1
|
Daws SE, Gillespie A. Circular RNA regulation and function in drug seeking phenotypes. Mol Cell Neurosci 2023; 125:103841. [PMID: 36935046 PMCID: PMC10247439 DOI: 10.1016/j.mcn.2023.103841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Drug overdoses have increased dramatically in the United States over the last decade where they are now the leading cause of accidental death. To develop efficient therapeutic options for decreasing drug consumption and overdose risk, it is critical to understand the neurobiological changes induced by drug exposure. Chronic systemic exposure to all drug classes, including opioids, psychostimulants, nicotine, cannabis, and alcohol, induces profound molecular neuroadaptations within the central nervous system that may reveal crucial information about the lasting effects that these substances impart on brain cells. Transcriptome analyses of messenger RNAs (mRNAs) have identified gene patterns in the brain that result from exposure to various classes of drugs. However, mRNAs represent only a small fraction of the RNA within the cell, and drug exposure also impacts other classes of RNA that are largely understudied, especially circular RNAs. Circular RNAs (circRNAs) are a naturally occurring RNA species formed from back-splicing events during mRNA processing and are enriched in the nervous system. circRNAs are a pleiotropic class of RNAs and have a diverse impact on cellular function, with putative functions including regulation of mRNA transcription, protein translation, microRNA sponging, and sequestration of RNA-binding proteins. Recent studies have demonstrated that circRNAs can modulate cognition and are regulated in the brain in response to drug exposure, yet very few studies have explored the contribution of circRNAs to drug seeking phenotypes. In this review, we will provide an overview of the mechanisms of circRNA function in the cell to highlight how drug-induced circRNA dysregulation may impact the molecular substrates that mediate drug seeking behavior and the current studies that have reported drug-induced dysregulation of circRNAs in the brain. Furthermore, we will discuss how principles of circRNA biology can be adapted to study circRNAs in models of drug exposure and seek to provide further insight into the neurobiology of addiction.
Collapse
Affiliation(s)
- Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| | - Aria Gillespie
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Zanda MT, Floris G, Daws SE. Orbitofrontal cortex microRNAs support long-lasting heroin seeking behavior in male rats. Transl Psychiatry 2023; 13:117. [PMID: 37031193 PMCID: PMC10082780 DOI: 10.1038/s41398-023-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Recovery from opioid use disorder (OUD) and maintenance of abstinence from opioid use is hampered by perseverant drug cravings that may persist for months after cessation of drug use. Drug cravings can intensify during the abstinence period, a phenomenon referred to as the 'incubation of craving' that has been well-described in preclinical studies. We previously reported that animals that self-administered heroin at a dosage of 0.075 mg/kg/infusion (HH) paired with discrete drug cues displayed robust incubation of heroin craving behavior after 21 days (D) of forced abstinence, an effect that was not observed with a lower dosage (0.03 mg/kg/infusion; HL). Here, we sought to elucidate molecular mechanisms underlying long-term heroin seeking behavior by profiling microRNA (miRNA) pathways in the orbitofrontal cortex (OFC), a brain region that modulates incubation of heroin seeking. miRNAs are small noncoding RNAs with long half-lives that have emerged as critical regulators of drug seeking behavior but their expression in the OFC has not been examined in any drug exposure paradigm. We employed next generation sequencing to detect OFC miRNAs differentially expressed after 21D of forced abstinence between HH and HL animals, and proteomics analysis to elucidate miRNA-dependent translational neuroadaptations. We identified 55 OFC miRNAs associated with incubation of heroin craving, including miR-485-5p, which was significantly downregulated following 21D forced abstinence in HH but not HL animals. We bidirectionally manipulated miR-485-5p in the OFC to demonstrate that miR-485-5p can regulate long-lasting heroin seeking behavior after extended forced abstinence. Proteomics analysis identified 45 proteins selectively regulated in the OFC of HH but not HL animals that underwent 21D forced abstinence, of which 7 were putative miR-485-5p target genes. Thus, the miR-485-5p pathway is dysregulated in animals with a phenotype of persistent heroin craving behavior and OFC miR-485-5p pathways may function to support long-lasting heroin seeking.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Colyer-Patel K, Kuhns L, Weidema A, Lesscher H, Cousijn J. Age-dependent effects of tobacco smoke and nicotine on cognition and the brain: A systematic review of the human and animal literature comparing adolescents and adults. Neurosci Biobehav Rev 2023; 146:105038. [PMID: 36627063 DOI: 10.1016/j.neubiorev.2023.105038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Cigarette smoking is often initiated during adolescence and an earlier age of onset is associated with worse health outcomes later in life. Paradoxically, the transition towards adulthood also marks the potential for recovery, as the majority of adolescents are able to quit smoking when adulthood emerges. This systematic review aimed to evaluate the evidence from both human and animal studies for the differential impact of adolescent versus adult repeated and long-term tobacco and nicotine exposure on cognitive and brain outcomes. The limited human studies and more extensive yet heterogeneous animal studies, provide preliminary evidence of heightened fear learning, anxiety-related behaviour, reward processing, nicotinic acetylcholinergic receptors expression, dopamine expression and serotonin functioning after adolescent compared to adult exposure. Effects of nicotine or tobacco use on impulsivity were comparable across age groups. These findings provide novel insights into the mechanisms underlying adolescents' vulnerability to tobacco and nicotine. Future research is needed to translate animal to human findings, with a focus on directly linking a broader spectrum of brain and behavioural outcomes.
Collapse
Affiliation(s)
- Karis Colyer-Patel
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Lauren Kuhns
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Alix Weidema
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Heidi Lesscher
- Department Population Health Sciences, Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Neurobiological Basis of Aversion-Resistant Ethanol Seeking in C. elegans. Metabolites 2022; 13:metabo13010062. [PMID: 36676987 PMCID: PMC9861758 DOI: 10.3390/metabo13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Persistent alcohol seeking despite the risk of aversive consequences is a crucial characteristic of alcohol use disorders (AUDs). Therefore, an improved understanding of the molecular basis of alcohol seeking despite aversive stimuli or punishment in animal models is an important strategy to understand the mechanism that underpins the pathology of AUDs. Aversion-resistant seeking (ARS) is characterized by disruption in control of alcohol use featured by an imbalance between the urge for alcohol and the mediation of aversive stimuli. We exploited C. elegans, a genetically tractable invertebrate, as a model to elucidate genetic components related to this behavior. We assessed the seb-3 neuropeptide system and its transcriptional regulation to progress aversion-resistant ethanol seeking at the system level. Our functional genomic approach preferentially selected molecular components thought to be involved in cholesterol metabolism, and an orthogonal test defined functional roles in ARS through behavioral elucidation. Our findings suggest that fmo-2 (flavin-containing monooxygenase-2) plays a role in the progression of aversion-resistant ethanol seeking in C. elegans.
