discoveries in cell-based therapies for kidney disease; (3) an examination of the impact of acute kidney injury in renal transplant patients; and (4) the development of a kidney failure risk equation to improve prognosis accuracy. LIMITATIONS This review focuses on research conducted by the authors. IMPLICATIONS The process of research translation is prolonged and challenging and therefore requires resources, patience, and careful planning. With increased awareness and understanding of the barriers to research translation, researchers and funding bodies can work together to increase the rate at which important research findings reach clinical practice and improve the care of patients with kidney disease.
Collapse
Affiliation(s)
- Amber O Molnar
- />Kidney Research Centre - Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
- />Division of Nephrology, The Ottawa Hospital, Ottawa, Canada
| | - Darren A Yuen
- />Division of Nephrology, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada
- />Keenan Research Centre of Biomedical Science of St. Michael’s Hospital, Toronto, ON Canada
| | - Navdeep Tangri
- />Section of Nephrology, Seven Oaks General Hospital, University of Manitoba, Winnipeg, MB Canada
| | - Victor L Jensen
- />Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
43
|
Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW, Nagle R, Weihs K, McDermott KM. Loss of primary cilia occurs early in breast cancer development. Cilia 2014; 3:7. [PMID: 24987519 PMCID: PMC4076761 DOI: 10.1186/2046-2530-3-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/29/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Primary cilia are microtubule-based organelles that protrude from the cell surface. Primary cilia play a critical role in development and disease through regulation of signaling pathways including the Hedgehog pathway. Recent mouse models have also linked ciliary dysfunction to cancer. However, little is known about the role of primary cilia in breast cancer development. Primary cilia expression was characterized in cancer cells as well as their surrounding stromal cells from 86 breast cancer patients by counting cilia and measuring cilia length. In addition, we examined cilia expression in normal epithelial and stromal cells from reduction mammoplasties as well as histologically normal adjacent tissue for comparison. RESULTS We observed a statistically significant decrease in the percentage of ciliated cells on both premalignant lesions as well as in invasive cancers. This loss of cilia does not correlate with increased proliferative index (Ki67-positive cells). However, we did detect rare ciliated cancer cells present in patients with invasive breast cancer and found that these express a marker of basaloid cancers that is associated with poor prognosis (Cytokeratin 5). Interestingly, the percentage of ciliated stromal cells associated with both premalignant and invasive cancers decreased when compared to stromal cells associated with normal tissue. To understand how cilia may be lost during cancer development we analyzed the expression of genes required for ciliogenesis and/or ciliary function and compared their expression in normal versus breast cancer samples. We found that expression of ciliary genes were frequently downregulated in human breast cancers. CONCLUSIONS These data suggest that primary cilia are lost early in breast cancer development on both the cancer cells and their surrounding stromal cells.
Collapse
Affiliation(s)
- Ina Menzl
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Lauren Lebeau
- Department of Pathology, University of Arizona Medical Center, Tucson, AZ, USA
| | - Ritu Pandey
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Nadia B Hassounah
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Frank W Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Ray Nagle
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona Medical Center, Tucson, AZ, USA
| | - Karen Weihs
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Psychiatry, University of Arizona Medical Center, Tucson, AZ, USA
| | - Kimberly M McDermott
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA ; Bio5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Ke YN, Yang WX. Primary cilium: an elaborate structure that blocks cell division? Gene 2014; 547:175-85. [PMID: 24971504 DOI: 10.1016/j.gene.2014.06.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022]
Abstract
A primary cilium is a microtubule-based membranous protrusion found in almost all cell types. A primary cilium has a "9+0" axoneme that distinguishes this ancient organelle from the canonical motile "9+2" cilium. A primary cilium is the sensory center of the cell that regulates cell proliferation and embryonic development. The primary ciliary pocket is a specialized endocytic membrane domain in the basal region. The basal body of a primary cilium exists as a form of the centriole during interphase of the cell cycle. Although conventional thinking suggests that the cell cycle regulates centrosomal changes, recent studies suggest the opposite, that is, centrosomal changes regulate the cell cycle. In this regard, centrosomal kinase Aurora kinase A (AurA), Polo-like kinase 1 (Plk1), and NIMA related Kinase (Nek or Nrk) propel cell cycle progression by promoting primary cilia disassembly which indicates a non-mitotic function. However, the persistence of primary cilia during spermatocyte division challenges the dominate idea of the incompatibility of primary cilia and cell division. In this review, we demonstrate the detailed structure of primary cilia and discuss the relationship between primary cilia disassembly and cell cycle progression on the background of various mitotic kinases.
Collapse
Affiliation(s)
- Yi-Ni Ke
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Blacque OE, Sanders AAWM. Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 2014; 10:126-37. [PMID: 24732235 DOI: 10.4161/org.28830] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease.
Collapse
Affiliation(s)
- Oliver E Blacque
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Anna A W M Sanders
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| |
Collapse
|
46
|
Rozycki M, Lodyga M, Lam J, Miranda MZ, Fátyol K, Speight P, Kapus A. The fate of the primary cilium during myofibroblast transition. Mol Biol Cell 2014; 25:643-57. [PMID: 24403605 PMCID: PMC3937090 DOI: 10.1091/mbc.e13-07-0429] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myofibroblasts, the culprit of organ fibrosis, can originate from mesenchymal and epithelial precursors through fibroblast-myofibroblast and epithelial-myofibroblast transition (EMyT). Because certain ciliopathies are associated with fibrogenesis, we sought to explore the fate and potential role of the primary cilium during myofibroblast formation. Here we show that myofibroblast transition from either precursor results in the loss of the primary cilium. During EMyT, initial cilium growth is followed by complete deciliation. Both EMyT and cilium loss require two-hit conditions: disassembly/absence of intercellular contacts and transforming growth factor-β1 (TGFβ) exposure. Loss of E-cadherin-dependent junctions induces cilium elongation, whereas both stimuli are needed for deciliation. Accordingly, in a scratch-wounded epithelium, TGFβ provokes cilium loss exclusively along the wound edge. Increased contractility, a key myofibroblast feature, is necessary and sufficient for deciliation, since constitutively active RhoA, Rac1, or myosin triggers, and down-regulation of myosin or myocardin-related transcription factor prevents, this process. Sustained myosin phosphorylation and consequent deciliation are mediated by a Smad3-, Rac1-, and reactive oxygen species-dependent process. Transitioned myofibroblasts exhibit impaired responsiveness to platelet-derived growth factor-AA and sonic hedgehog, two cilium-associated stimuli. Although the cilium is lost during EMyT, its initial presence contributes to the transition. Thus myofibroblasts represent a unique cilium-less entity with profoundly reprogrammed cilium-related signaling.
Collapse
Affiliation(s)
- Matthew Rozycki
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Jerber J, Baas D, Soulavie F, Chhin B, Cortier E, Vesque C, Thomas J, Durand B. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum Mol Genet 2013; 23:563-77. [DOI: 10.1093/hmg/ddt445] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|