1
|
Roy S, Shanmugam G, Rakshit S, Pradeep R, George M, Sarkar K. Exploring the immunomodulatory potential of Brahmi (Bacopa monnieri) in the treatment of invasive ductal carcinoma. Med Oncol 2024; 41:115. [PMID: 38622289 DOI: 10.1007/s12032-024-02365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - R Pradeep
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023; 13:metabo13030337. [PMID: 36984777 PMCID: PMC10054607 DOI: 10.3390/metabo13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Globally, climate change and wildfires are disrupting natural ecosystems, thus setting several endemic species at risk. The genus Lavandula is widely present in the Mediterranean region and its species, namely, those included in the section Stoechas, are valuable resources of active compounds with several biological assets. Since ancient times lavenders have been used in traditional medicine and for domestic purposes. These species are melliferous, decorative, and essential oil-producing plants with a high economic interest in the pharmaceutical, flavor, fragrance, and food industries. The essential oils of Lavandula section Stoechas are characterized by high amounts of 1,8-cineole, camphor, fenchone, and specifically for L. stoechas subsp. luisieri one of the major compounds is trans-α-necrodyl acetate. On the other hand, the diversity of non-volatile components like phenolic compounds, such as phenolic acids and flavonoids, make these species an important source of phytochemicals with pharmacological interest. Rosmarinic, caffeic, and salvianolic B acids are the major phenolic acids, and luteolin and eriodictyol-O-glucuronide are the main reported flavonoids. However, the concentration of these secondary metabolites is strongly affected by the plant’s phenological phase and varies in Lavandula sp. from different areas of origin. Indeed, lavender extracts have shown promising antioxidant, antimicrobial, anti-inflammatory, and anticancer properties as well as several other beneficial actions with potential for commercial applications. Despite several studies on the bioactive potential of lavenders from the section Stoechas, a systematized and updated review of their chemical profile is lacking. Therefore, we carried out the present review that gathers relevant information on the different types of secondary metabolites found in these species as well as their bioactive potential.
Collapse
Affiliation(s)
- Joana Domingues
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fernanda Delgado
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - José Carlos Gonçalves
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ana Paula Duarte
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
4
|
Zhou P, Shi W, He XY, Du QY, Wang F, Guo J. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. PHARMACEUTICAL BIOLOGY 2021; 59:1480-1489. [PMID: 34714209 PMCID: PMC8567945 DOI: 10.1080/13880209.2021.1992448] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.
Collapse
Affiliation(s)
- Piao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yan He
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan-Yu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- CONTACT Fei Wang Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Jing Guo Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| |
Collapse
|
5
|
Zhou Y, Farooqi AA, Xu B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34751072 DOI: 10.1080/10408398.2021.2000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, Mukherjee A, Chatterji U, Roy P. Lactoferrin-tethered betulinic acid nanoparticles promote rapid delivery and cell death in triple negative breast and laryngeal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1362-1371. [PMID: 33284038 DOI: 10.1080/21691401.2020.1850465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
Collapse
Affiliation(s)
- Asim Halder
- Department of Chemical Technology, University of Calcutta, Kolkata, India.,Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Megha Jethwa
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management, University Area, Kolkata, India
| | - A B M Helal Uddin
- Kulliyyah Of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang, Malaysia
| | - Arup Mukherjee
- Department of Biotechnology, Malulana Abul Kalam Azad University of Technology (formerly WBUT), Kolkata, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Partha Roy
- Department of Pharmaceutical Technology, Adamas University, Kolkata, India
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The olive tree (Olea europaea L.) has featured as a significant part of medicinal history, used to treat a variety of ailments within folk medicine. The Mediterranean diet, which is rich in olive products, is testament to Olea europaeas positive effects on health, associated with reduced incidences of cancer and cardiovascular disease. This review aims to summarise the current literature regarding the therapeutic potential of Olea europaea products in cancer, detailing the possible compounds responsible for its chemotherapeutic effects. RECENT FINDINGS Much of the existing research has focused on the use of cell culture models of disease, demonstrating Olea europaea extracts, and specific compounds within these extracts, have efficacy in a range of in vitro and in vivo cancer models. The source of Olea europaeas cytotoxicity is yet to be fully defined; however, compounds such as oleuropein and verbascoside have independent cytotoxic effects on animal models of cancer. Initial results from animal models are promising but need to be translated to a clinical setting. Treatments utilising these compounds are likely to be well tolerated and represent a promising direction for future research.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Jonathon Hull
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
8
|
Ghosh S, Khanam R, Acharya Chowdhury A. The Evolving Roles of Bacopa monnieri as Potential Anti-Cancer Agent: A Review. Nutr Cancer 2020; 73:2166-2176. [PMID: 33148034 DOI: 10.1080/01635581.2020.1841248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.
