1
|
Claros-Olivares CC, Clements RG, McIlvain G, Johnson CL, Brockmeier AJ. MRI-based whole-brain elastography and volumetric measurements to predict brain age. Biol Methods Protoc 2024; 10:bpae086. [PMID: 39902188 PMCID: PMC11790219 DOI: 10.1093/biomethods/bpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 02/05/2025] Open
Abstract
Brain age, as a correlate of an individual's chronological age obtained from structural and functional neuroimaging data, enables assessing developmental or neurodegenerative pathology relative to the overall population. Accurately inferring brain age from brain magnetic resonance imaging (MRI) data requires imaging methods sensitive to tissue health and sophisticated statistical models to identify the underlying age-related brain changes. Magnetic resonance elastography (MRE) is a specialized MRI technique which has emerged as a reliable, non-invasive method to measure the brain's mechanical properties, such as the viscoelastic shear stiffness and damping ratio. These mechanical properties have been shown to change across the life span, reflect neurodegenerative diseases, and are associated with individual differences in cognitive function. Here, we aim to develop a machine learning framework to accurately predict a healthy individual's chronological age from maps of brain mechanical properties. This framework can later be applied to understand neurostructural deviations from normal in individuals with neurodevelopmental or neurodegenerative conditions. Using 3D convolutional networks as deep learning models and more traditional statistical models, we relate chronological age as a function of multiple modalities of whole-brain measurements: stiffness, damping ratio, and volume. Evaluations on held-out subjects show that combining stiffness and volume in a multimodal approach achieves the most accurate predictions. Interpretation of the different models highlights important regions that are distinct between the modalities. The results demonstrate the complementary value of MRE measurements in brain age models, which, in future studies, could improve model sensitivity to brain integrity differences in individuals with neuropathology.
Collapse
Affiliation(s)
| | - Rebecca G Clements
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Curtis L Johnson
- Department of Electrical & Computer Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
| | - Austin J Brockmeier
- Department of Electrical & Computer Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
2
|
Talebi S, Khodagholi F, Bahaeddin Z, Ansari Dezfouli M, Zeinaddini-Meymand A, Berchi Kankam S, Foolad F, Alijaniha F, Fayazi Piranghar F. Does hazelnut consumption affect brain health and function against neurodegenerative diseases? Nutr Neurosci 2024; 27:1008-1024. [PMID: 38151890 DOI: 10.1080/1028415x.2023.2296164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION A healthy daily diet and consuming certain nutrients, such as polyphenols, vitamins, and unsaturated fatty acids, may help neuronal health maintenance. Polyphenolic chemicals, which have antioxidant and anti-inflammatory properties, are involved in the neuroprotective pathway. Because of their nutritional value, nuts have been shown in recent research to be helpful in neuroprotection. OBJECTIVE Hazelnut is often consumed worldwide in various items, including processed foods, particularly in bakery, chocolate, and confectionery products. This nut is an excellent source of vitamins, amino acids, tocopherols, phytosterols, polyphenols, minerals, and unsaturated fatty acids. Consuming hazelnut may attenuate the risk of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease due to its anti-inflammatory and anti-oxidant qualities. RESULTS Many documents introduce hazelnut as an excellent choice to provide neuroprotection against neurodegenerative disorders and there is some direct proof of its neuroprotective effects. DISCUSSION So hazelnut consumption in daily diet may reduce neurodegenerative disease risk and be advantageous in reducing the imposed costs of dealing with neurodegenerative diseases.
