1
|
Federman N, Romano SA, Amigo-Duran M, Salomon L, Marin-Burgin A. Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex. Nat Commun 2024; 15:5572. [PMID: 38956072 PMCID: PMC11220071 DOI: 10.1038/s41467-024-49897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Olfaction is influenced by contextual factors, past experiences, and the animal's internal state. Whether this information is integrated at the initial stages of cortical odour processing is not known, nor how these signals may influence odour encoding. Here we revealed multiple and diverse non-olfactory responses in the primary olfactory (piriform) cortex (PCx), which dynamically enhance PCx odour discrimination according to behavioural demands. We performed recordings of PCx neurons from mice trained in a virtual reality task to associate odours with visual contexts to obtain a reward. We found that learning shifts PCx activity from encoding solely odours to a regime in which positional, contextual, and associative responses emerge on odour-responsive neurons that become mixed-selective. The modulation of PCx activity by these non-olfactory signals was dynamic, improving odour decoding during task engagement and in rewarded contexts. This improvement relied on the acquired mixed-selectivity, demonstrating how integrating extra-sensory inputs in sensory cortices can enhance sensory processing while encoding the behavioural relevance of stimuli.
Collapse
Grants
- 108878 Canadian International Development Agency (Agence Canadienne de Développement International)
- PICT2018-0880 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-0360 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-1536 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2016-2758 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2017-4023 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PIP2787 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- SPIRIT 216044 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- Fondo para la convergencia estructural del Mercosur–FOCEM grant cOF 03/11
Collapse
Affiliation(s)
- Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Sebastián A Romano
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Macarena Amigo-Duran
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Lucca Salomon
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Combrisson E, Basanisi R, Gueguen MCM, Rheims S, Kahane P, Bastin J, Brovelli A. Neural interactions in the human frontal cortex dissociate reward and punishment learning. eLife 2024; 12:RP92938. [PMID: 38941238 PMCID: PMC11213568 DOI: 10.7554/elife.92938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
How human prefrontal and insular regions interact while maximizing rewards and minimizing punishments is unknown. Capitalizing on human intracranial recordings, we demonstrate that the functional specificity toward reward or punishment learning is better disentangled by interactions compared to local representations. Prefrontal and insular cortices display non-selective neural populations to rewards and punishments. Non-selective responses, however, give rise to context-specific interareal interactions. We identify a reward subsystem with redundant interactions between the orbitofrontal and ventromedial prefrontal cortices, with a driving role of the latter. In addition, we find a punishment subsystem with redundant interactions between the insular and dorsolateral cortices, with a driving role of the insula. Finally, switching between reward and punishment learning is mediated by synergistic interactions between the two subsystems. These results provide a unifying explanation of distributed cortical representations and interactions supporting reward and punishment learning.
Collapse
Affiliation(s)
- Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Maelle CM Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of LyonLyonFrance
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeurosciencesGrenobleFrance
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| |
Collapse
|
3
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
4
|
Seidel Malkinson T, Bayle DJ, Kaufmann BC, Liu J, Bourgeois A, Lehongre K, Fernandez-Vidal S, Navarro V, Lambrecq V, Adam C, Margulies DS, Sitt JD, Bartolomeo P. Intracortical recordings reveal vision-to-action cortical gradients driving human exogenous attention. Nat Commun 2024; 15:2586. [PMID: 38531880 DOI: 10.1038/s41467-024-46013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.