Collapse
Affiliation(s)
- Sudeepa Ghosh
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | - Rahmat Khanam
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | | |
Collapse
|
9
|
Abstract
The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.
Collapse
|
10
|
Duan ZK, Lv TM, Song GS, Wang YX, Lin B, Huang XX. Structure reassignment of two triterpenes with CASE algorithms and DFT chemical shift predictions. Nat Prod Res 2020; 36:229-236. [PMID: 32524840 DOI: 10.1080/14786419.2020.1777122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two triterpenes (14S,17S,20S,24R)-25-hydroxy-14,17-cyclo-20,24-epoxy-malabarican-3-one (CEM, 1a) and (14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cyclomalabarican-3-one (CM, 2a) with a cyclobutane ring were reported, which have the same NMR data as ocotillone (1b) and gardaubryone C (2b), respectively. An incorrect structure might be reported. Therefore, the structure reanalysis of these triterpenes was achieved by CASE algorithm and DFT chemical shift predictions, and the results showed that the structures of CEM and CM might be incorrect. To further verify the structure of compound 1, the HMBC, 1H-1H COSY and HSQC-TOCSY spectra were employed. Herein, we revised the structure of CEM and CM, and our study also showed that CASE algorithm and DFT chemical shift predictions can hold the post of effective structure reassignment method.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Guan-Shan Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu-Xi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
11
|
Singh B, Sharma RA. Indian Morinda species: A review. Phytother Res 2019; 34:924-1007. [PMID: 31840355 DOI: 10.1002/ptr.6579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
Morinda is a largest genus of Rubiaceae family, and its 11 species are found in India. In India, plant species are known by several common names as great morinda, Indian mulberry, noni, beach mulberry and cheese fruit. Various Morinda products (capsules, tablets, skin products and fruit juices) are available in the market, used by people for treatment of several health complaints. A diversity of phytochemicals including iridoids, flavonoids, flavonoid glycosides, anthraquinones, coumarins, lignanas, noniosides, phenolics and triterpenoids have been reported from Morinda species. Morinda species are used in the treatment of inflammation, cancer, diabetes, psyquiatric disorders, and bacterial and viral infections. The noni fruit juice (Morinda citrifolia) and its products are used clinically in the treatment of cancer, hypertension and cervical spondylosis affecting patients. M. citrifolia fuit juice, with different doses, is used in the maintaining blood pressure and reducing of superoxides, HDL and LDL levels. Similarly, oligosaccharide capsules and tablets of root extract of M. officinalis are recommended as medicine for the treatment of kidney problems and sexual dysfunctions of patients. The toxicological studies revealed that higher doses of fruit juice (4,000 or 5,000 mg/kg) of M. citrifolia for 2 or more months cause toxic effects on liver and kidneys. M. officinalis root extracts (ethanolic and aqueous) are found fully safe during treatment of diseases. A large number of reviews are available on M. citrifolia but very few studies are conducted on other Indian Morinda species. This review reports the comprehensive knowledge on state-wise distribution, botany, ethnomedicinal uses, phytochemistry, pharmacological activities, clinical applications and toxicological evaluations of 11 species of Morinda found in India.
