1
|
Räty V, Kuusimäki T, Majuri J, Vahlberg T, Gardberg M, Noponen T, Seppänen M, Tolppanen AM, Kaasinen V. Stability and Accuracy of a Diagnosis of Parkinson Disease Over 10 Years. Neurology 2025; 104:e213499. [PMID: 40184591 PMCID: PMC11970931 DOI: 10.1212/wnl.0000000000213499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 04/06/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Accurate diagnosis of Parkinson disease (PD) remains challenging, with variability and clinical uncertainty, especially in nonspecialized settings. Despite advancements in diagnostic criteria and biological markers, misdiagnosis continues to affect patient care and research. This study aimed to assess the long-term diagnostic stability of PD and evaluate the accuracy of initial diagnoses over time in a large, consecutive cohort diagnosed by neurologists, with or without movement disorder specialization. METHODS We conducted a retrospective longitudinal analysis of patients diagnosed with PD between 2006 and 2020. Patient records were reviewed over a median follow-up period of 10 years, with more than half of the cohort tracked from motor symptom onset to death. Diagnostic evaluations included dopamine transporter (DAT) imaging and neuropathologic examinations for a subset of patients, based on clinical indications. Two movement disorder specialists cross-validated diagnoses through retrospective chart reviews. RESULTS The cohort included 1,626 patients (mean age 69.0 years, 44.1% female). Of these, 10.6% (n = 172) had their diagnoses revised by treating neurologists, and 2.7% (n = 44) were revised based on chart reviews or neuropathologic findings. The median time to diagnosis revision was 22 months (interquartile range = 43). The most common revised diagnoses were vascular parkinsonism, progressive supranuclear palsy, and multiple system atrophy, with 4.7% (n = 77) classified as clinically undetermined parkinsonism. In a secondary analysis separating PD and dementia with Lewy bodies (DLB), the revision rate increased to 17.7%. DAT imaging had been performed on 588 patients and was more frequently used in revised cases. Postmortem neuropathologic examinations had been conducted in only 3% of deceased patients, with 64% confirming the initial PD diagnosis. DISCUSSION This study demonstrates significant diagnostic instability in PD, with 13.3% of diagnoses revised, primarily within 2 years. When DLB is considered separately, the revision rate increases to 17.7%. Despite frequent DAT imaging and limited postmortem examinations, clinical uncertainty persists among practicing neurologists, contrasting with lower misdiagnosis rates in specialized centers. These findings highlight the need for systematic application of diagnostic criteria, regular reevaluation of diagnoses, more frequent autopsies, and the development of accessible diagnostic biomarkers.
Collapse
Affiliation(s)
- Valtteri Räty
- Clinical Neurosciences, University of Turku, Finland
- Neurocenter, Turku University Hospital, Finland
| | - Tomi Kuusimäki
- Clinical Neurosciences, University of Turku, Finland
- Neurocenter, Turku University Hospital, Finland
| | - Joonas Majuri
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku and Turku University Hospital, Finland
| | - Maria Gardberg
- Tyks Laboratories, Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Finland
| | - Tommi Noponen
- Department of Clinical Physiology, Nuclear Medicine, Turku PET Centre and Medical Physics, Turku University Hospital and Wellbeing Services County of Southwest Finland
| | - Marko Seppänen
- Department of Clinical Physiology, Nuclear Medicine, and Turku PET Centre, Turku University Hospital and Wellbeing Services County of Southwest Finland; and
| | | | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Finland
- Neurocenter, Turku University Hospital, Finland
| |
Collapse
|
2
|
Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Neurobiol Dis 2025; 208:106848. [PMID: 40023327 DOI: 10.1016/j.nbd.2025.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease is diagnosed based on motor symptoms, but non-motor symptoms of the disease, such as cognitive impairment, autonomic dysfunction, hyposmia, sleep disorders, and psychiatric disorders heavily impact patient and caregiver quality of life. It has proven challenging to faithfully reproduce and quantify these non-motor phenotypes. Indeed, many non-motor signs in animals that may phenotypically resemble features in patients may be caused by different mechanisms or may not be consistent within the same or similar models. In this review, we survey the existing literature on the assessment of non-motor signs in parkinsonian rodents and non-human primates. We highlight the gaps in our understanding and suggest how researchers might improve experimental designs to produce more meaningful results with the hope of better understanding the disease and developing better therapies.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Nelson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Eileen Ruth S Torres
