1
|
Murty R, Walton KS, Prausnitz MR. Thermostability of tetanus toxoid vaccine encapsulated in metal-organic frameworks. Drug Deliv Transl Res 2025:10.1007/s13346-025-01838-4. [PMID: 40155559 DOI: 10.1007/s13346-025-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Most vaccines require refrigerated transport and storage, which is costly, challenging in low-resource settings, and results in the loss of up to 50% of vaccines globally due to "cold-chain" failures. Here, tetanus toxoid vaccine (TT) was thermostabilized by encapsulation within a metal-organic framework (MOF), zeolitic imidazolate framework-8 (TT@ZIF-8). Its physicochemical properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal microscopy. Unencapsulated TT fell below the 80% activity threshold within 4 days at 40˚C and 60˚C according to immunoassay analysis. Aqueous suspensions of TT@ZIF-8 also declined below 80% activity within a week at both temperatures, likely due to MOF degradation in water. Dried TT@ZIF-8 performed better, retaining 80% stability for 33 days at 40˚C and 22 days at 60˚C. When TT@ZIF-8 was suspended in a non-aqueous mixture of propylene glycol and ethanol, it remained 80% stable for approximately 4 months at 40˚C and 2.5 months at 60˚C. Arrhenius modeling predicted this formulation may qualify for "controlled temperature chain" designation, allowing partial vaccine removal from the cold chain. These studies suggest that MOF encapsulation of vaccines like TT can enable dramatic improvements in vaccine stability during storage without refrigeration.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Ghafari S, Rukerd MRZ, Bashash D, Nakhaie M, Charostad J, Zarei M, Dehghani A. Anti-Monkeypox Infection Approaches: From Prevention to Therapeutic Lines. Clin Pharmacol Drug Dev 2023; 12:659-666. [PMID: 37228175 DOI: 10.1002/cpdd.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Somayeh Ghafari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Zarei
- Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Azam Dehghani
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Kritharis A, Tamer IM, Yadav VG. Vaccine production and supply need a paradigm change. CAN J CHEM ENG 2022; 100:1670-1675. [PMID: 35572455 PMCID: PMC9086989 DOI: 10.1002/cjce.24399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
We discuss the impact of COVID-19, the journey towards developing vaccines against the disease, and how biomanufacturing should evolve in order to meet similar challenges in the future.
Collapse
Affiliation(s)
- Athanasios Kritharis
- Department of Chemical and Biological EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Vikramaditya G. Yadav
- Department of Chemical and Biological EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
- School of Biomedical EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
Anggraeni R, Ana ID, Wihadmadyatami H. Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants. Clin Exp Vaccine Res 2022; 11:235-248. [DOI: 10.7774/cevr.2022.11.3.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rahmi Anggraeni
- PT Swayasa Prakarsa, Universitas Gadjah Mada Science Techno Campus, Division of Drugs, Medical Devices, and Functional Food, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Giersing B, Shah N, Kristensen D, Amorij JP, Kahn AL, Gandrup-Marino K, Jarrahian C, Zehrung D, Menozzi-Arnaud M. Strategies for vaccine-product innovation: Creating an enabling environment for product development to uptake in low- and middle-income countries. Vaccine 2021; 39:7208-7219. [PMID: 34627624 PMCID: PMC8657812 DOI: 10.1016/j.vaccine.2021.07.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
Vaccine-product innovations that address barriers to immunization are urgently needed to achieve equitable vaccine coverage, as articulated in the new Immunization Agenda 2030 and the Gavi 5.0 strategy. In 2020, the Vaccine Innovation Prioritisation Strategy (VIPS) prioritized three innovations, namely microarray patches (MAPs), heat-stable and controlled-temperature chain (CTC) enabled liquid vaccine formulations and barcodes on primary packaging. These innovations were prioritized based on the priority immunization barriers that they may help overcome in resource constrained contexts, as well as by considering their potential impact on health, coverage and equity, safety, economic costs and their technical readiness and commercial feasibility. VIPS is now working to accelerate the development and lay the foundation for future uptake of the three priority vaccine-product innovations, with the long term-goal to ensure equitable vaccine coverage and increased impact of vaccines in low- and middle- income countries. To inform our strategic planning, we analyzed four commercially available vaccine product-innovations and conducted interviews with individuals from 17 immunization organizations, and/or independent immunization experts. The findings are synthesized into an 'innovation conundrum' that describes the challenges encountered in developing vaccine-product innovations and a vaccine-product innovation 'theory of change', which highlights actions that should be undertaken in parallel to product development to incentivize sustainable investment and prepare the pathway for uptake and impact.