Collapse
Affiliation(s)
- Tal Seidel Malkinson
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| | - Dimitri J Bayle
- Licae Lab, Université Paris Ouest-La Défense, 92000, Nanterre, France
| | - Brigitte C Kaufmann
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Dassault Systèmes, Vélizy-Villacoublay, France
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Katia Lehongre
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Sara Fernandez-Vidal
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Claude Adam
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Daniel S Margulies
- Laboratoire INCC, équipe Perception, Action, Cognition, Université de Paris, 75005, Paris, France
| | - Jacobo D Sitt
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
5
|
García-Rosales F, Schaworonkow N, Hechavarria JC. Oscillatory Waveform Shape and Temporal Spike Correlations Differ across Bat Frontal and Auditory Cortex. J Neurosci 2024; 44:e1236232023. [PMID: 38262724 PMCID: PMC10919256 DOI: 10.1523/jneurosci.1236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
6
|
Scharf C, Koschutnig K, Zussner T, Fink A, Tilp M. Twelve weeks of physical exercise breaks with coordinative exercises at the workplace increase the sulcal depth and decrease gray matter volume in brain structures related to visuomotor processes. Brain Struct Funct 2024; 229:63-74. [PMID: 38070007 PMCID: PMC10827861 DOI: 10.1007/s00429-023-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
Physical exercise can evoke changes in the brain structure. Consequently, these can lead to positive impacts on brain health. However, physical exercise studies including coordinative exercises are rare. Therefore, in this study, we investigated how 12 weeks of physical exercise breaks (PEBs) with coordinative exercises, focusing mainly on juggling tasks, affected the brain structure. The participants were randomly allocated to an intervention group (IG, n = 16; 42.8 ± 10.2 years) and a control group (CG, n = 9; 44.2 ± 12.3 years). The IG performed the PEBs with coordinative exercises twice per week for 15-20 min per session. Before the intervention, after 6 weeks of the intervention, and after 12 weeks of the intervention, participants underwent a high-resolution 3T T1-weighted magnetic resonance imagining scan. Juggling performance was assessed by measuring the time taken to perform a three-ball cascade. A surface-based analysis revealed an increase in vertex-wise cortical depth in a cluster including the inferior parietal lobe after 6 and 12 weeks of training in the IG. After 12 weeks, the IG showed a decrease in gray matter (GM) volume in a cluster primarily involving the right insula and the right operculum. The changes in the GM volume were related to improvements in juggling performance. No significant changes were found for the CG. To conclude, the present study showed that regular engagement in PEBs with coordinative exercises led to changes in brain structures strongly implicated in visuomotor processes involving hand and arm movements.
Collapse
Affiliation(s)
- Carina Scharf
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria.
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas Zussner
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Markus Tilp
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| |
Collapse
|
7
|
Pelc K, Gajewska A, Napiórkowski N, Dan J, Verhoeven C, Dan B. Multiscale entropy as a metric of brain maturation in a large cohort of typically developing children born preterm using longitudinal high-density EEG in the first two years of life. Physiol Meas 2022; 43. [PMID: 36374000 DOI: 10.1088/1361-6579/aca26c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Objective.We aimed to analyze whether complexity of brain electrical activity (EEG) measured by multiscale entropy (MSE) increases with brain maturation during the first two years of life. We also aimed to investigate whether this complexity shows regional differences across the brain, and whether changes in complexity are influenced by extrauterine life experience duration.Approach.We measured MSE of EEG signals recorded longitudinally using a high-density setup (64 or 128 electrodes) in 84 typically developing infants born preterm (<32 weeks' gestation) from term age to two years. We analyzed the complexity index and maximum value of MSE over increasing age, across brain regions, and in function of extrauterine life duration, and used correlation matrices as a metric of functional connectivity of the cerebral cortex.Main results.We found an increase of strong inter-channel correlation of MSE (R > 0.8) with increasing age. Regional analysis showed significantly increased MSE between 3 and 24 months of corrected age in the posterior and middle regions with respect to the anterior region. We found a weak relationship (adjusted R2= 0.135) between MSE and extrauterine life duration.Significance.These findings suggest that brain functional connectivity increases with maturation during the first two years of life. EEG complexity shows regional differences with earlier maturation of the visual cortex and brain regions involved in joint attention than of regions involved in cognitive analysis, abstract thought, and social behavior regulation. Finally, our MSE analysis suggested only a weak influence of early extrauterine life experiences (prior to term age) on EEG complexity.