Collapse
|
6
|
Doke M, McLaughlin JP, Cai JJ, Pendyala G, Kashanchi F, Khan MA, Samikkannu T. HIV-1 Tat and cocaine impact astrocytic energy reservoirs and epigenetic regulation by influencing the LINC01133-hsa-miR-4726-5p-NDUFA9 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:243-258. [PMID: 35892093 PMCID: PMC9307901 DOI: 10.1016/j.omtn.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Clinical research has proven that HIV-positive (HIV+) individuals with cocaine abuse show behavioral and neurocognitive disorders. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), are known to regulate gene expression in the contexts of HIV infection and drug abuse. However, there are no specific lncRNA or miRNA biomarkers associated with HIV-1 Transactivator of transcription protein (Tat) and cocaine coexposure. In the central nervous system (CNS), astrocytes are the primary regulators of energy metabolism, and impairment of the astrocytic energy supply can trigger neurodegeneration. The aim of this study was to uncover the roles of lncRNAs and miRNAs in the regulation of messenger RNA (mRNA) targets affected by HIV infection and cocaine abuse. Integrative bioinformatics analysis revealed altered expression of 10 lncRNAs, 10 miRNAs, and 4 mRNA/gene targets in human primary astrocytes treated with cocaine and HIV-1 Tat. We assessed the alterations in the expression of two miRNAs, hsa-miR-2355 and hsa-miR-4726-5p; four lncRNAs, LINC01133, H19, HHIP-AS1, and NOP14-AS1; and four genes, NDUFA9, KYNU, HKDC1, and LIPG. The results revealed interactions in the LINC01133-hsa-miR-4726-5p-NDUFA9 axis that may eventually help us understand cocaine- and HIV-1 Tat-induced astrocyte dysfunction that may ultimately result in neurodegeneration.
Collapse
Affiliation(s)
- Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, TX 78363, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - James J. Cai
- Veterinary Integrative Biosciences, Texas A&M University, TAMU 4458, College Station, TX 77845, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Mansoor A. Khan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, TX 78363, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, TX 78363, USA
| |
Collapse
|
7
|
Sey NYA, Hu B, Iskhakova M, Lee S, Sun H, Shokrian N, Ben Hutta G, Marks JA, Quach BC, Johnson EO, Hancock DB, Akbarian S, Won H. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol Psychiatry 2022; 27:3085-3094. [PMID: 35422469 PMCID: PMC9853312 DOI: 10.1038/s41380-022-01558-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.
Collapse
Affiliation(s)
- Nancy Y A Sey
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benxia Hu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marina Iskhakova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sool Lee
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Neda Shokrian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriella Ben Hutta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jesse A Marks
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Bryan C Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
- Fellow Program, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Ashton MK, Rueda AVL, Ho AM, Noor Aizin NABM, Sharma H, Dodd PR, Stadlin A, Camarini R. Sex differences in GABA A receptor subunit transcript expression are mediated by genotype in subjects with alcohol-related cirrhosis of the liver. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12785. [PMID: 35301805 PMCID: PMC9744570 DOI: 10.1111/gbb.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Male and female human subjects show contrasting propensities to misuse drugs of addiction, including alcohol. These differences lead to different psychological and neurological consequences, such as the likelihood of developing dependence. The pattern and extent of brain damage in alcohol-use disorder cases also varies with comorbid disease. To explore mechanisms that might underlie these outcomes, we used autopsy tissue to determine mRNA transcript expression in relation to genotype for two GABAA receptor subunit genes. We used quantitative Real-Time PCR to measure GABRA6 and GABRA2 mRNA concentrations in dorsolateral prefrontal and primary motor cortices of alcohol-use disorder subjects and controls of both sexes with and without liver disease who had been genotyped for these GABAA receptor subunit genes. Cirrhotic alcohol-use disorder cases had significantly higher expression of GABRA6 and GABRA2 transcripts than either controls or non-cirrhotic alcohol-use disorder cases. Differences were observed between sexes, genotypes and brain regions. We show that sex differences in subjects with GABRA6 and GABRA2 variants may contribute to differences in susceptibility to alcohol-use disorder and alcohol-induced cirrhosis.
Collapse
Affiliation(s)
- Madeline K. Ashton
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - André V. L. Rueda
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| | - Ada M.‐C. Ho
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Noradibah Arina Binte M. Noor Aizin
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Vela Research Singapore Pte LtdThe KendallSingapore
| | - Hansa Sharma
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Peter R. Dodd
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Rosana Camarini
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
9
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
10
|
Das S, Juliana N, Yazit NAA, Azmani S, Abu IF. Multiple Myeloma: Challenges Encountered and Future Options for Better Treatment. Int J Mol Sci 2022; 23:1649. [PMID: 35163567 PMCID: PMC8836148 DOI: 10.3390/ijms23031649] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a malignant hematological disease. The disease is characterized by the clonal proliferation of malignant plasma cells in the bone marrow. MM accounts for 1.3% of all malignancies and has been increasing in incidence all over the world. Various genetic abnormalities, mutations, and translocation, including epigenetic modifications, are known to contribute to the disease's pathophysiology. The prognosis is good if detected early, or else the outcome is very bad if distant metastasis has already occurred. Conventional treatment with drugs poses a challenge when there is drug resistance. In the present review, we discuss multiple myeloma and its treatment, drug resistance, the molecular basis of epigenetic regulation, the role of natural products in epigenetic regulators, diet, physical activity, addiction, and environmental pollutants, which may be beneficial for clinicians and researchers.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman;
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia; (N.A.A.Y.); (S.A.)
| | - Noor Anisah Abu Yazit
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia; (N.A.A.Y.); (S.A.)
| | - Sahar Azmani
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia; (N.A.A.Y.); (S.A.)
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Selangor, Malaysia;
| |
Collapse
|
11
|
Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022; 86:315-331. [PMID: 35034908 DOI: 10.3233/jad-215508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. OBJECTIVE In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic "Drinking in the Dark" (DID) mouse model. METHODS The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. RESULTS The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. CONCLUSION This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.