Collapse
Affiliation(s)
- Birgitte Giersing
- World Health Organization, Avenue Appia 20, CH-1211 Geneva 27, Switzerland.
| | - Natasha Shah
- World Health Organization, Avenue Appia 20, CH-1211 Geneva 27, Switzerland
| | | | | | - Anna-Lea Kahn
- World Health Organization, Avenue Appia 20, CH-1211 Geneva 27, Switzerland
| | | | | | - Darin Zehrung
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Marion Menozzi-Arnaud
- Gavi, the Vaccine Alliance, Global Health Campus, Chemin du Pommier 40, 1218, Grand-Saconnex, Geneva, Switzerland
| |
Collapse
|
7
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
8
|
Das KP, Sharma D, Saha S, Satapathy BK. From outbreak of COVID-19 to launching of vaccination drive: invigorating single-use plastics, mitigation strategies, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55811-55845. [PMID: 34480299 PMCID: PMC8415439 DOI: 10.1007/s11356-021-16025-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/14/2021] [Indexed: 05/14/2023]
Abstract
The unforeseen outbreak of the COVID-19 epidemic has significantly stipulated the use of plastics to minimize the exposure and spread of the novel coronavirus. With the onset of the vaccination drive, the issue draws even more attention due to additional demand for vaccine packaging, transport, disposable syringes, and other allied devices scaling up to many million tonnes of plastic. Plastic materials in personal protective equipment (PPE), disposable pharmaceutical devices, and packaging for e-commerce facilities are perceived to be a lifesaver for the frontline healthcare personnel and the general public amidst recurring waves of the pandemic. However, the same material poses a threat as an evil environmental polluter when attributed to its indiscriminate and improper littering as well as mismanagement. The review not only highlights the environmental consequences due to the excessive use of disposable plastics amidst COVID-19 but also recommends mixed approaches to its management by adopting the combined and step-by-step methodology of adequate segregation, sterilization, sanitization activities, technological intervention, and process optimization measures. The overview finally concludes with some crucial way-forward measures and recommendations like the development of bioplastics and focusing on biodegradable/bio-compostable material alternatives to holistically deal with future pandemics.
Collapse
Affiliation(s)
- Krishna Priyadarshini Das
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
9
|
Lee MS, Pan CX, Nambudiri VE. Transdermal approaches to vaccinations in the COVID-19 pandemic era. Ther Adv Vaccines Immunother 2021; 9:25151355211039073. [PMID: 34447901 PMCID: PMC8384302 DOI: 10.1177/25151355211039073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has necessitated rapid vaccine development for the control of the disease. Most vaccinations, including those currently approved for COVID-19 are administered intramuscularly and subcutaneously using hypodermic needles. However, there are several disadvantages including pain and fear of needlesticks, the need for two doses, the need for trained health care professionals for vaccine administration, and barriers to global distribution given the need for cold supply chain. Recently, transdermal techniques have been under investigation for vaccines including COVID-19. Microneedle array technology utilizes multiple microscopic projections from a plate which delivers a vaccine in the form of a patch placed on the skin, allowing for painless antigen delivery with improved immune response. In this review, we discuss challenges of existing vaccines and review the literature on the science behind transdermal vaccines including microneedles, current evidence of application in infectious diseases including COVID-19, and considerations for implementation and global access.
Collapse
Affiliation(s)
- Michelle S Lee
- Harvard Medical School, Boston, MA, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherina X Pan
- Harvard Medical School, Boston, MA, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Mvundura M, Frivold C, Janik Osborne A, Soni P, Robertson J, Kumar S, Anena J, Gueye A, Menozzi-Arnaud M, Giersing B, Kahn AL, Scarna T, Kristensen D. Vaccine innovation prioritisation strategy: Findings from three country-stakeholder consultations on vaccine product innovations. Vaccine 2021; 39:7195-7207. [PMID: 34412922 PMCID: PMC8657797 DOI: 10.1016/j.vaccine.2021.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 10/29/2022]
Abstract
As part of the Vaccine Innovation Prioritisation Strategy (VIPS), three immunization-stakeholder consultations were conducted between September 2018 and February 2020 to ensure that countries' needs drove the prioritization of vaccine product innovations. All consultations targeted respondents with immunization program experience. They included: (1) an online survey to identify immunization implementation barriers and desired vaccine attributes in three use settings, (2) an online survey to identify and evaluate the most important immunization challenges for ten exemplar vaccines, and (3) in-depth interviews to better understand the perceived programmatic benefits and challenges that could be addressed by nine innovations and to rank the innovations that could best address current challenges. The first consultation included responses from 442 participants in 61 countries, representing 89% of the 496 respondents who correctly completed at least one section of the online survey. For facility-based settings, missed opportunities for vaccination due to reluctance to open multidose vaccine vials was the barrier most frequently selected by respondents. In community-based (outreach) and campaign settings, limited access to immunization services due to geographic barriers was most frequently selected. Multidose presentations with preservative or single-dose presentations were most frequently selected as desired vaccine attributes for facility-based settings while improved thermostability was most frequently selected for outreach and campaign settings. The second online survey was completed by 220 respondents in 54 countries. For the exemplar vaccines, vaccine ineffectiveness or wastage due to heat or freeze exposure and missed opportunities due to multidose vial presentations were identified as the greatest vaccine-specific challenges. In-depth interviews with 84 respondents in six countries ranked microarray patches, dual-chamber delivery devices, and heat-stable/controlled temperature chain qualified liquid vaccines as the three innovations that could have the greatest impact in helping address current immunization program challenges. These findings informed the VIPS prioritization and provided broader application to designing immunization interventions to better meet country needs.