Collapse
Affiliation(s)
- Karine Pelc
- Université libre de Bruxelles (ULB), Facuty of Motor Sciences, Brussels, Belgium.,Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium
| | | | | | - Jonathan Dan
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium.,Byteflies, Berchem, Belgium
| | - Caroline Verhoeven
- Université libre de Bruxelles (ULB), Facuty of Medicine, Department of Mathematics Education, Brussels, Belgium
| | - Bernard Dan
- Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.,Université libre de Bruxelles (ULB), Faculty of Psychology and Education Sciences, Brussels, Belgium
| |
Collapse
|
8
|
Echolocation-related reversal of information flow in a cortical vocalization network. Nat Commun 2022; 13:3642. [PMID: 35752629 PMCID: PMC9233670 DOI: 10.1038/s41467-022-31230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
Collapse
|
9
|
The influence of estradiol and progesterone on neurocognition during three phases of the menstrual cycle: Modulating factors. Behav Brain Res 2022; 417:113593. [PMID: 34560130 DOI: 10.1016/j.bbr.2021.113593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Estradiol is an ovarian steroid hormone that peaks shortly before ovulation and significantly affects various brain regions and neurotransmitter systems, with similar and differential effects with progesterone, another ovarian hormone. Studies investigating the neurocognitive processes during the menstrual cycle have focused on the early follicular phase (EFP) characterized by low estradiol and progesterone levels and the mid-luteal phase (MLP) with high estradiol and progesterone levels. However, most studies have failed to include the ovulatory phase, characterized by high estradiol and low progesterone levels. Given the various hormonal changes in the menstrual cycle, we revisited studies suggesting that the menstrual cycle did not affect verbal and spatial abilities and observed that many contain mixed results. Comparing these studies makes it possible to identify relevant modulating factors, such as sample size, participant age, accurate selection of days for testing, asymmetrical practice effects, genetic polymorphisms, and task difficulty. More robust findings are related to improved mental rotation capacity during EFP with challenging tasks and differences in brain activation among menstrual cycle phases during the execution of spatial and verbal tasks. During MLP, less robust findings were observed, possibly modulated by the complex effects of the two hormones on the brain. In conclusion, we propose that it is crucial to include all three menstrual cycle phases and consider these modulating factors to avoid confounding findings.
Collapse
|
10
|
de Hemptinne C, Chen W, Racine CA, Seritan AL, Miller AM, Yaroshinsky MS, Wang SS, Gilron R, Little S, Bledsoe I, San Luciano M, Katz M, Chang EF, Dawes HE, Ostrem JL, Starr PA. Prefrontal Physiomarkers of Anxiety and Depression in Parkinson's Disease. Front Neurosci 2021; 15:748165. [PMID: 34744613 PMCID: PMC8568318 DOI: 10.3389/fnins.2021.748165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Objective: Anxiety and depression are prominent non-motor symptoms of Parkinson’s disease (PD), but their pathophysiology remains unclear. We sought to understand their neurophysiological correlates from chronic invasive recordings of the prefrontal cortex (PFC). Methods: We studied four patients undergoing deep brain stimulation (DBS) for their motor signs, who had comorbid mild to moderate anxiety and/or depressive symptoms. In addition to their basal ganglia leads, we placed a permanent prefrontal subdural 4-contact lead. These electrodes were attached to an investigational pulse generator with the capability to sense and store field potential signals, as well as deliver therapeutic neurostimulation. At regular intervals over 3–5 months, participants paired brief invasive neural recordings with self-ratings of symptoms related to depression and anxiety. Results: Mean age was 61 ± 7 years, mean disease duration was 11 ± 8 years and a mean Unified Parkinson’s Disease Rating Scale, with part III (UPDRS-III) off medication score of 37 ± 13. Mean Beck Depression Inventory (BDI) score was 14 ± 5 and Beck Anxiety Index was 16.5 ± 5. Prefrontal cortex spectral power in the beta band correlated with patient self-ratings of symptoms of depression and anxiety, with r-values between 0.31 and 0.48. Mood scores showed negative correlation with beta spectral power in lateral locations, and positive correlation with beta spectral power in a mesial recording location, consistent with the dichotomous organization of reward networks in PFC. Interpretation: These findings suggest a physiological basis for anxiety and depression in PD, which may be useful in the development of neurostimulation paradigms for these non-motor disease features.