Collapse
Affiliation(s)
- Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Fernàndez-Castillo N, Cabana-Domínguez J, Corominas R, Cormand B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 2022; 27:624-639. [PMID: 34453125 PMCID: PMC8960411 DOI: 10.1038/s41380-021-01256-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Drug addiction, one of the major health problems worldwide, is characterized by the loss of control in drug intake, craving, and withdrawal. At the individual level, drugs of abuse produce serious consequences on health and have a negative impact on the family environment and on interpersonal and work relationships. At a wider scale, they have significant socio-economic and public health consequences and they cause delinquency and citizen insecurity. Cocaine, a psychostimulant substance, is one of the most used illicit drugs, especially in America, Western Europe, and Australia. Cocaine use disorders (CUD) are complex multifactorial conditions driven by both genetic and environmental influences. Importantly, not all people who use cocaine develop CUD, and this is due, at least in part, to biological factors that are encoded in the genome of individuals. Acute and repeated use of cocaine induces epigenetic and gene expression changes responsible for the neuronal adaptations and the remodeling of brain circuits that lead to the transition from use to abuse or dependence. The purpose of this review is to delineate such factors, which should eventually help to understand the inter-individual variability in the susceptibility to cocaine addiction. Heritability estimates for CUD are high and genetic risk factors for cocaine addiction have been investigated by candidate gene association studies (CGAS) and genome-wide association studies (GWAS), reviewed here. Also, the high comorbidity that exists between CUD and several other psychiatric disorders is well known and includes phenotypes like schizophrenia, aggression, antisocial or risk-taking behaviors. Such comorbidities are associated with a worse lifetime trajectory, and here we report shared genetic factors that may contribute to them. Gene expression changes and epigenetic modifications induced by cocaine use and chronic abuse in humans are addressed by reviewing transcriptomic studies performed on neuronal cells and on postmortem brains. We report some genes which expression is altered by cocaine that also bear genetic risk variants for the disorder. Finally, we have a glance to the pharmacogenetics of CUD treatments, still in early stages. A better understanding of the genetic underpinnings of CUD will foster the search of effective treatments and help to move forward to personalized medicine.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Judit Cabana-Domínguez
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Roser Corominas
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
13
|
Shi L, Wang Y, Li C, Zhang K, Du Q, Zhao M. AddictGene: An integrated knowledge base for differentially expressed genes associated with addictive substance. Comput Struct Biotechnol J 2021; 19:2416-2422. [PMID: 34025933 PMCID: PMC8113760 DOI: 10.1016/j.csbj.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Addiction, a disorder of maladaptive brain plasticity, is associated with changes in numerous gene expressions. Nowadays, high-throughput sequencing data on addictive substance-induced gene expression have become widely available. A resource for comprehensive annotation of genes that show differential expression in response to commonly abused substances is necessary. So, we developed AddictGene by integrating gene expression, gene-gene interaction, gene-drug interaction and epigenetic regulatory annotation for over 70,156 items of differentially expressed genes associated with 7 commonly abused substances, including alcohol, nicotine, cocaine, morphine, heroin, methamphetamine, and amphetamine, across three species (human, mouse, rat). We also collected 1,141 addiction-related experimentally validated genes by techniques such as RT-PCR, northern blot and in situ hybridization. The easy-to-use web interface of AddictGene (http://159.226.67.237/sun/addictgedb/) allows users to search and browse multidimensional data on DEGs of their interest: 1) detailed gene-specific information extracted from the original studies; 2) basic information about the specific gene extracted from NCBI; 3) SNP associated with substance dependence and other psychiatry disorders; 4) expression alteration of specific gene in other psychiatric disorders; 5) expression patterns of interested gene across 31 primary and 54 secondary human tissues; 6) functional annotation of interested gene; 7) epigenetic regulators involved in the alteration of specific genes, including histone modifications and DNA methylation; 8) protein-protein interaction for functional linkage with interested gene; 9) drug-gene interaction for potential druggability. AddictGene offers a valuable repository for researchers to study the molecular mechanisms underlying addiction, and might provide valuable insights into potential therapies for drug abuse and relapse.
Collapse
Affiliation(s)
- Leisheng Shi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kunlin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
14
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Bosse GD, Cadeddu R, Floris G, Farero RD, Vigato E, Lee SJ, Zhang T, Gaikwad NW, Keefe KA, Phillips PE, Bortolato M, Peterson RT. The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder. J Clin Invest 2021; 131:143990. [PMID: 33848264 DOI: 10.1172/jci143990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid use disorder (OUD) has become a leading cause of death in the United States, yet current therapeutic strategies remain highly inadequate. To identify potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior. These findings were confirmed in rats; furthermore, finasteride reduced the physical signs associated with opioid withdrawal. In rat models of neuropathic pain, finasteride did not alter the antinociceptive effect of opioids and reduced withdrawal-induced hyperalgesia. Steroidomic analyses of the brains of fish treated with finasteride revealed a significant increase in dehydroepiandrosterone sulfate (DHEAS). Treatment with precursors of DHEAS reduced opioid self-administration in zebrafish in a fashion akin to the effects of finasteride. These results highlight the importance of steroidogenic pathways as a rich source of therapeutic targets for OUD and point to the potential of finasteride as a new treatment option for this disorder.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Ryan D Farero
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Eva Vigato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Suhjung J Lee
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Kristen A Keefe
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Paul Em Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Cabrera-Mendoza B, Martínez-Magaña JJ, Monroy-Jaramillo N, Genis-Mendoza AD, Fresno C, Fries GR, Walss-Bass C, López Armenta M, García-Dolores F, Díaz-Otañez CE, Flores G, Vázquez-Roque RA, Nicolini H. Candidate pharmacological treatments for substance use disorder and suicide identified by gene co-expression network-based drug repositioning. Am J Med Genet B Neuropsychiatr Genet 2021; 186:193-206. [PMID: 33403748 DOI: 10.1002/ajmg.b.32830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Patients with substance use disorders (SUD) are at high risk to die by suicide. So far, the neurobiology of the suicide-SUD association has not been elucidated. This study aimed to identify potential pharmacological targets among hub genes from brain gene co-expression networks of individuals with SUD in a suicidal and non-suicidal context. Post-mortem samples from the prefrontal cortex of 79 individuals were analyzed. Individuals were classified into the following groups: suicides with SUD (n = 28), suicides without SUD (n = 23), nonsuicides with SUD (n = 9), nonsuicides without SUD (n = 19). Gene expression profiles were evaluated with the Illumina HumanHT-12 v4 array. Co-expression networks were constructed in WGCNA using the differentially expressed genes found in the comparisons: (a) suicides with and without SUD and (b) nonsuicides with and without SUD. Hub genes were selected for drug-gene interaction testing in the DGIdb database. Among drugs interacting with hub genes in suicides we found MAOA inhibitors and dextromethorphan. In the nonsuicide individuals, we found interactions with eglumegad and antipsychotics (olanzapine, clozapine, loxapine). Modafinil was found to interact with genes in both suicides and nonsuicides. These drugs represent possible candidate treatments for patients with SUD with and without suicidal behavior and their study in each context is encouraged.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Multidisciplinary Academic Division of Comalcalco, Juárez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Cristóbal Fresno
- Department of Technological Development, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Rubén Antonio Vázquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
17
|
Gatta E, Grayson DR, Auta J, Saudagar V, Dong E, Chen Y, Krishnan HR, Drnevich J, Pandey SC, Guidotti A. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol Psychiatry 2021; 26:1029-1041. [PMID: 31239533 PMCID: PMC6930366 DOI: 10.1038/s41380-019-0449-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023]
Abstract
Environmental factors, including substance abuse and stress, cause long-lasting changes in the regulation of gene expression in the brain via epigenetic mechanisms, such as DNA methylation. We examined genome-wide DNA methylation patterns in the prefrontal cortex (PFC, BA10) of 25 pairs of control and individuals with alcohol use disorder (AUD), using the Infinium® MethylationEPIC BeadChip. We identified 5254 differentially methylated CpGs (pnominal < 0.005). Bioinformatic analyses highlighted biological processes containing genes related to stress adaptation, including the glucocorticoid receptor (encoded by NR3C1). Considering that alcohol is a stressor, we focused our attention on differentially methylated regions of the NR3C1 gene and validated the differential methylation of several genes in the NR3C1 network. Chronic alcohol drinking results in a significant increased methylation of the NR3C1 exon variant 1H, with a particular increase in the levels of 5-hydroxymethylcytosine over 5-methylcytosine. These changes in DNA methylation were associated with reduced NR3C1 mRNA and protein expression levels in PFC, as well as other cortico-limbic regions of AUD subjects when compared with controls. Furthermore, we show that the expression of several stress-responsive genes (e.g., CRF, POMC, and FKBP5) is altered in the PFC of AUD subjects. These stress-response genes were also changed in the hippocampus, a region that is highly susceptible to stress. These data suggest that alcohol-dependent aberrant DNA methylation of NR3C1 and consequent changes in other stress-related genes might be fundamental in the pathophysiology of AUD and lay the groundwork for treatments targeting the epigenetic mechanisms regulating NR3C1 in AUD.