Collapse
Affiliation(s)
- Bharat Singh
- Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur, India
| |
Collapse
|
12
|
Teng YN, Wang YH, Wu TS, Hung HY, Hung CC. Zhankuic Acids A, B and C from Taiwanofungus Camphoratus Act as Cytotoxicity Enhancers by Regulating P-Glycoprotein in Multi-Drug Resistant Cancer Cells. Biomolecules 2019; 9:biom9120759. [PMID: 31766413 PMCID: PMC6995581 DOI: 10.3390/biom9120759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Since P-glycoprotein (P-gp)-related multidrug resistance (MDR) remains the most important unsolved problem in cancer treatment, scientists are attempting to find potential structures from natural resources. The aim of the present study was to elucidate whether the triterpenoids from Taiwanofungus camphoratus could reverse cancer MDR by influencing P-gp efflux pump. Substrates efflux assay and P-gp ATPase activity assay were conducted to reveal the molecular mechanisms of P-gp inhibition, while SRB assay, cell cycle analyses and apoptosis analyses were performed to confirm the cancer MDR modulating effects. The results indicated that Zhankuic acids A, B and C (ZA-A, ZA-B and ZA-C) impacted P-gp efflux function in competitive, noncompetitive and competitive manners, respectively. Furthermore, these triterpenoids all demonstrated inhibitory patterns on both basal P-gp ATPase activity and verapamil-stimulated ATPase activity. In terms of MDR reversal effects, ZA-A sensitized the P-gp over-expressing cell line (ABCB1/Flp-InTM-293) and MDR cancer cell line (KB/VIN) toward clinically used chemotherapeutic drugs, including doxorubicin, paclitaxel and vincristine, exhibiting the best cytotoxicity enhancing ability among investigated triterpenoids. The present study demonstrated that ZA-A, ZA-B and ZA-C, popular triterpenoids from T. camphoratus, effectively modulated the drug efflux transporter P-gp and reversed the cancer MDR issue.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Apoptosis/drug effects
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Ergosterol/analogs & derivatives
- Ergosterol/pharmacology
- Fungi/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kinetics
- Neoplasms/drug therapy
- Neoplasms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Yu-Ning Teng
- Department of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan;
| | - Yen-Hsiang Wang
- Department of Pharmacy, Nantou Hospital, Ministry of Health and Welfare, 478 Fuxing Rd., Nantou City, Nantou County 540, Taiwan;
- Department of Pharmacy, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (T.-S.W.); (H.-Y.H.)
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (T.-S.W.); (H.-Y.H.)
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422-053-366 (ext. 5155); Fax: +886-422-078-083
| |
Collapse
|
13
|
Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, Young JP, Townsend AR, Hardingham JE. Bacopasides I and II Act in Synergy to Inhibit the Growth, Migration and Invasion of Breast Cancer Cell Lines. Molecules 2019; 24:E3539. [PMID: 31574930 PMCID: PMC6803832 DOI: 10.3390/molecules24193539] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022] Open
Abstract
Bacopaside (bac) I and II are triterpene saponins purified from the medicinal herb Bacopa monnieri. Previously, we showed that bac II reduced endothelial cell migration and tube formation and induced apoptosis in colorectal cancer cell lines. The aim of the current study was to examine the effects of treatment with combined doses of bac I and bac II using four cell lines representative of the breast cancer subtypes: triple negative (MDA-MB-231), estrogen receptor positive (T47D and MCF7) and human epidermal growth factor receptor 2 (HER2) positive (BT-474). Drug treatment outcome measures included cell viability, proliferation, cell cycle, apoptosis, migration, and invasion assays. Relationships were analysed by one- and two-way analysis of variance with Bonferroni post-hoc analysis. Combined doses of bac I and bac II, each below their half maximal inhibitory concentration (IC50), were synergistic and reduced the viability and proliferation of the four breast cancer cell lines. Cell loss occurred at the highest dose combinations and was associated with G2/M arrest and apoptosis. Migration in the scratch wound assay was significantly reduced at apoptosis-inducing combinations, but also at non-cytotoxic combinations, for MDA-MB-231 and T47D (p < 0.0001) and BT-474 (p = 0.0003). Non-cytotoxic combinations also significantly reduced spheroid invasion of MDA-MB-231 cells by up to 97% (p < 0.0001). Combining bac I and II below their IC50 reduced the viability, proliferation, and migration and invasiveness of breast cancer cell lines, suggesting synergy between bac I and II.