Collapse
Affiliation(s)
- Shadi Talebi
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Faculty of Medicine, Department of Neurology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Forough Foolad
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alijaniha
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- School of Persian Medicine, Department of Traditional Persian Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
3
|
Zorns S, Sierzputowski C, Ash S, Skowron M, Minervini A, LaVarco A, Pardillo M, Keenan JP. Attraction is altered via modulation of the medial prefrontal cortex without explicit knowledge. Front Hum Neurosci 2024; 18:1333733. [PMID: 39206424 PMCID: PMC11349520 DOI: 10.3389/fnhum.2024.1333733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies have demonstrated that brain stimulation can alter an individual's physical appearance via dysregulation of the medial prefrontal cortex (MPFC). In this study, we attempted to determine if individuals who receive repetitive transcranial magnetic stimulation (rTMS) delivered to the MPFC were rated as more attractive by others. It has been previously reported that 1 hertz (Hz) (inhibitory) TMS can alter one's facial expressions such that frontal cortex inhibition can increase expressiveness. These alterations, detected by external observation, remain below the level of awareness of the subject itself. In Phase I, subjects (N = 10) received MPFC rTMS and had their photographs taken after each of the five stimulation conditions, in addition to making self-ratings across a number of variables, including attractiveness. In Phase II, participants (N = 430) rated five pictures of each of the Phase 1 individuals on attractiveness. It was found that there were no significant differences in self-assessment following rTMS (Phase I). However, attractiveness ratings differed significantly in Phase II. There was a significant difference found between 10 Hz TMS delivered to the MPFC (p < 0.001), such that individuals were rated as less attractive. Furthermore, 1 Hz TMS to the MPFC increased the number of 'Most Attractive' ratings, while 10Hz TMS decreased the number of 'Most Attractive' ratings (p < 0.001). These results suggest that the MPFC plays a role in attractiveness ratings to others. These data also support research showing that one's appearance can be altered below the level of awareness via rTMS. To our knowledge, this is the first investigation to examine how brain stimulation influences one's attractiveness.
Collapse
Affiliation(s)
- Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Claudia Sierzputowski
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Sydney Ash
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Molly Skowron
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Matthew Pardillo
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| |
Collapse
|
4
|
Sceniak MP, Sabo SL. Prefrontal cortical network dysfunction from acute neurotoxicant exposure. J Neurophysiol 2024; 132:277-289. [PMID: 38864824 DOI: 10.1152/jn.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Prefrontal cortical (PFC) dysfunction has been linked to disorders exhibiting deficits in cognitive performance, attention, motivation, and impulse control. Neurons of the PFC are susceptible to glutamatergic excitotoxicity, an effect associated with cortical degeneration in frontotemporal disorders (FTDs). PFC susceptibility to environmental toxicant exposure, one possible contributor to sporadic FTD, has not been systematically studied. Here, we tested the ability of a well-known environmental neurotoxicant, methylmercury (MeHg), to induce hyperexcitability in medial prefrontal cortex (mPFC) excitatory pyramidal neurons, using whole cell patch-clamp recording. Acute MeHg exposure (20 μM) produced significant mPFC dysfunction, with a shift in the excitatory to inhibitory (E-I) balance toward increased excitability. Both excitatory postsynaptic current (EPSC) and inhibitory postsynaptic current (IPSC) charges were significantly increased after MeHg exposure. MeHg increased EPSC frequency, but there was no observable effect on IPSC frequency, EPSC amplitude or IPSC amplitude. Neither evoked AMPA receptor- nor NMDA receptor-mediated EPSC amplitudes were affected by MeHg. However, excitatory synapses experienced a significant reduction in paired-pulse depression and probability of release. In addition, MeHg induced temporal synchrony in spontaneous IPSCs, reflecting mPFC inhibitory network dysfunction. MeHg exposure also produced increased intrinsic excitability in mPFC neurons, with an increase in action potential firing rate. The observed effects of MeHg on mPFC reflect key potential mechanisms for neuropsychological symptoms from MeHg poisoning. Therefore, MeHg has a significant effect on mPFC circuits known to contribute to cognitive and emotional function and might contribute to etiology of neurodegenerative diseases, such as FTD.NEW & NOTEWORTHY Prefrontal cortical neurons are highly susceptible to glutamatergic excitotoxicity associated with neuronal degeneration in frontal dementia and to environmental toxicant exposure, one potential contributor to FTD. However, this has not been systematically studied. Our results demonstrate that methylmercury exposure leads to hyperexcitability of prefrontal cortical neurons by shifting excitatory to inhibitory (E-I) balance and raising sensitivity for spiking. Our results provide a mechanism by which environmental neurotoxicants may contribute to pathogenesis of diseases such as FTD.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| |
