1
|
Modupe OU, Olatunde SO, Waseem M, Olusegun E, Haq S, Alsaiari AA, Razzokov J. Green hydrothermal synthesis of nickel and zinc-doped nickel ferrite nanoparticles using Dalbergiella welwitschii extracts and their biological studies. Heliyon 2025; 11:e40759. [PMID: 39811359 PMCID: PMC11730852 DOI: 10.1016/j.heliyon.2024.e40759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases. Nanoparticles of Ni/Fe and Ni/Fe/Zn were synthesized by hydrothermal reaction of Dalbergiella welwitschii extract with the respective metal chlorides, and were characterized using XRD, SEM, DLS, IR and UV- spectroscopy. The drug encapsulation and release profile of the ferrites was studied using curcumin as a test drug. the Anticancer and antidiabetic activities of the nanoparticles were investigated against MCF-7 breast cancer cell lines using the MTT assay and α-glucosidase enzyme inhibitory assay, respectively. The nanoparticles had high drug loading capacity (<10 %), promising cytotoxic activity against MCF-7 breast cancer cell lines and α-glucosidase inhibitory activities ranging between 5.6 and 13.4 μM comparable to standard drug acarbose (9.8 μM), respectively. Dalbergiella welwitschii mediated nanoparticles of Ni/Fe and Ni/Fe/Zn could be further explored as alternative therapeutic agents for cancer and diabetes.
Collapse
Affiliation(s)
| | | | - Muhammad Waseem
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Sirajul Haq
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan
- Department of Natural Sciences, Shakhrisabz State Pedagogical Institute, Shakhrisabz Street 10, Kashkadarya 181301, Uzbekistan
- Department of Biotechnology, Tashkent State Technical University, Universitet 2, Tashkent, 100095, Uzbekistan
| |
Collapse
|
2
|
Gholizadeh A, Amjad-Iranagh S, Halladj R. Assessing the Interaction between Dodecylphosphocholine and Dodecylmaltoside Mixed Micelles as Drug Carriers with Lipid Membrane: A Coarse-Grained Molecular Dynamics Simulation. ACS OMEGA 2024; 9:40433-40445. [PMID: 39372004 PMCID: PMC11447843 DOI: 10.1021/acsomega.4c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Integrating drugs into cellular membranes efficiently is a significant challenge in drug delivery systems. This study aimed to overcome these barriers by utilizing mixed micelles to enhance drug incorporation into cell membranes. We employed coarse-grained molecular dynamics (MD) simulations to investigate the stability and efficacy of micelles composed of dodecylphosphocholine (DPC), a zwitterionic surfactant, and dodecylmaltoside (DDM), a nonionic surfactant, at various mixing ratios. Additionally, we examined the incorporation of a mutated form of Indolicidin (IND) (CP10A), an anti-HIV peptide, into these micelles. This study provides valuable insights for the development of more effective drug delivery systems by optimizing the mixing ratios of DPC and DDM. By balancing stability and penetration efficiency, these mixed micelles can improve the delivery of drugs that face challenges crossing lipid membranes. Such advancements can enhance the efficacy of treatments for various conditions, including viral infections and cancer, by ensuring that therapeutic agents reach their intended cellular targets more effectively.
Collapse
Affiliation(s)
- Atefeh Gholizadeh
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Sepideh Amjad-Iranagh
- Department
of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Rouein Halladj
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| |
Collapse
|
3
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
4
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
5
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
6
|
Muacevic A, Adler JR, Das S, Rawat DK, Kharade V, Pasricha RK. Nanotechnology in Lung Cancer Therapeutics: A Narrative Review. Cureus 2023; 15:e34245. [PMID: 36855484 PMCID: PMC9968214 DOI: 10.7759/cureus.34245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
To date, cancer continues to be one of the biggest challenges for medical science. Nanotechnology has enabled us to overcome some of the limitations of conventional treatment in lung cancer therapeutics. Recently, US Food and Drug Administration (FDA) has approved certain nanomedicines for clinical administration against lung cancer. This article presents a narrative review of approved nanomedicines in lung cancer with a special focus on the results of recently concluded and ongoing clinical trials. The limitations associated with using nanomaterials as anti-lung cancer therapeutic agents and the possible mechanisms to overcome these limitations are also discussed.
Collapse
Affiliation(s)
- Alexander Muacevic
- Radiotherapy, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - John R Adler
- Radiotherapy, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | | | | | | | | |
Collapse
|
7
|
Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan. Sci Rep 2021; 11:24210. [PMID: 34930942 PMCID: PMC8688492 DOI: 10.1038/s41598-021-03619-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
In this work, molecular dynamics (MD) simulation is used to study the adsorption of the anticancer drug, doxorubicin (DOX), on the wall or surface of pristine and functionalized carbon nanotubes (FCNTs) in an aqueous solution. Initially, the CNTs were functionalized by tryptophan (Trp) and folic acid (FA), and then the DOX molecules were added to the system. The simulation results showed that the drug molecules can intensely interact with the FCNTs at physiological pH. Furthermore, it was found that as a result of functionalization, the solubility of FCNTs in an aqueous solution increases significantly. The effect of pH variation on drug release from both pristine and FCNTs was also investigated. The obtained results indicated that in acidic environments due to protonation of functional groups (Trp) and as a result of repulsive interaction between the DOX molecule and functional groups, the release of DOX molecules from FCNT’s surface is facilitated. The drug release is also strongly dependent on the pH and protonated state of DOX and FCNT.