Collapse
Affiliation(s)
- Eleonora Gatta
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Dennis R. Grayson
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - James Auta
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Vikram Saudagar
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Erbo Dong
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Ying Chen
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Harish R. Krishnan
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Jenny Drnevich
- grid.35403.310000 0004 1936 9991High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL USA
| | - Subhash C. Pandey
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA ,grid.280892.9Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Xu J, Ma HY, Liu X, Rosenthal S, Baglieri J, McCubbin R, Sun M, Koyama Y, Geoffroy CG, Saijo K, Shang L, Nishio T, Maricic I, Kreifeldt M, Kusumanchi P, Roberts A, Zheng B, Kumar V, Zengler K, Pizzo DP, Hosseini M, Contet C, Glass CK, Liangpunsakul S, Tsukamoto H, Gao B, Karin M, Brenner DA, Koob GF, Kisseleva T. Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight 2020; 5:131277. [PMID: 32051339 DOI: 10.1172/jci.insight.131277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra-/-) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage. The level of circulating IL-17A positively correlated with the alcohol use in excessive drinkers and was further increased in patients with ALD as compared with healthy individuals. Our data suggest that IL-17A is a common mediator of excessive alcohol consumption and alcohol-induced liver/brain injury, and targeting IL-17A may provide a novel strategy for treatment of alcohol-induced pathology.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine.,Department of Surgery, and
| | | | - Xiao Liu
- Department of Medicine.,Department of Surgery, and
| | | | | | | | | | | | - Cedric G Geoffroy
- Department of Neurosciences, School of Medicine, UCSD, San Diego, California, USA.,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Kaoru Saijo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Max Kreifeldt
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Amanda Roberts
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, UCSD, San Diego, California, USA
| | | | | | | | | | - Candice Contet
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, UCSD, San Diego, California, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Michael Karin
- Department of Pharmacology, School of Medicine, UCSD, San Diego, California, USA
| | | | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | | |
Collapse
|
20
|
Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020; 731:144349. [PMID: 31935499 DOI: 10.1016/j.gene.2020.144349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The "transcriptome after death" involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.
Collapse
|
21
|
Marees AT, Gamazon ER, Gerring Z, Vorspan F, Fingal J, van den Brink W, Smit DJ, Verweij KJ, Kranzler HR, Sherva R, Farrer L, Gelernter J, Derks EM. Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci. Drug Alcohol Depend 2020; 206:107703. [PMID: 31785998 PMCID: PMC9159918 DOI: 10.1016/j.drugalcdep.2019.107703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Little is known about the functional mechanisms through which genetic loci associated with substance use traits ascertain their effect. This study aims to identify and functionally annotate loci associated with substance use traits based on their role in genetic regulation of gene expression. METHODS We evaluated expression Quantitative Trait Loci (eQTLs) from 13 brain regions and whole blood of the Genotype-Tissue Expression (GTEx) database, and from whole blood of the Depression Genes and Networks (DGN) database. The role of single eQTLs was examined for six substance use traits: alcohol consumption (N = 537,349), cigarettes per day (CPD; N = 263,954), former vs. current smoker (N = 312,821), age of smoking initiation (N = 262,990), ever smoker (N = 632,802), and cocaine dependence (N = 4,769). Subsequently, we conducted a gene level analysis of gene expression on these substance use traits using S-PrediXcan. RESULTS Using an FDR-adjusted p-value <0.05 we found 2,976 novel candidate genetic loci for substance use traits, and identified genes and tissues through which these loci potentially exert their effects. Using S-PrediXcan, we identified significantly associated genes for all substance traits. DISCUSSION Annotating genes based on transcriptomic regulation improves the identification and functional characterization of candidate loci and genes for substance use traits.
