1
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
2
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
3
|
Yang W, Williams A, Sun QQ. Circuit Mechanisms Underlying Epileptogenesis in a Mouse Model of Focal Cortical Malformation. Curr Biol 2020; 31:334-345.e4. [PMID: 33157021 DOI: 10.1016/j.cub.2020.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
The way in which aberrant neural circuits contribute to epilepsy remains unclear. To elucidate this question, we dissected the circuit mechanisms underlying epileptogenesis using a mouse model of focal cortical malformation with spontaneous epileptiform discharges. We found that spontaneous spike-wave discharges and optogenetically induced hyperexcitable bursts in vivo were present in a cortical region distal to (>0.7 mm) freeze-lesion-induced microgyrus, instead of near the microgyrus. ChR2-assisted circuit mapping revealed ectopic inter-laminar excitatory input from infragranular layers to layers 2/3 pyramidal neurons as the key component of hyperexcitable circuitry. This hyperactivity disrupted the balance between excitation and inhibition and was more prominent in the cortical region distal to the microgyrus. Consistently, the inhibition from both parvalbumin-positive interneurons (PV) and somatostatin-positive interneurons (SOM) to pyramidal neurons were altered in a layer- and site-specific fashion. Finally, closed-loop optogenetic stimulation of SOM, but not PV, terminated spontaneous spike-wave discharges. Together, these results demonstrate the occurrence of highly site- and cell-type-specific synaptic reorganization underlying epileptic cortical circuits and provide new insights into potential treatment strategies.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Anthony Williams
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
4
|
Sánchez-Ramón S, Faure F. The Thymus/Neocortex Hypothesis of the Brain: A Cell Basis for Recognition and Instruction of Self. Front Cell Neurosci 2017; 11:340. [PMID: 29163052 PMCID: PMC5663735 DOI: 10.3389/fncel.2017.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The recognition of internal and external sources of stimuli, the self from non-self, seems to be an intrinsic property to the adequate functioning of the immune system and the nervous system, both complex network systems that have evolved to safeguard the self biological identity of the organism. The mammalian brain development relies on dynamic and adaptive processes that are now well described. However, the rules dictating this highly constrained developmental process remain elusive. Here we hypothesize that there is a cellular basis for brain selfhood, based on the analogy of the global mechanisms that drive the self/non-self recognition and instruction by the immune system. In utero education within the thymus by multi-step selection processes discard overly low and high affinity T-lymphocytes to self stimuli, thus avoiding expendable or autoreactive responses that might lead to harmful autoimmunity. We argue that the self principle is one of the chief determinants of neocortical brain neurogenesis. According to our hypothesis, early-life education on self at the subcortical plate of the neocortex by selection processes might participate in the striking specificity of neuronal repertoire and assure efficiency and self tolerance. Potential implications of this hypothesis in self-reactive neurological pathologies are discussed, particularly involving consciousness-associated pathophysiological conditions, i.e., epilepsy and schizophrenia, for which we coined the term autophrenity.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Microbiology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Florence Faure
- PSL Research University, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|
5
|
Sun QQ, Zhou C, Yang W, Petrus D. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia. Epilepsia 2016; 57:1581-1593. [PMID: 27527919 DOI: 10.1111/epi.13501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine if mice with focal cortical dysplasia (FCD) develop spontaneous epileptic seizures and, if so, determine the key electroencephalography (EEG) features. METHODS Unilateral single freeze lesions to the S1 region (SFLS1R) were made in postnatal day 0-1 pups to induce a neocortical microgyrus in the right cortical hemisphere. Continuous 24-h recordings with intracranial EEG electrodes and behavioral tests were performed in adult SFLS1R and sham-control mice to assess neurologic status. RESULTS A high percentage of adult SFLS1R animals (89%, 40/45) exhibited at least one or more spontaneous nonconvulsive seizure events over the course of 24 h. Of these animals, 60% (27/45) presented with a chronic seizure state that was persistent throughout the recording session, consisting of bursts of rhythmic high-amplitude spike-wave activities and primarily occurring during periods of slow-wave sleep. In comparison, none of the control, age-matched, mice (0/12) developed seizures. The epileptic discharge pattern closely resembled a pattern of continuous spike-waves during slow-wave sleep (CSWS) of the human syndrome described as an electrical status epilepticus during slow-wave sleep (ESES). Key findings in the SFLS1R model indicated that the observed CSWS (1) were more prevalent in female (18/23) versus male (9/22, p < 0.05), (2) were strongest in the right S1 region although generalized to other brain regions, (3) were associated with significant cognitive and behavioral deficits, (4) were temporarily alleviated by ethosuximide treatment or optogenetic activation of cortical γ-aminobutyric acid (GABA)ergic neurons, and (5) theta and alpha band rhythms may play a key role in the generalization of spike-wave activities. SIGNIFICANCE This is the first report of an in vivo animal FCD model that induces chronic spontaneous electrographic brain seizures. Further characterization of the abnormal oscillations in this mouse model may lead to a better understanding of the mechanisms of CSWS/ESES.
Collapse
Affiliation(s)
- Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A.
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Daniel Petrus
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| |
Collapse
|
6
|
Pagnozzi AM, Dowson N, Fiori S, Doecke J, Bradley AP, Boyd RN, Rose S. Alterations in regional shape on ipsilateral and contralateral cortex contrast in children with unilateral cerebral palsy and are predictive of multiple outcomes. Hum Brain Mapp 2016; 37:3588-603. [PMID: 27259165 DOI: 10.1002/hbm.23262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/07/2022] Open
Abstract
Congenital brain lesions result in a wide range of cerebral tissue alterations observed in children with cerebral palsy (CP) that are associated with a range of functional impairments. The relationship between injury severity and functional outcomes, however, remains poorly understood. This research investigates the differences in cortical shape between children with congenital brain lesions and typically developing children (TDC) and investigates the correlations between cortical shape and functional outcome in a large cohort of patients diagnosed with unilateral CP. Using 139 structural magnetic resonance images, including 95 patients with clinically diagnosed CP and 44 TDC, cortical segmentations were obtained using a modified expectation maximization algorithm. Three shape characteristics (cortical thickness, curvature, and sulcal depth) were computed within a number of cortical regions. Significant differences in these shape measures compared to the TDC were observed on both the injured hemisphere of children with CP (P < 0.004), as well as on the apparently uninjured hemisphere, illustrating potential compensatory mechanisms in these children. Furthermore, these shape measures were significantly correlated with several functional outcomes, including motor, cognition, vision, and communication (P < 0.012), with three out of these four models performing well on test set validation. This study highlights that cortical neuroplastic effects may be quantified using MR imaging, allowing morphological changes to be studied longitudinally, including any influence of treatment. Ultimately, such approaches could be used for the long term prediction of outcomes and the tailoring of treatment to individuals. Hum Brain Mapp 37:3588-3603, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.,The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - James Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Andrew P Bradley
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Roslyn N Boyd
- School of Medicine, The University of Queensland, Queensland Cerebral Palsy and Rehabilitation Research Centre, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
7
|
Models of cortical malformation--Chemical and physical. J Neurosci Methods 2015; 260:62-72. [PMID: 25850077 DOI: 10.1016/j.jneumeth.2015.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.
Collapse
|