Collapse
Affiliation(s)
- Coralie de Hemptinne
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Witney Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Caroline A Racine
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andreea L Seritan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew M Miller
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maria S Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sarah S Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Roee Gilron
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ian Bledsoe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marta San Luciano
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maya Katz
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Heather E Dawes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Sel A, Verhagen L, Angerer K, David R, Klein-Flügge MC, Rushworth MFS. Increasing and decreasing interregional brain coupling increases and decreases oscillatory activity in the human brain. Proc Natl Acad Sci U S A 2021; 118:e2100652118. [PMID: 34507986 PMCID: PMC8449322 DOI: 10.1073/pnas.2100652118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
The origins of oscillatory activity in the brain are currently debated, but common to many hypotheses is the notion that they reflect interactions between brain areas. Here, we examine this possibility by manipulating the strength of coupling between two human brain regions, ventral premotor cortex (PMv) and primary motor cortex (M1), and examine the impact on oscillatory activity in the motor system measurable in the electroencephalogram. We either increased or decreased the strength of coupling while holding the impact on each component area in the pathway constant. This was achieved by stimulating PMv and M1 with paired pulses of transcranial magnetic stimulation using two different patterns, only one of which increases the influence exerted by PMv over M1. While the stimulation protocols differed in their temporal patterning, they were comprised of identical numbers of pulses to M1 and PMv. We measured the impact on activity in alpha, beta, and theta bands during a motor task in which participants either made a preprepared action (Go) or withheld it (No-Go). Augmenting cortical connectivity between PMv and M1, by evoking synchronous pre- and postsynaptic activity in the PMv-M1 pathway, enhanced oscillatory beta and theta rhythms in Go and No-Go trials, respectively. Little change was observed in the alpha rhythm. By contrast, diminishing the influence of PMv over M1 decreased oscillatory beta and theta rhythms in Go and No-Go trials, respectively. This suggests that corticocortical communication frequencies in the PMv-M1 pathway can be manipulated following Hebbian spike-timing-dependent plasticity.
Collapse
Affiliation(s)
- Alejandra Sel
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom;
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR Nijmegen, The Netherlands
| | - Katharina Angerer
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Raluca David
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
| |
Collapse
|
12
|
PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology 2021; 46:70-85. [PMID: 32659782 PMCID: PMC7689467 DOI: 10.1038/s41386-020-0763-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Crucial decisions involving cell fate and connectivity that shape the distinctive development of the human brain occur in the embryonic and fetal stages-stages that are difficult to access and investigate in humans. The last decade has seen an impressive increase in resources-from atlases and databases to biological models-that is progressively lifting the curtain on this critical period. In this review, we describe the current state of genomic, transcriptomic, and epigenomic datasets charting the development of normal human brain with a particular focus on recent single-cell technologies. We discuss the emergence of brain organoids generated from pluripotent stem cells as a model to compensate for the limited availability of fetal tissue. Indeed, comparisons of neural lineages, transcriptional dynamics, and noncoding element activity between fetal brain and organoids have helped identify gene regulatory networks functioning at early stages of brain development. Altogether, we argue that large multi-omics investigations have pushed brain development into the "big data" era, and that current and future transversal approaches needed to leverage both fetal brain and organoid resources promise to answer major questions of brain biology and psychiatry.
Collapse
|
13
|
|
14
|
Turi Z, Mittner M, Lehr A, Bürger H, Antal A, Paulus W. θ-γ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. eNeuro 2020; 7:ENEURO.0126-20.2020. [PMID: 32764077 PMCID: PMC7540931 DOI: 10.1523/eneuro.0126-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/16/2023] Open
Abstract
Cognitive control is a mental process, which underlies adaptive goal-directed decisions. Previous studies have linked cognitive control to electrophysiological fluctuations in the θ band and θ-γ cross-frequency coupling (CFC) arising from the cingulate and frontal cortices. However, to date, the behavioral consequences of different forms of θ-γ CFC remain elusive. Here, we studied the behavioral effects of the θ-γ CFC via transcranial alternating current stimulation (tACS) designed to stimulate the frontal and cingulate cortices in humans. Using a double-blind, randomized, repeated measures study design, 24 healthy participants were subjected to three active and one control CFC-tACS conditions. In the active conditions, 80-Hz γ tACS was coupled to 4-Hz θ tACS. Specifically, in two of the active conditions, short γ bursts were coupled to the delivered θ cycle to coincide with either its peaks or troughs. In the third active condition, the phase of a θ cycle modulated the amplitude of the γ oscillation. In the fourth, control protocol, 80-Hz tACS was continuously superimposed over the 4-Hz tACS, therefore lacking any phase specificity in the CFC. During the 20 min of stimulation, the participants performed a Go/NoGo monetary reward-based and punishment-based instrumental learning task. A Bayesian hierarchical logistic regression analysis revealed that relative to the control, the peak-coupled tACS had no effects on the behavioral performance, whereas the trough-coupled tACS and, to a lesser extent, amplitude-modulated tACS reduced performance in conflicting trials. Our results suggest that cognitive control depends on the phase specificity of the θ-γ CFC.
Collapse
Affiliation(s)
- Zsolt Turi
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen 37073, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Matthias Mittner
- Department of Psychology, UiT The Arctic University of Norway, 9037
| | - Albert Lehr
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Hannah Bürger
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen 37073, Germany
| |
Collapse
|