Collapse
|
5
|
Hicks AR, Reynolds RH, O’Callaghan B, García-Ruiz S, Gil-Martínez AL, Botía J, Plun-Favreau H, Ryten M. The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson's disease. Brain 2023; 146:4974-4987. [PMID: 37522749 PMCID: PMC10689904 DOI: 10.1093/brain/awad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Genetic variants conferring risks for Parkinson's disease have been highlighted through genome-wide association studies, yet exploration of their specific disease mechanisms is lacking. Two Parkinson's disease candidate genes, KAT8 and KANSL1, identified through genome-wide studies and a PINK1-mitophagy screen, encode part of the histone acetylating non-specific lethal complex. This complex localizes to the nucleus, where it plays a role in transcriptional activation, and to mitochondria, where it has been suggested to have a role in mitochondrial transcription. In this study, we sought to identify whether the non-specific lethal complex has potential regulatory relationships with other genes associated with Parkinson's disease in human brain. Correlation in the expression of non-specific lethal genes and Parkinson's disease-associated genes was investigated in primary gene co-expression networks using publicly-available transcriptomic data from multiple brain regions (provided by the Genotype-Tissue Expression Consortium and UK Brain Expression Consortium), whilst secondary networks were used to examine cell type specificity. Reverse engineering of gene regulatory networks generated regulons of the complex, which were tested for heritability using stratified linkage disequilibrium score regression. Prioritized gene targets were then validated in vitro using a QuantiGene multiplex assay and publicly-available chromatin immunoprecipitation-sequencing data. Significant clustering of non-specific lethal genes was revealed alongside Parkinson's disease-associated genes in frontal cortex primary co-expression modules, amongst other brain regions. Both primary and secondary co-expression modules containing these genes were enriched for mainly neuronal cell types. Regulons of the complex contained Parkinson's disease-associated genes and were enriched for biological pathways genetically linked to disease. When examined in a neuroblastoma cell line, 41% of prioritized gene targets showed significant changes in mRNA expression following KANSL1 or KAT8 perturbation. KANSL1 and H4K8 chromatin immunoprecipitation-sequencing data demonstrated non-specific lethal complex activity at many of these genes. In conclusion, genes encoding the non-specific lethal complex are highly correlated with and regulate genes associated with Parkinson's disease. Overall, these findings reveal a potentially wider role for this protein complex in regulating genes and pathways implicated in Parkinson's disease.
Collapse
Affiliation(s)
- Amy R Hicks
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| | - Ana Luisa Gil-Martínez
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
- Department of Information and Communication Engineering, University of Murcia, Murcia 30100, Spain
| | - Juan Botía
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Information and Communication Engineering, University of Murcia, Murcia 30100, Spain
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| |
Collapse
|
6
|
Mora S, Allodi I. Neural circuit and synaptic dysfunctions in ALS-FTD pathology. Front Neural Circuits 2023; 17:1208876. [PMID: 37469832 PMCID: PMC10352654 DOI: 10.3389/fncir.2023.1208876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023] Open
Abstract
Action selection is a capital feature of cognition that guides behavior in processes that range from motor patterns to executive functions. Here, the ongoing actions need to be monitored and adjusted in response to sensory stimuli to increase the chances of reaching the goal. As higher hierarchical processes, these functions rely on complex neural circuits, and connective loops found within the brain and the spinal cord. Successful execution of motor behaviors depends, first, on proper selection of actions, and second, on implementation of motor commands. Thus, pathological conditions crucially affecting the integrity and preservation of these circuits and their connectivity will heavily impact goal-oriented motor behaviors. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders known to share disease etiology and pathophysiology. New evidence in the field of ALS-FTD has shown degeneration of specific neural circuits and alterations in synaptic connectivity, contributing to neuronal degeneration, which leads to the impairment of motor commands and executive functions. This evidence is based on studies performed on animal models of disease, post-mortem tissue, and patient derived stem cells. In the present work, we review the existing evidence supporting pathological loss of connectivity and selective impairment of neural circuits in ALS and FTD, two diseases which share strong genetic causes and impairment in motor and executive functions.