Collapse
Affiliation(s)
- Andries T. Marees
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands,QIMR Berghofer, Translational Neurogenomics group, Brisbane, Australia,Correspondence: ; Tel.: +31 6 21626999
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN,Clare Hall, University of Cambridge, Cambridge, CB3 9AL, United Kingdom
| | - Zachary Gerring
- QIMR Berghofer, Translational Neurogenomics group, Brisbane, Australia
| | - Florence Vorspan
- Assistance Publique – Hôpitaux de Paris, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, 200 rue du Faubourg Saint Denis, 75010 Paris, France,Inserm umr-s 1144, Université Paris Descartes, Université Paris Diderot, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Josh Fingal
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Dirk J.A. Smit
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Karin J.H. Verweij
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands,Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine and Crescenz VAMC, Philadelphia, PA 19104, USA
| | - Richard Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Lindsay Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | | | - Joel Gelernter
- Department of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Eske M. Derks
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands,QIMR Berghofer, Translational Neurogenomics group, Brisbane, Australia
| |
Collapse
|
22
|
Bhattacherjee A, Djekidel MN, Chen R, Chen W, Tuesta LM, Zhang Y. Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nat Commun 2019; 10:4169. [PMID: 31519873 PMCID: PMC6744514 DOI: 10.1038/s41467-019-12054-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Abstract
Coordinated activity-induced transcriptional changes across multiple neuron subtypes of the prefrontal cortex (PFC) play a pivotal role in encoding and regulating major cognitive behaviors. Yet, the specific transcriptional programs in each neuron subtype remain unknown. Using single-cell RNA sequencing (scRNA-seq), here we comprehensively classify all unique cell subtypes in the PFC. We analyze transcriptional dynamics of each cell subtype under a naturally adaptive and an induced condition. Adaptive changes during adolescence (between P21 and P60), a highly dynamic phase of postnatal neuroplasticity, profoundly impacted transcription in each neuron subtype, including cell type-specific regulation of genes implicated in major neuropsychiatric disorders. On the other hand, an induced plasticity evoked by chronic cocaine addiction resulted in progressive transcriptional changes in multiple neuron subtypes and became most pronounced upon prolonged drug withdrawal. Our findings lay a foundation for understanding cell type-specific postnatal transcriptional dynamics under normal PFC function and in neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wenqiang Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Luis M Tuesta
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Cates HM, Benca-Bachman CE, de Guglielmo G, Schoenrock SA, Shu C, Kallupi M. National Institute on Drug Abuse genomics consortium white paper: Coordinating efforts between human and animal addiction studies. GENES BRAIN AND BEHAVIOR 2019; 18:e12577. [PMID: 31012252 DOI: 10.1111/gbb.12577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
The National Institute on Drug Abuse Genetics and Epigenetics Cross-Cutting Research Team convened a diverse group of researchers, clinicians, and healthcare providers on the campus of the University of California, San Diego, in June 2018. The goal was to develop strategies to integrate genetics and phenotypes across species to achieve a better understanding of substance use disorders through associations between genotypes and addictive behaviors. This conference (a) discussed progress in harmonizing large opioid genetics cohorts, (b) discussed phenotypes that are used for genetics studies in humans, (c) examined phenotypes that are used for genetics studies in animal models, (d) identified synergies and gaps in phenotypic analyses of human and animal models and (e) identified strategies to integrate genetics and genomics data with phenotypes across species. The meeting consisted of panels that focused on phenotype harmonization (Dr. Laura Bierut, Dr. Olivier George, Dr. Dan Larach and Dr. Sesh Mudumbai), translating genetic findings between species (Dr. Elissa Chesler, Dr. Gary Peltz and Dr. Abraham Palmer), interpreting and understanding allelic variations (Dr. Vanessa Troiani and Dr. Tamara Richards) and pathway conservation in animal models and human studies (Dr. Robert Hitzemann, Dr. Huda Akil and Dr. Laura Saba). There were also updates that were provided by large consortia (Dr. Susan Tapert, Dr. Danielle Dick, Dr. Howard Edenberg and Dr. Eric Johnson). Collectively, the conference was convened to discuss progress and changes in genome-wide association studies.
Collapse
Affiliation(s)
- Hannah M Cates
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Sarah A Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chang Shu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
24
|
Ishiguro H, Miyake K, Tabata K, Mochizuki C, Sakurai T, Onaivi ES. Neuronal cell adhesion molecule regulating neural systems underlying addiction. Neuropsychopharmacol Rep 2018; 39:10-16. [PMID: 30549257 PMCID: PMC7292301 DOI: 10.1002/npr2.12038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Aims The human NRCAM gene is associated with polysubstance use. Nrcam knockout mice do not acquire a preference for addictive substances. We aimed to elucidate the role of Nrcam in specific neural circuits underlying congenital preference for substances and the acquisition of addiction. Methods We analyzed gene expression patterns of neural molecules to find a common addiction pathway dependent on Nrcam function. We examined monoaminergic, glutamatergic, and GABAergic systems in the brains of Nrcam knockout mice following treatment with methamphetamine (METH) or saline (SAL) using micro‐array gene expression analysis, which was replicated using TaqMan gene expression analysis. To find a common addiction pathway, we examined similarities and differences between the expression patterns of molecules in METH‐treated mice and in Nrcam knockout mice treated with cocaine (COC). Results Glutaminase expression in brain was reduced in Nrcam heterozygous mice after METH and COC treatment, consistent with our previous study. Metabotropic glutamate receptor 2 expression was reduced in Nrcam heterozygous mice that received either METH or COC treatment. Several other molecules could act in independent addiction pathways involving METH or COC. We also found that GABA receptor subunit g2 expression was reduced in Nrcam heterozygous mice that underwent SAL treatment, and that METH treatment attenuated this reduction. Conclusion Nrcam differentially regulates glutamatergic and GABAergic molecules in naive brains and in brains of animals with acquired addiction. Elucidating the complex neural mechanisms underlying polysubstance use will uncover biological features of addiction and may contribute to the development of effective pharmaceutical treatments. The human/mice NRCAM is involved in specific neural circuits underlying congenital preference for substances and the acquisition of addiction. Mice Nrcam differentially regulates glutamatergic and GABAergic molecules in naive brains and in brains of animals with acquired addiction. Elucidating the complex neural mechanisms underlying polysubstance use will uncover biological features of addiction and may contribute to the development of effective pharmaceutical treatments.
![]()
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | - Kunio Miyake
- Department of Health Sciences, University of Yamanashi, Chuo, Japan
| | - Koichi Tabata
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | - Chiaki Mochizuki
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | | | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey
| |
Collapse
|
25
|
Abstract
Drug addiction is a chronic, relapsing brain disorder. Multiple neural networks in the brain including the reward system (e.g., the mesocorticolimbic system), the anti-reward/stress system (e.g., the extended amygdala), and the central immune system, are involved in the development of drug addiction and relapse after withdrawal from drugs of abuse. Preclinical and clinical studies have demonstrated that it is promising to control drug addiction by pharmacologically targeting the addiction-related systems in the brain. Here we review the pharmacological targets within the dopamine system, glutamate system, trace amine system, anti-reward system, and central immune system, which are of clinical interests. Furthermore, we discuss other potential therapies, e.g., brain stimulation, behavioral treatments, and therapeutic gene modulation, which could be effective to treat drug addiction. We conclude that, although drug addiction is a complex disorder that involves complicated neural mechanisms and psychological processes, this mental disorder is treatable and may be curable by therapies such as gene modulation in the future.