Collapse
Affiliation(s)
- Helen M Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Timothy J Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Joanne P Young
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Amanda R Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Jennifer E Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
14
|
Koczurkiewicz P, Klaś K, Grabowska K, Piska K, Rogowska K, Wójcik‐Pszczoła K, Podolak I, Galanty A, Michalik M, Pękala E. Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug—Minireview of in vitro studies. Phytother Res 2019; 33:2141-2151. [DOI: 10.1002/ptr.6371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Katarzyna Klaś
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Katarzyna Rogowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Katarzyna Wójcik‐Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and BiotechnologyJagiellonian University Kraków Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Medical CollegeJagiellonian University Kraków Poland
| |
Collapse
|
15
|
Jurek I, Góral I, Gęsiński K, Wojciechowski K. Effect of saponins from quinoa on a skin-mimetic lipid monolayer containing cholesterol. Steroids 2019; 147:52-57. [PMID: 30458189 DOI: 10.1016/j.steroids.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
The study discusses the effect of a quinoa seed coat extract on a cholesterol-based Langmuir monolayer mimicking the intercellular lipid mixture in the skin's outermost layer - stratum corneum. Besides cholesterol (CHOL), the monolayer contains also stearic acid (SA) and ceramide VI (CER), in a molar ratio of 10:14:14. Three quinoa extracts were tested for their surface activity: a) from the whole seed, b) from the dehulled seed, and c) from the seed coat. The latter shows significantly higher ability to reduce surface tension (increase surface pressure) than the others. Its adsorbed layers display also reasonable surface dilational elasticity (storage) modulus, E'. These observations are in line with the literature reports on the high concentrations of triterpenoid glycosidic biosurfactants - saponins, in quinoa seed, especially in its coat. The saponin-rich extract of quinoa seed coat was thus introduced underneath the pre-formed lipid monolayer compressed to surface pressure, Π = 30 mN/m in a Langmuir trough, in order to register the surface pressure response. The increase of both the surface pressure and surface dilational elasticity modulus suggests that saponins, and possibly other surface-active components of the extract, incorporate into the model lipid monolayer, without solubilizing it. This opens new perspectives for the saponin-rich quinoa seed extract as skin penetration-enhancing active components for cosmetics or pharmaceutical purposes.
Collapse
Affiliation(s)
- Ilona Jurek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ilona Góral
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; SaponLabs Ltd, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzysztof Gęsiński
- Faculty of Agriculture and Biotechnology, UTP University of Science and Technology, Bernardyńska 6/8, 85-029 Bydgoszcz, Poland
| | - Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; SaponLabs Ltd, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
16
|
Abstract
Covering 2014. Previous review: Nat. Prod. Rep., 2017, 34, 90-122 This review covers the isolation and structure determination of triterpenoids reported during 2014 including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes, isomalabaricanes and saponins; 374 references are cited.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK G12 8QQ.