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Roberta Marongiu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, New-York Hospital-Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Institute, New-York Hospital-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Jellinger KA. Concomitant Pathologies and Their Impact on Parkinson Disease: A Narrative Overview of Current Evidence. Int J Mol Sci 2025; 26:2942. [PMID: 40243562 PMCID: PMC11988849 DOI: 10.3390/ijms26072942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Many clinico-pathological studies point to the presence of multiple comorbidities/co-pathologies in the course of Parkinson disease (PD). Lewy body pathology, the morphological hallmark of PD, rarely exists in isolation, but is usually associated with other concomitant pathologies, in particular Alzheimer disease-related changes (ADNC), cerebrovascular pathologies (macro- and microinfarcts, cerebral small vessel disease, cerebral amyloid angiopathy), TDP-43 pathology as well as multiple pathological combinations. These include cardiovascular disorders, metabolic syndrome, diabetes mellitus, autoimmune and rheumatic diseases, myasthenia gravis, Sjögren's syndrome, restless leg syndrome or other rare disorders, like Fabry disease. A combination of PD and multiple sclerosis (MS) may be due to the immune function of LRRK2 and its interrelation with α-synuclein. COVID-19 and HIV posed considerable impacts on patients with PD. Epidemiological evidence points to a decreased risk for the majority of neoplasms, except melanoma and other skin cancers, while some tumors (breast, brain) are increased. On the other hand, a lower frequency of malignancies preceding early PD markers may argue for their protective effect on PD risk. Possible pathogenetic factors for the association between PD and cancer are discussed. The tremendous heterogeneity of concomitant pathologies and comorbidities observed across the PD spectrum is most likely caused by the complex interplay between genetic, pathogenic and other risk factors, and further research should provide increasing insight into their relationship with idiopathic PD (and other parkinsonian disorders) in order to find better diagnostic tools and probable disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
4
|
O’Day DH. The Search for a Universal Treatment for Defined and Mixed Pathology Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13424. [PMID: 39769187 PMCID: PMC11678063 DOI: 10.3390/ijms252413424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention. First, they all form toxic aggregates prior to taking on their final forms as contributors to plaques, neurofibrillary tangles, Lewy bodies, and other protein deposits. Second, the primary enzyme that directs their aggregation is transglutaminase 2 (TGM2), a brain-localized enzyme involved in neurodegeneration. Third, TGM2 binds to calmodulin, a regulatory event that can increase the activity of this enzyme threefold. Fourth, the most common mixed pathology toxic biomarkers (Aβ, pTau, αSyn, nHtt) also bind calmodulin, which can affect their ability to aggregate. This review examines the potential therapeutic routes opened up by this knowledge. The end goal reveals multiple opportunities that are immediately available for universal therapeutic treatment of the most devastating neurodegenerative diseases facing humankind.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
5
|
Byrne MD, Petramfar P, Lee JK, Smeyne RJ. Templating of Monomeric Alpha-Synuclein Induces Inflammation and SNpc Dopamine Neuron Death in a Genetic Mouse Model of Synucleinopathy. RESEARCH SQUARE 2024:rs.3.rs-5269499. [PMID: 39606453 PMCID: PMC11601858 DOI: 10.21203/rs.3.rs-5269499/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While the etiology of most cases of Parkinson's disease (PD) are idiopathic, it has been estimated that 5-10% of PD arise from known genetic mutations. The first mutations described that leads to the development of an autosomal dominant form of PD are in the SNCA gene that codes for the protein alpha-synuclein (α-syn). α-syn is an abundant presynaptic protein that is natively disordered and whose function is still unclear. In PD, α-syn misfolds into multimeric b-pleated sheets that aggregate in neurons (Lewy Bodies/neurites) and spread throughout the neuraxis in a pattern that aligns with disease progression. Here, using IHC, HC, HPLC, and cytokine analysis, we examined the sequelae of intraparenchymal brain seeding of pre-formed fibrils (PFFs) and monomeric α-syn in C57BL/6J (WT) and A53T SNCA mutant mice. We found that injection of PFFs, but not monomeric α-syn, into the striatum of C57BL/6J mice induced spread of aggregated α-syn, loss of SNpc DA neurons and increased neuroinflammation. However, in A53T SNCA mice, we found that both PFFs and monomeric α-syn induced this pathology. This suggests that the conformation changes in α-syn seen in the A53T strain can recruit wild-type α-syn to a pathological misfolded conformation which may provide a mechanism for the induction of PD in humans with SNCA duplication/triplication.