Collapse
|
26
|
Thériault RK, Leri F, Kalisch B. The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacology (Berl) 2018; 235:2675-2685. [PMID: 29992335 DOI: 10.1007/s00213-018-4961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE There is evidence that central mu opioid receptors (MORs) are implicated in several aspects of cocaine addiction, and that MOR expression is elevated by cocaine in vitro and in the nucleus accumbens (NAc) when administered in vivo. OBJECTIVE To understand the cellular mechanisms involved in regulating MOR expression, this study explored whether neuronal nitric oxide synthase (nNOS) modulates the neurochemical and behavioral effects of acute and repeated cocaine administration. METHODS Male Sprague-Dawley rats received a single cocaine injection (20 mg/kg, i.p.) in combination with the selective nNOS inhibitor 7-nitroindazole (7-NI) (0, 25, or 50 mg/kg, i.p.), and the expression of MOR and nNOS messenger RNA (mRNA) and protein levels in the NAc were measured. In a separate conditioned place preference (CPP) experiment, 7-NI (0, 25, or 50 mg/kg, i.p.) was administered prior to cocaine (0 or 20 mg/kg, i.p.) conditioning sessions, and levels of MOR and nNOS mRNA and protein in the NAc were measured following CPP test. RESULTS Acute cocaine administration significantly enhanced nNOS and MOR mRNA and protein expression in the NAc, and this increase in MOR expression was blocked by 7-NI. Furthermore, in 7-NI pre-treated rats, cocaine-induced CPP was not statistically significant and the increase in MOR mRNA expression in the NAc in these animals was attenuated. CONCLUSIONS These findings suggest that nNOS modulates MOR expression following acute cocaine administration, and that cocaine CPP and associated upregulation of MOR expression involve both nNOS-dependent and independent mechanisms. Elucidation of these molecular events may identify useful therapeutic target for cocaine addiction.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Francesco Leri
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Department of Psychology, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Bettina Kalisch
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada. .,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
27
|
Cabana-Domínguez J, Arenas C, Cormand B, Fernàndez-Castillo N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl Psychiatry 2018; 8:173. [PMID: 30166527 PMCID: PMC6117282 DOI: 10.1038/s41398-018-0224-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cocaine is one of the most used psychostimulant drugs worldwide. MicroRNAs are post-transcriptional regulators of gene expression that are highly expressed in brain, and several studies have shown that cocaine can alter their expression. In a previous study, we identified several protein-coding genes that are differentially expressed in a dopaminergic neuron-like model after an acute exposure to cocaine. Now, we used the prediction tool WebGestalt to identify miRNA molecules potentially involved in the regulation of these genes. Using the same cellular model, we found that seven of these miRNAs are down-regulated by cocaine: miR-124-3p, miR-124-5p, miR-137, miR-101-3p, miR-9-5p, miR-369-3p and miR-153-3p, the last three not previously related to cocaine. Furthermore, we found that three of the miRNA genes that are differentially expressed in our model (hsa-miR-9-1, hsa-miR-153-1 and hsa-miR-124-3) are nominally associated with cocaine dependence in a case-control study (2,085 cases and 4,293 controls). In summary, we highlighted novel miRNAs that may be involved in those cocaine-induced changes of gene expression that underlie addiction. Moreover, we identified genetic variants that contribute to cocaine dependence in three of these miRNA genes, supporting the idea that genes differentially expressed under cocaine may play an important role in the susceptibility to cocaine dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
28
|
Wang Y, Teng H, Sapozhnikov DM, Du Q, Zhao M. Transcriptome Sequencing Reveals Candidate NF-κB Target Genes Involved in Repeated Cocaine Administration. Int J Neuropsychopharmacol 2018; 21:697-704. [PMID: 29982443 PMCID: PMC6030870 DOI: 10.1093/ijnp/pyy031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/19/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Drug-induced alterations in gene expression play an important role in the development of addictive behavior. Numerous transcription factors have been implicated in mediating the gene expression changes that occur in drug addiction. Nuclear factor kappa B is an inducible transcription factor complex that is rapidly activated by diverse stimuli. METHODS We performed next-generation high-throughput sequencing of the prefrontal cortex in a mouse model of repeated cocaine administration combined with pharmacological nuclear factor kappa B inhibition to identify nuclear factor kappa B target genes that participate in the cocaine addiction process. RESULTS We found that the nuclear factor kappa B antagonist sodium diethyldithiocarbamate trihydrate significantly reversed the cocaine-induced expression changes of the amphetamine addiction pathway. Genes that demonstrated differential expression in response to cocaine treatment that was also reversed by sodium diethyldithiocarbamate trihydrate were enriched for the axon guidance pathway. Furthermore, the nuclear factor kappa B homo-dimer motif could be mapped to 86 of these sodium diethyldithiocarbamate trihydrate-reversed genes, which were also enriched for axon guidance. CONCLUSIONS We suggest that nuclear factor kappa B directly modifies the expression of axon guidance pathway members, leading to cocaine sensitization. Our findings reveal the role of prefrontal cortex nuclear factor kappa B activity in addiction and uncover the molecular mechanisms by which nuclear factor kappa B drives changes in the addicted brain.
Collapse
Affiliation(s)
- Yan Wang
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- University of Chinese Academy of Sciences, Beijing, China,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing China
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University Montreal, Quebec, Canada
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Mei Zhao
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, China,University of Chinese Academy of Sciences, Beijing, China,Correspondence: Dr. Mei Zhao, 16 Lincui Road, Chao Yang District, Beijing 100101, China ()
| |
Collapse
|
29
|
Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: Does DNA methylation play a role? Neurotoxicol Teratol 2018; 71:50-63. [PMID: 29408446 DOI: 10.1016/j.ntt.2018.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
The period of in utero development is one of the most critical windows during which adverse conditions and exposures may influence the growth and development of the fetus as well as its future postnatal health and behavior. Maternal substance use during pregnancy remains a relatively common but nonetheless hazardous in utero exposure. For example, previous epidemiological studies have associated prenatal substance exposure with reduced birth weight, poor developmental and psychological outcomes, and increased risk for diseases and behavioral disorders (e.g., externalizing behaviors like ADHD, conduct disorder, and substance use) later in life. Researchers are now learning that many of the mechanisms whereby adverse in utero exposures may affect key pathways crucial for proper fetal growth and development are epigenetic in nature, with the majority of work in humans considering DNA methylation specifically. This review will explore the research to date on epigenetic alterations tied to maternal substance use during pregnancy and will also discuss the possible role of DNA methylation in the robust relationship between maternal substance use and later behavioral and developmental sequelae in offspring.
Collapse
Affiliation(s)
- Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA.