| | | |
Collapse
|
17
|
Wei G, Sun J, Hou Z, Luan W, Wang S, Cui S, Cheng M, Liu Y. Novel antitumor compound optimized from natural saponin Albiziabioside A induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur J Med Chem 2018; 157:759-772. [PMID: 30142612 DOI: 10.1016/j.ejmech.2018.08.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
It is highly desirable to activation p53 function with small-molecule compounds for colon cancer therapy. Triterpene saponin has been characterized with the favorable selectivity and safety profiles. However, the application of triterpene saponin as cancer chemotherapy drugs was hampered primarily by moderate anticancer potency and the lack the mechanism of action. In this study, we synthesized a series of Albiziabioside A derivatives and evaluated the antitumor activity both in vitro and in vivo. Compounds D13 possessed strong inhibitory activity against HCT116 cells with IC50 values of 5.19 μM. More importantly, compound D13 had a favorable selectivity and was efficacious against MDR cancer cells. Moreover, compound D13 could induce apoptosis and ferroptosis through the mitochondrial pathway as a p53 activator. In addition, compound D13 significantly suppressed tumorigenesis without inducing toxicity in normal organs in vivo. Collectively, this study provides a clinically relevant argument for considering triterpene saponin derivatives D13 as potential cancer therapeutic candidates with enhanced activity, acceptable safety and novel mechanisms of action. To the best of our knowledge, this compound is the first drug candidate which can induce apoptosis and ferroptosis as a p53 activator.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiahong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weijing Luan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuai Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shanshan Cui
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
Lu Z, Wang H, Zhu M, Song W, Wang J, Wu C, Kong Y, Guo J, Li N, Liu J, Li Y, Xu H. Ophiopogonin D', a Natural Product From Radix Ophiopogonis, Induces in Vitro and in Vivo RIPK1-Dependent and Caspase-Independent Apoptotic Death in Androgen-Independent Human Prostate Cancer Cells. Front Pharmacol 2018; 9:432. [PMID: 29760660 PMCID: PMC5936779 DOI: 10.3389/fphar.2018.00432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the anticancer effects of Ophiopogonin D′ (OPD′, a natural product extracted from a traditional Chinese medicine (Radix Ophiopogonis) against androgen-independent prostate cancer cells and to explore the underlying molecular mechanism(s) of action. Methods: The CCK-8 assay was used to assess the viability of prostate cancer cells. The cell morphology was examined by an ultrastructural analysis via transmission electron microscopy. Cells in apoptosis (early and late stages) were detected using an Annexin V-FITC/propidium iodide kit with a FACSCaliber flow cytometer. JC-1, a cationic lipophilic probe, was employed to measure the mitochondrial membrane potential (MMP) of PC3 cells. Changes in the protein expression of RIPK1, C-RIPK1, caspase 8, cleaved-caspase 8, Bim, Bid, caspase 10, and cleaved-caspase 10 were evaluated by Western blotting. The mRNA expression of Bim was examined by quantitative real-time reverse transcription polymerase chain reaction. Z-VAD-FMK (a caspase inhibitor) and necrostatin-1 (a specific inhibitor of RIPK1) were utilized to determine whether the cell death was mediated by RIPK1 or caspases. PC3 and DU145 xenograft models in BALB/c nude mice were used to evaluate the anticancer activity of OPD′ in vivo. Results: OPD′ was shown to exert potent anti-tumor activity against PC3 cells. It induced apoptosis via a RIPK1-related pathway, increased the protein expression levels of RIPK1 and Bim, and decreased the levels of cleaved-RIPK1, caspase 8, cleaved-caspase 8, Bid, caspase 10, and cleaved-caspase 10. OPD′ also increased the mRNA expression of Bim. The protein expression of Bim was decreased when cells were pre-treated with necrostatin-1. Treatment with OPD′ inhibited the growth of PC3 and DU145 xenograft tumors in BALB/c nude mice. Conclusion: OPD′ significantly inhibited the in vitro and in vivo growth of prostate cells via RIPK1, suggesting that OPD′ may be developed as a potential anti-prostate cancer agent.