Collapse
Affiliation(s)
- Santiago Mora
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilary Allodi
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
7
|
Zhang X, Liang C, Wang N, Wang Y, Gao Y, Sui C, Xin H, Feng M, Guo L, Wen H. Abnormal whole-brain voxelwise structure-function coupling and its association with cognitive dysfunction in patients with different cerebral small vessel disease burdens. Front Aging Neurosci 2023; 15:1148738. [PMID: 37455935 PMCID: PMC10347527 DOI: 10.3389/fnagi.2023.1148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a universal neurological disorder in older adults that occurs in connection with cognitive dysfunction and is a chief risk factor for dementia and stroke. While whole-brain voxelwise structural and functional abnormalities in CSVD have been heavily explored, the degree of structure-function coupling abnormality possible in patients with different CSVD burdens remains largely unknown. This study included 53 patients with severe CSVD burden (CSVD-s), 108 patients with mild CSVD burden (CSVD-m) and 76 healthy controls. A voxelwise coupling metric of low frequency fluctuations (ALFF) and voxel-based morphometry (VBM) was used to research the important differences in whole-brain structure-function coupling among groups. The correlations between ALFF/VBM decoupling and cognitive parameters in CSVD patients were then investigated. We found that compared with healthy controls, CSVD-s patients presented notably decreased ALFF/VBM coupling in the bilateral caudate nuclei and increased coupling in the right inferior temporal gyrus (ITG). In addition, compared with the CSVD-m group, the CSVD-s group demonstrated significantly decreased coupling in the bilateral caudate nuclei, right putamen and inferior frontal gyrus (IFG) and increased coupling in the left middle frontal gyrus and medial superior frontal gyrus. Notably, the ALFF/VBM decoupling values in the caudate, IFG and ITG not only showed significant correlations with attention and executive functions in CSVD patients but also prominently distinguished CSVD-s patients from CSVD-m patients and healthy controls in receiver operating characteristic curve research. Our discoveries demonstrated that decreased ALFF/VBM coupling in the basal ganglia and increased coupling in the frontotemporal lobes were connected with more severe burden and worse cognitive decline in CSVD patients. ALFF/VBM coupling might serve as a novel effective neuroimaging biomarker of CSVD burden and provide new insights into the pathophysiological mechanisms of the clinical development of CSVD.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- Department of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Yian Gao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Anusha-Kiran Y, Mol P, Dey G, Bhat FA, Chatterjee O, Deolankar SC, Philip M, Prasad TSK, Srinivas Bharath MM, Mahadevan A. Regional heterogeneity in mitochondrial function underlies region specific vulnerability in human brain ageing: Implications for neurodegeneration. Free Radic Biol Med 2022; 193:34-57. [PMID: 36195160 DOI: 10.1016/j.freeradbiomed.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.
Collapse
Affiliation(s)
- Yarlagadda Anusha-Kiran
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mariamma Philip
- Department of Biostatistics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India.
| |
Collapse
|
9
|
Macro- and micro-structural cerebellar and cortical characteristics of cognitive empathy towards fictional characters in healthy individuals. Sci Rep 2021; 11:8804. [PMID: 33888760 PMCID: PMC8062506 DOI: 10.1038/s41598-021-87861-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Few investigations have analyzed the neuroanatomical substrate of empathic capacities in healthy subjects, and most of them have neglected the potential involvement of cerebellar structures. The main aim of the present study was to investigate the associations between bilateral cerebellar macro- and micro-structural measures and levels of cognitive and affective trait empathy (measured by Interpersonal Reactivity Index, IRI) in a sample of 70 healthy subjects of both sexes. We also estimated morphometric variations of cerebral Gray Matter structures, to ascertain whether the potential empathy-related peculiarities in cerebellar areas were accompanied by structural differences in other cerebral regions. At macro-structural level, the volumetric differences were analyzed by Voxel-Based Morphometry (VBM)- and Region of Interest (ROI)-based approaches, and at a micro-structural level, we analyzed Diffusion Tensor Imaging (DTI) data, focusing in particular on Mean Diffusivity and Fractional Anisotropy. Fantasy IRI-subscale was found to be positively associated with volumes in right cerebellar Crus 2 and pars triangularis of inferior frontal gyrus. The here described morphological variations of cerebellar Crus 2 and pars triangularis allow to extend the traditional cortico-centric view of cognitive empathy to the cerebellar regions and indicate that in empathizing with fictional characters the cerebellar and frontal areas are co-recruited.