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Emily Rolan
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
31
|
Marie-Claire C, Jourdaine C, Lépine JP, Bellivier F, Bloch V, Vorspan F. Pharmacoepigenomics of opiates and methadone maintenance treatment: current data and perspectives. Pharmacogenomics 2017; 18:1359-1372. [DOI: 10.2217/pgs-2017-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current treatments of opioid addiction include primarily maintenance medications such as methadone. Chronic exposure to opiate and/or long-lasting maintenance treatment induce modulations of gene expression in brain and peripheral tissues. There is increasing evidence that epigenetic modifications underlie these modulations. This review summarizes published results on opioid-induced epigenetic changes in animal models and in patients. The epigenetic modifications observed with other drugs of abuse often used by opiate abusers are also outlined. Specific methadone maintenance treatment induced epigenetic modifications at different treatment stages may be combined with the ones resulting from patients’ substance use history. Therefore, research comparing groups of addicts with similar history and substances use disorders but contrasting for well-characterized treatment phenotypes should be encouraged.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Clément Jourdaine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Jean-Pierre Lépine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Vanessa Bloch
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Florence Vorspan
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| |
Collapse
|
32
|
Cabana-Domínguez J, Roncero C, Pineda-Cirera L, Palma-Álvarez RF, Ros-Cucurull E, Grau-López L, Esojo A, Casas M, Arenas C, Ramos-Quiroga JA, Ribasés M, Fernàndez-Castillo N, Cormand B. Association of the PLCB1 gene with drug dependence. Sci Rep 2017; 7:10110. [PMID: 28860459 PMCID: PMC5579249 DOI: 10.1038/s41598-017-10207-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Carlos Roncero
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - R Felipe Palma-Álvarez
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Elena Ros-Cucurull
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lara Grau-López
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Abderaman Esojo
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Miquel Casas
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
33
|
Vallender EJ, Goswami DB, Shinday NM, Westmoreland SV, Yao WD, Rowlett JK. Transcriptomic profiling of the ventral tegmental area and nucleus accumbens in rhesus macaques following long-term cocaine self-administration. Drug Alcohol Depend 2017; 175:9-23. [PMID: 28376414 PMCID: PMC5693237 DOI: 10.1016/j.drugalcdep.2017.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND The behavioral consequences associated with addiction are thought to arise from drug-induced neuroadaptation. The mesolimbic system plays an important initial role in this process, and while the dopaminergic system specifically has been strongly interrogated, a complete understanding of the broad transcriptomic effects associated with cocaine use remains elusive. METHODS Using next generation sequencing approaches, we performed a comprehensive evaluation of gene expression differences in the ventral tegmental area and nucleus accumbens of rhesus macaques that had self-administered cocaine for roughly 100days and saline-yoked controls. During self-administration, the monkeys increased daily consumption of cocaine until almost the maximum number of injections were taken within the first 15min of the one hour session for a total intake of 3mg/kg/day. RESULTS We confirm the centrality of dopaminergic differences in the ventral tegmental area, but in the nucleus accumbens we see the strongest evidence for an inflammatory response and large scale chromatin remodeling. CONCLUSIONS These findings suggest an expanded understanding of the pathology of cocaine addiction with the potential to lead to the development of alternative treatment strategies.
Collapse
Affiliation(s)
- Eric J. Vallender
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772,University of Mississippi Medical Center, Jackson, MS 39216,Tulane National Primate Research Center, Covington, LA 70433
| | - Dharmendra B. Goswami
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772,Boston University, Boston, MA 02118
| | - Nina M. Shinday
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772,University of Massachusetts-Amherst, Amherst, MA 01003
| | | | - Wei-Dong Yao
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772,SUNY Upstate Medical University, Syracuse, NY 13210
| | - James K. Rowlett
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772,University of Mississippi Medical Center, Jackson, MS 39216,Tulane National Primate Research Center, Covington, LA 70433,University of Massachusetts-Amherst, Amherst, MA 01003
| |
Collapse
|
34
|
Sun H, Damez-Werno DM, Scobie KN, Shao NY, Dias C, Rabkin J, Wright KN, Mouzon E, Kabbaj M, Neve R, Turecki G, Shen L, Nestler EJ. Regulation of BAZ1A and nucleosome positioning in the nucleus accumbens in response to cocaine. Neuroscience 2017; 353:1-6. [PMID: 28412501 DOI: 10.1016/j.neuroscience.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Chromatin regulation, in particular ATP-dependent chromatin remodelers, have previously been shown to be important in the regulation of reward-related behaviors in animal models of mental illnesses. Here we demonstrate that BAZ1A, an accessory subunit of the ISWI family of chromatin remodeling complexes, is downregulated in the nucleus accumbens (NAc) of mice exposed repeatedly to cocaine and of cocaine-addicted humans. Viral-mediated overexpression of BAZ1A in mouse NAc reduces cocaine reward as assessed by conditioned place preference (CPP), but increases cocaine-induced locomotor activation. Furthermore, we investigate nucleosome repositioning genome-wide by conducting chromatin immunoprecipitation (ChIP)-sequencing for total H3 in NAc of control mice and after repeated cocaine administration, and find extensive nucleosome occupancy and shift changes across the genome in response to cocaine exposure. These findings implicate BAZ1A in molecular and behavioral plasticity to cocaine and offer new insight into the pathophysiology of cocaine addiction.
Collapse
Affiliation(s)
- HaoSheng Sun
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diane M Damez-Werno
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kimberly N Scobie
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ning-Yi Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline Dias
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqui Rabkin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine N Wright
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rachael Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
35
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
36
|
Moosavi A, Ardekani AM. Role of Epigenetics in Biology and Human Diseases. IRANIAN BIOMEDICAL JOURNAL 2016; 20:246-58. [PMID: 27377127 PMCID: PMC5075137 DOI: 10.22045/ibj.2016.01] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
For a long time, scientists have tried to describe disorders just by genetic or environmental factors. However, the role of epigenetics in human diseases has been considered from a half of century ago. In the last decade, this subject has attracted many interests, especially in complicated disorders such as behavior plasticity, memory, cancer, autoimmune disease, and addiction as well as neurodegenerative and psychological disorders. This review first explains the history and classification of epigenetic modifications, and then the role of epigenetic in biology and connection between the epigenetics and environment are explained. Furthermore, the role of epigenetics in human diseases is considered by focusing on some diseases with some complicated features, and at the end, we have given the future perspective of this field. The present review article provides concepts with some examples to reveal a broad view of different aspects of epigenetics in biology and human diseases.
Collapse
Affiliation(s)
- Azam Moosavi
- Department of Biochemistry, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
37
|
Ghitza UE. Commentary: A Gene-Based Association Method for Mapping Traits Using Reference Transcriptome Data. Front Psychiatry 2016; 7:73. [PMID: 27199780 PMCID: PMC4842760 DOI: 10.3389/fpsyt.2016.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Udi E Ghitza
- U.S. Department of Health and Human Services, Center for the Clinical Trials Network, National Institute on Drug Abuse, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
38
|
Marballi K, Genabai NK, Blednov YA, Harris RA, Ponomarev I. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. GENES BRAIN AND BEHAVIOR 2015; 15:318-26. [PMID: 26482798 DOI: 10.1111/gbb.12266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction.
Collapse
Affiliation(s)
- K Marballi
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - N K Genabai
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin.,Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - I Ponomarev
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| |
Collapse
|
39
|
Webb A, Papp AC, Curtis A, Newman LC, Pietrzak M, Seweryn M, Handelman SK, Rempala GA, Wang D, Graziosa E, Tyndale RF, Lerman C, Kelsoe JR, Mash DC, Sadee W. RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics 2015; 16:990. [PMID: 26597164 PMCID: PMC4657279 DOI: 10.1186/s12864-015-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. RESULTS Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. CONCLUSIONS RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance.
Collapse
Affiliation(s)
- Amy Webb
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Audrey C Papp
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amanda Curtis
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Leslie C Newman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Maciej Pietrzak
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Michal Seweryn
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Samuel K Handelman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Daqing Wang
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Erica Graziosa
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Rachel F Tyndale
- Center for Addiction and Mental Health and Departments of Psychiatry and Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - John R Kelsoe
- Department of Psychiatry, Laboratory of Psychiatric Genomics, University of California, San Diego, USA.
- VA San Diego Healthcare System, La Jolla, San Diego, CA, USA.