Collapse
|
8
|
Rehman F, Khan IU, Khalid SH, Asghar S, Irfan M, Khalid I, Rasul A, Mahmood H, Yousaf AM, Shahzad Y, Mudassar M, Mohsin NUA. Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks. Daru 2021; 29:171-184. [PMID: 33899162 PMCID: PMC8149496 DOI: 10.1007/s40199-021-00395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND In recent era, pH sensitive polymeric carriers that combines the materials engineering and medicine is gaining researcher's attention as they maximizes drug concentration at site of absorption and reduces side effects for e.g. orally administered cetirizine HCl (CTZ HCl) upsets the stomach and furthermore shows high intestinal absorption. Thus, development of pH sensitive hydrogels with sufficient mechanical strength will be good candidate to address this issue. METHODS Here, we developed pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum (IA-g-poly(AM)/sterculia gum) semi-interpenetrating network (semi-IPN) by free radical polymerization technique for intestinal delivery of CTZ HCL. RESULTS Optimized formulation (I5) with 6% w/w IA showed negligible swelling at pH 1.2, and maximum swelling at pH 7.4. Solid state characterization of optimized formulation showed successful development of semi-IPN structure and incorporation of drug without any noticeable drug-carrier interaction. In vitro release study showed biphasic pH dependent release of CTZ HCl, where initial burst release was observed at acidic pH followed by sustained release at basic pH. Acute oral toxicity and histopathological studies confirmed the non-toxic nature of IA-g-poly(AM)/sterculia gum. CONCLUSION Conclusively, developed biocompatible semi-IPN hydrogels with sufficient pH sensitivity and mechanical strength could serve as a potential carrier for intestinal delivery of CTZ HCL to maximize its absorption and reduce side effects.
Collapse
Affiliation(s)
- Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- School of Pharmacy, The University of Faisalabad, Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huma Mahmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Mudassar
- Pathology Department, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Noor Ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Elzayat A, Tolba E, Pérez‐Pla FF, Oraby A, Muñoz‐Espí R. Increased Stability of Polysaccharide/Silica Hybrid Sub‐Millicarriers for Retarded Release of Hydrophilic Substances. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Asmaa Elzayat
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Emad Tolba
- Polymers and Pigments Department National Research Centre Dokki Giza 12622 Egypt
| | - Francisco F. Pérez‐Pla
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| | - Ahmed Oraby
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Rafael Muñoz‐Espí
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| |
Collapse
|
10
|
Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1626. [DOI: 10.1002/wnan.1626] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antonios Keirouz
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Michael Chung
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Jaehoon Kwon
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| |
Collapse
|
11
|
Ghasemkhah F, Latifi M, Hadjizadeh A, Shokrgozar MA. Potential core-shell designed scaffolds with a gelatin-based shell in achieving controllable release rates of proteins for tissue engineering approaches. J Biomed Mater Res A 2019; 107:1393-1405. [PMID: 30724475 DOI: 10.1002/jbm.a.36653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 11/12/2022]
Abstract
The biomaterials design as core-shell structures opens a new door to the release of susceptible biomolecules in a controllable manner and enables to place natural biomaterials as shell layers to impart the effective biofunctional features at surfaces. In this study, core-shell designed scaffolds were prepared using coaxial electrospinning with hybrid of gelatin (GT)/polycaprolactone (PCL) at different weight ratios as their shell and protein solution as their core, followed by cross-linking to impart controllable release rates, tunable mechanical properties, and enhanced cytocompatibility. SEM, FM, and TEM confirmed the successful production of uniform core-shell nanofibers and homogeneous protein distribution. Results showed that an increase in GT proportion in the shell resulted in a decrease in fiber diameter, an increase of Young's modulus, and an intense burst release of BSA 0.2% which could be controlled through cross-linking. The mechanical tests revealed that the GT/PCL combining and cross-linking improved mechanical properties which correlated with an increase in spreading and proliferation of HUVECs. A slight burst release was also detected from BSA 0.05% and EGF encapsulated GT73P-cross-linked scaffold which demonstrated their applicability for a controlled release of dilute proteins. We were able to successfully incorporate two types of protein with different concentrations without supporting polymer into the GT shell to provide scaffolds possessing tunable mechanical properties and controllable release rates through blending with PCL at different ratios and/or cross-linking. These findings are promising to promote delivery systems of angiogenic growth factors that are needed a sustained release with different rates at each angiogenesis stage. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Farzaneh Ghasemkhah
- Nanotechnology institute, Amirkabir University of Technology, Tehran, Iran.,Textile Engineering Department, Textile Excellence & Research Centers, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Latifi
- Textile Engineering Department, Textile Excellence & Research Centers, Amirkabir University of Technology, Tehran, Iran
| | - Afra Hadjizadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|