Collapse
|
10
|
|
11
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
12
|
Heim S, McMillan CT, Olm C, Grossman M. So Many Are "Few," but so Few Are Also "Few" - Reduced Semantic Flexibility in bvFTD Patients. Front Psychol 2020; 11:582. [PMID: 32308637 PMCID: PMC7145969 DOI: 10.3389/fpsyg.2020.00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
The processing of quantifier words such as "many" or "few" is a complex operation supported by a plastic fronto-parietal network predominantly in the left hemisphere. The internal reference criterion defining a quantifier (e.g., ≥50% for "many") can be modified in a learning paradigm. Most interestingly, changing the criterion for one quantifier also leads to a change in the criterion for the untrained quantifier, i.e., a semantic restructuring effect, which is supported by Broca's region in the left inferior frontal cortex. Here, we applied this paradigm to patients with the behavioral variant of fronto-temporal dementia (bvFTD) because they suffer from loss of cognitive flexibility, reduced ability to process quantities and their values, impaired reinforcement learning, and language comprehension deficits. The question was whether the patients would be able to perform the task, show direct learning of the new quantifier meanings, and exhibit cognitive flexibility in terms of semantic restructuring. Eleven bvFTD patients took part in two behavioral experiments. In Experiment 1, in a first baseline block, each individual's criterion for "many" and "few" was assessed. In block 2, subjects received feedback about their decisions. Contrary to their initial notion, a proportion of 40% yellow circles was reinforced as "many." In block 3, the effect of this training on their judgments of "many" and "few" was re-assessed. The group of bvFTD patients showed a learning effect for the new criterion trained for the quantifier "many," but failed to generalize this criterion shift to the other quantifier "few." Experiment 2 was similar to Experiment 1, but the patients were trained in Block 2 to judge 60% of circles as "few," with no training for "many." Again, there was an average learning effect for the trained quantifier "few" over the entire group, but no generalization to "many." Since the patients were still able to perform the task and showed learning of "many" to direct feedback, the data suggest that the generalization process, rather than initial learning, is more vulnerable to fronto-temporal degeneration.
Collapse
Affiliation(s)
- Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Translational Brain Medicine, JARA, Aachen, Germany
| | - Corey T. McMillan
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher Olm
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Transcriptomic and Network Analysis Identifies Shared and Unique Pathways across Dementia Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21062050. [PMID: 32192109 PMCID: PMC7139711 DOI: 10.3390/ijms21062050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Dementia is a growing public health concern with an estimated prevalence of 50 million people worldwide. Alzheimer’s disease (AD) and vascular and frontotemporal dementias (VaD, FTD), share many clinical, genetical, and pathological features making the diagnosis difficult. Methods: In this study, we compared the transcriptome from the frontal cortex of patients with AD, VaD, and FTD to identify dysregulated pathways. Results: Upregulated genes in AD were enriched in adherens and tight junctions, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase and protein kinase B/Akt signaling pathways, whereas downregulated genes associated with calcium signaling. Upregulated genes in VaD were centered on infectious diseases and nuclear factor kappa beta signaling, whereas downregulated genes are involved in biosynthesis of amino acids and the pentose phosphate pathway. Upregulated genes in FTD were associated with ECM receptor interactions and the lysosome, whereas downregulated genes were involved in glutamatergic synapse and MAPK signaling. The transcription factor KFL4 was shared among the 3 types of dementia. Conclusions: Collectively, we identified similarities and differences in dysregulated pathways and transcription factors among the dementias. The shared pathways and transcription factors may indicate a potential common etiology, whereas the differences may be useful for distinguishing dementias.
Collapse
|