Collapse
Affiliation(s)
- Mercy Mvundura
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | | | - Anna Janik Osborne
- Gavi, the Vaccine Alliance, Global Health Campus, Chemin du Pommier 40, 1218 Grand-Saconnex, Geneva, Switzerland.
| | - Priyanka Soni
- Gavi, the Vaccine Alliance, Global Health Campus, Chemin du Pommier 40, 1218 Grand-Saconnex, Geneva, Switzerland
| | | | - Sandeep Kumar
- PATH, 15th Floor, Dr. Gopal Das Bhawan, 28 Barakhamba Road, Connaught Place, New Delhi 110001, India.
| | | | - Abdoulaye Gueye
- PATH, Fann Residence, Rue Saint-John Perse Angle F, Dakar, Senegal.
| | - Marion Menozzi-Arnaud
- Gavi, the Vaccine Alliance, Global Health Campus, Chemin du Pommier 40, 1218 Grand-Saconnex, Geneva, Switzerland.
| | - Birgitte Giersing
- Vaccine Product & Delivery Research, Immunisation, Vaccines and Biologicals, World Health Organization, CH-1211 Geneva 27, Switzerland.
| | - Anna-Lea Kahn
- Vaccine Product & Delivery Research, Immunisation, Vaccines and Biologicals, World Health Organization, CH-1211 Geneva 27, Switzerland.
| | - Tiziana Scarna
- Gavi, the Vaccine Alliance, Global Health Campus, Chemin du Pommier 40, 1218 Grand-Saconnex, Geneva, Switzerland.
| | | |
Collapse
|
11
|
Tang S, Zhu W, Wang BZ. Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses 2020; 12:E1212. [PMID: 33114336 PMCID: PMC7690886 DOI: 10.3390/v12111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
| | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (W.Z.)
| |
Collapse
|
12
|
Kesavadev J, Saboo B, Krishna MB, Krishnan G. Evolution of Insulin Delivery Devices: From Syringes, Pens, and Pumps to DIY Artificial Pancreas. Diabetes Ther 2020; 11:1251-1269. [PMID: 32410184 PMCID: PMC7261311 DOI: 10.1007/s13300-020-00831-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The year 2021 will mark 100 years since the discovery of insulin. Insulin, the first medication to be discovered for diabetes, is still the safest and most potent glucose-lowering therapy. The major challenge of insulin despite its efficacy has been the occurrence of hypoglycemia, which has resulted in sub-optimal dosages being prescribed in the vast majority of patients. Popular devices used for insulin administration are syringes, pens, and pumps. An artificial pancreas (AP) with a closed-loop delivery system with > 95% time in range is believed to soon become a reality. The development of closed-loop delivery systems has gained momentum with recent advances in continuous glucose monitoring (CGM) and computer algorithms. This review discusses the evolution of syringes, disposable, durable pens and connected pens, needles, tethered and patch insulin pumps, bionic pancreas, alternate controller-enabled infusion (ACE) pumps, and do-it-yourself artificial pancreas systems (DIY-APS).
Collapse
Affiliation(s)
- Jothydev Kesavadev
- Jothydev's Diabetes Research Centre, Mudavanmugal, Thiruvananthapuram, Kerala, India.
| | | | - Meera B Krishna
- Jothydev's Diabetes Research Centre, Mudavanmugal, Thiruvananthapuram, Kerala, India
| | - Gopika Krishnan
- Jothydev's Diabetes Research Centre, Mudavanmugal, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020; 19:175-194. [PMID: 32182145 PMCID: PMC7814398 DOI: 10.1080/14760584.2020.1732215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Introduction: In the last two decades, the evidence related to using vaccine patches with multiple short projections (≤1 mm) to deliver vaccines through the skin increased significantly and demonstrated their potential as an innovative delivery platform.Areas covered: We review the vaccine patch literature published in English as of 1 March 2019, as well as available information from key stakeholders related to vaccine patches as a platform. We identify key research topics related to basic and translational science on skin physical properties and immunobiology, patch development, and vaccine manufacturing.Expert opinion: Currently, vaccine patch developers continue to address some basic science and other platform issues in the context of developing a potential vaccine patch presentation for an existing or new vaccine. Additional clinical data and manufacturing experience could shift the balance toward incentivizing existing vaccine manufactures to further explore the use of vaccine patches to deliver their products. Incentives for innovation of vaccine patches differ for developed and developing countries, which will necessitate different strategies (e.g. public-private partnerships, push, or pull mechanisms) to support the basic and applied research needed to ensure a strong evidence base and to overcome translational barriers for vaccine patches as a delivery platform.
Collapse
Affiliation(s)
| | - James L Goodson
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|