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Departments of Pharmacology, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA.
- Departments of Psychiatry, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA.
- Departments of Human Genetics/Internal Medicine, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, 5078 Graves Hall, 333 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
40
|
Ramo-Fernández L, Schneider A, Wilker S, Kolassa IT. Epigenetic Alterations Associated with War Trauma and Childhood Maltreatment. BEHAVIORAL SCIENCES & THE LAW 2015; 33:701-721. [PMID: 26358541 DOI: 10.1002/bsl.2200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Survivors of war trauma or childhood maltreatment are at increased risk for trauma-spectrum disorders such as post-traumatic stress disorder (PTSD). In addition, traumatic stress has been associated with alterations in the neuroendocrine and the immune system, enhancing the risk for physical diseases. Traumatic experiences might even affect psychological as well as biological parameters in the next generation, i.e. traumatic stress might have transgenerational effects. This article outlines how epigenetic processes, which represent a pivotal biological mechanism for dynamic adaptation to environmental challenges, might contribute to the explanation of the long-lasting and transgenerational effects of trauma. In particular, epigenetic alterations in genes regulating the hypothalamus-pituitary-adrenal axis as well as the immune system have been observed in survivors of childhood and adult trauma. These changes could result in enduring alterations of the stress response as well as the physical health risk. Furthermore, the effects of parental trauma could be transmitted to the next generation by parental distress and the pre- and postnatal environment, as well as by epigenetic marks transmitted via the germline. While epigenetic research has a high potential of advancing our understanding of the consequences of trauma, the findings have to be interpreted with caution, as epigenetics only represent one piece of a complex puzzle of interacting biological and environmental factors. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Anna Schneider
- Clinical and Biological Psychology, Ulm University, Germany
| | - Sarah Wilker
- Clinical and Biological Psychology, Ulm University, Germany
| | | |
Collapse
|
41
|
Schoenthaler SJ, Blum K, Braverman ER, Giordano J, Thompson B, Oscar-Berman M, Badgaiyan RD, Madigan MA, Dushaj K, Li M, Demotrovics Z, Waite RL, Gold MS. NIDA-Drug Addiction Treatment Outcome Study (DATOS) Relapse as a Function of Spirituality/Religiosity. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:36-45. [PMID: 26052556 PMCID: PMC4455957 DOI: 10.17756/jrds.2015-007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The connection between religion/spirituality and deviance, like substance abuse, was first made by Durkheim who defined socially expected behaviors as norms. He explained that deviance is due in large part to their absence (called anomie), and concluded that spirituality lowers deviance by preserving norms and social bonds. Impairments in brain reward circuitry, as observed in Reward Deficiency Syndrome (RDS), may also result in deviance and as such we wondered if stronger belief in spirituality practice and religious belief could lower relapse from drugs of abuse. METHODS The NIDA Drug Addiction Treatment Outcome Study data set was used to examine post hoc relapse rates among 2,947 clients who were interviewed at 12 months after intake broken down by five spirituality measures. RESULTS Our main findings strongly indicate, that those with low spirituality have higher relapse rates and those with high spirituality have higher remission rates with crack use being the sole exception. We found significant differences in terms of cocaine, heroin, alcohol, and marijuana relapse as a function of strength of religious beliefs (x2 = 15.18, p = 0.028; logistic regression = 10.65, p = 0.006); frequency of attending religious services (x2 = 40.78, p < 0.0005; logistic regression = 30.45, p < 0.0005); frequency of reading religious books (x2 = 27.190, p < 0.0005; logistic regression = 17.31, p < 0.0005); frequency of watching religious programs (x2 = 19.02, p = 0.002; logistic regression = ns); and frequency of meditation/prayer (x2 = 11.33, p = 0.045; logistic regression = 9.650, p = 0.002). Across the five measures of spirituality, the spiritual participants reported between 7% and 21% less alcohol, cocaine, heroin, and marijuana use than the non-spiritual subjects. However, the crack users who reported that religion was not important reported significantly less crack use than the spiritual participants. The strongest association between remission and spirituality involves attending religious services weekly, the one marker of the five that involves the highest social interaction/social bonding consistent with Durkheim's social bond theory. CONCLUSIONS Stronger spiritual/religious beliefs and practices are directly associated with remission from abused drugs except crack. Much like the value of having a sponsor, for clients who abuse drugs, regular spiritual practice, particularly weekly attendance at the religious services of their choice is associated with significantly higher remission. These results demonstrate the clinically significant role of spirituality and the social bonds it creates in drug treatment programs.
Collapse
Affiliation(s)
| | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, PATH Foundation NY, New York, NY, USA
- Department of Clinical Research, National Institute for Holistic Addiction Studies, North Miami Beach, FL, USA
- Department of Psychiatry, Human Integrated Services Unit, University of Vermont Center for Clinical & Translational Science, University of Vermont College of Medicine, Burlington, VT, USA
- Department of Nutrigenomics, Igene, Inc., Austin, TX, USA
- Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu, CA, USA
- Dominion Diagnostics, LLC, North Kingston, RI, USA
| | - Eric R. Braverman
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, PATH Foundation NY, New York, NY, USA
| | - John Giordano
- Department of Clinical Research, National Institute for Holistic Addiction Studies, North Miami Beach, FL, USA
| | - Ben Thompson
- Departments of Psychiatry, Anatomy, & Neurobiology, Boston VA and Boston University School of Medicine, Boston, MA, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Anatomy, & Neurobiology, Boston VA and Boston University School of Medicine, Boston, MA, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | | | - Kristina Dushaj
- Department of Neurology, PATH Foundation NY, New York, NY, USA
| | - Mona Li
- Department of Neurology, PATH Foundation NY, New York, NY, USA
| | - Zsolt Demotrovics
- Eotvos Lorand University, Institute of Psychology, Department of Clinical Psychology and Addiction, Izabella utca 46, H-1064, Budapest, Hungary
| | - Roger L. Waite
- Department of Nutrigenomics, RDSolutions, Inc., Salt Lake City, UT, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
42
|
Abstract
Interest in the field of epigenetics has increased rapidly over the last decade, with the term becoming more identifiable in biomedical research, scientific fields outside of the molecular sciences, such as ecology and physiology, and even mainstream culture. It has become increasingly clear, however, that different investigators ascribe different definitions to the term. Some employ epigenetics to explain changes in gene expression, others use it to refer to transgenerational effects and/or inherited expression states. This disagreement on a clear definition has made communication difficult, synthesis of epigenetic research across fields nearly impossible, and has in many ways biased methodologies and interpretations. This article discusses the history behind the multitude of definitions that have been employed since the conception of epigenetics, analyzes the components of these definitions, and offers solutions for clarifying the field and mitigating the problems that have arisen due to these definitional ambiguities.
Collapse
Affiliation(s)
- Carrie Deans
- Department of Entomology, Texas A&M University, College Station, Texas 77843
| | - Keith A Maggert
- Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|