Collapse
Affiliation(s)
- Zongliang Lu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - He Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Wei Song
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jiajia Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China.,Department of Clinical Nutrition, Yubei District People's Hospital, Chongqing, China
| | - Changpeng Wu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Ya Kong
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jing Guo
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Na Li
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jie Liu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yanwu Li
- Pharmacy College, Chongqing Medical University, Chongqing, China
| | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Fedoros EI, Orlov AA, Zherebker A, Gubareva EA, Maydin MA, Konstantinov AI, Krasnov KA, Karapetian RN, Izotova EI, Pigarev SE, Panchenko AV, Tyndyk ML, Osolodkin DI, Nikolaev EN, Perminova IV, Anisimov VN. Novel water-soluble lignin derivative BP-Cx-1: identification of components and screening of potential targets in silico and in vitro. Oncotarget 2018; 9:18578-18593. [PMID: 29719628 PMCID: PMC5915095 DOI: 10.18632/oncotarget.24990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Abstract
Identification of molecular targets and mechanism of action is always a challenge, in particular – for natural compounds due to inherent chemical complexity. BP-Cx-1 is a water-soluble modification of hydrolyzed lignin used as the platform for a portfolio of innovative pharmacological products aimed for therapy and supportive care of oncological patients. The present study describes a new approach, which combines in vitro screening of potential molecular targets for BP-Cx-1 using Diversity Profile - P9 panel by Eurofins Cerep (France) with a search of possible active components in silico in ChEMBL - manually curated chemical database of bioactive molecules with drug-like properties. The results of diversity assay demonstrate that BP-Cx-1 has multiple biological effects on neurotransmitters receptors, ligand-gated ion channels and transporters. Of particular importance is that the major part of identified molecular targets are involved in modulation of inflammation and immune response and might be related to tumorigenesis. Characterization of molecular composition of BP-Cx-1 with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and subsequent identification of possible active components by searching for molecular matches in silico in ChEMBL indicated polyphenolic components, nominally, flavonoids, sapogenins, phenanthrenes, as the major carriers of biological activity of BP-Cx-1. In vitro and in silico target screening yielded overlapping lists of proteins: adenosine receptors, dopamine receptor DRD4, glucocorticoid receptor, serotonin receptor 5-HT1, prostaglandin receptors, muscarinic cholinergic receptor, GABAA receptor. The pleiotropic molecular activities of polyphenolic components are beneficial in treatment of multifactorial disorders such as diseases associated with chronic inflammation and cancer.
Collapse
Affiliation(s)
- Elena I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia.,Nobel LTD, Saint-Petersburg 192012, Russia
| | - Alexey A Orlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Zherebker
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Mikhail A Maydin
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | | | - Konstantin A Krasnov
- Institute of Toxicology, Federal Medical-Biological Agency, Saint-Petersburg 192019, Russia
| | | | | | | | - Andrey V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Margarita L Tyndyk
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Dmitry I Osolodkin
- Institute of Poliomyelitis and Viral Encephalitides, Chumakov FSC R&D IBP RAS, Moscow 108819, Russia.,Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| |
Collapse
|
20
|
Li DQ, Wu J, Liu LY, Wu YY, Li LZ, Huang XX, Liu QB, Yang JY, Song SJ, Wu CF. Cytotoxic triterpenoid glycosides (saikosaponins) from the roots of Bupleurum chinense. Bioorg Med Chem Lett 2015; 25:3887-3892. [PMID: 26259802 DOI: 10.1016/j.bmcl.2015.07.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/03/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
As a part of our ongoing studies on cytotoxic triterpenoid saponins from herbal medicines, phytochemical investigation of the roots of Bupleurum chinense DC. afforded four new saikosaponins (1-4), along with 16 known ones (5-20). Their structures were established by direct interpretation of their spectral data, mainly HR-ESI-MS, 1D NMR and 2D NMR, and by comparison with literature data. Among them, compound 20 was isolated from the natural product for the first time. The cytotoxicities of all compounds against five selected human cancer cell lines (A549, HepG2, Hep3B, Bcap-37 and MCF-7) were assayed. In general, a number of the isolated compounds exhibited potent cytotoxic activities against the five selected human cancer cell lines. In particular, compounds 3, 8-9, 11-13, 16 and 20 showed more potent cytotoxic activities against the HepG2 and A549 cell lines than the positive control 5-fluorouracil. Based on the primary screening results, the preliminary structure-activity relationship (SAR) studies were also discussed. The SAR results suggest that the 13,28-epoxy bridge, the orientation of the hydroxyl group and the type of the sugar units are important requirements for cytotoxicity and selectivity.
Collapse
Affiliation(s)
- Dan-Qi Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jie Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Yin Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Ying Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ling-Zhi Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qing-Bo Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, People's Republic of China.
| |
Collapse
|
21
|
Loza-Mejía MA, Salazar JR. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways. J Mol Graph Model 2015; 62:18-25. [PMID: 26342572 DOI: 10.1016/j.jmgm.2015.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.
Collapse
Affiliation(s)
- Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, 06140 México City, Mexico.
| | - Juan Rodrigo Salazar
- Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, 06140 México City, Mexico.
| |
Collapse
|