Collapse
|
6
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
7
|
Matarazzo M, Pérez-Soriano A, Vafai N, Shahinfard E, Cheng KJC, McKenzie J, Neilson N, Miao Q, Schaffer P, Shinotoh H, Kordower JH, Sossi V, Stoessl AJ. Misfolded protein deposits in Parkinson's disease and Parkinson's disease-related cognitive impairment, a [ 11C]PBB3 study. NPJ Parkinsons Dis 2024; 10:96. [PMID: 38702305 PMCID: PMC11068893 DOI: 10.1038/s41531-024-00708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's disease (PD) is associated with aggregation of misfolded α-synuclein and other proteins, including tau. We designed a cross-sectional study to quantify the brain binding of [11C]PBB3 (a ligand known to bind to misfolded tau and possibly α-synuclein) as a proxy of misfolded protein aggregation in Parkinson's disease (PD) subjects with and without cognitive impairment and healthy controls (HC). In this cross-sectional study, nineteen cognitively normal PD subjects (CN-PD), thirteen cognitively impaired PD subjects (CI-PD) and ten HC underwent [11C]PBB3 PET. A subset of the PD subjects also underwent PET imaging with [11C](+)DTBZ to assess dopaminergic denervation and [11C]PBR28 to assess neuroinflammation. Compared to HC, PD subjects showed higher [11C]PBB3 binding in the posterior putamen but not the substantia nigra. There was no relationship across subjects between [11C]PBB3 and [11C]PBR28 binding in nigrostriatal regions. [11C]PBB3 binding was increased in the anterior cingulate in CI-PD compared to CN-PD and HC, and there was an inverse correlation between cognitive scores and [11C]PBB3 binding in this region across all PD subjects. Our results support a primary role of abnormal protein deposition localized to the posterior putamen in PD. This suggests that striatal axonal terminals are preferentially involved in the pathophysiology of PD. Furthermore, our findings suggest that anterior cingulate pathology might represent a significant in vivo marker of cognitive impairment in PD, in agreement with previous neuropathological studies.
Collapse
Affiliation(s)
- Michele Matarazzo
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Pérez-Soriano
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nasim Vafai
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Elham Shahinfard
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Ju-Chieh Cheng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | | | | | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada.
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Chu Y, Hirst WD, Federoff HJ, Harms AS, Stoessl AJ, Kordower JH. Nigrostriatal tau pathology in parkinsonism and Parkinson's disease. Brain 2024; 147:444-457. [PMID: 38006313 PMCID: PMC10834249 DOI: 10.1093/brain/awad388] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023] Open
Abstract
While Parkinson's disease remains clinically defined by cardinal motor symptoms resulting from nigrostriatal degeneration, it is now appreciated that the disease commonly consists of multiple pathologies, but it is unclear where these co-pathologies occur early in disease and whether they are responsible for the nigrostriatal degeneration. For the past number of years, we have been studying a well-characterized cohort of subjects with motor impairment that we have termed mild motor deficits. Motor deficits were determined on a modified and validated Unified Parkinson's Disease Rating Scale III but were insufficient in degree to diagnose Parkinson's disease. However, in our past studies, cases in this cohort had a selection bias, as both a clinical syndrome in between no motor deficits and Parkinson's disease, plus nigral Lewy pathology as defined post-mortem, were required for inclusion. Therefore, in the current study, we only based inclusion on the presence of a clinical phenotype with mild motor impairment insufficient to diagnose Parkinson's disease. Then, we divided this group further based upon whether or not subjects had a synucleinopathy in the nigrostriatal system. Here we demonstrate that loss of nigral dopaminergic neurons, loss of putamenal dopaminergic innervation and loss of the tyrosine hydroxylase-phenotype in the substantia nigra and putamen occur equally in mild motor deficit groups with and without nigral alpha-synuclein aggregates. Indeed, the common feature of these two groups is that both have similar degrees of AT8 positive phosphorylated tau, a pathology not seen in the nigrostriatal system of age-matched controls. These findings were confirmed with early (tau Ser208 phosphorylation) and late (tau Ser396/Ser404 phosphorylation) tau markers. This suggests that the initiation of nigrostriatal dopaminergic neurodegeneration occurs independently of alpha-synuclein aggregation and can be tau mediated.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA 02142, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Howard J Federoff
- Neurology, School of Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - A Jon Stoessl
- Pacific Parkinson’s Research Centre and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
9
|
Cardoso F, Goetz CG, Mestre TA, Sampaio C, Adler CH, Berg D, Bloem BR, Burn DJ, Fitts MS, Gasser T, Klein C, de Tijssen MAJ, Lang AE, Lim SY, Litvan I, Meissner WG, Mollenhauer B, Okubadejo N, Okun MS, Postuma RB, Svenningsson P, Tan LCS, Tsunemi T, Wahlstrom-Helgren S, Gershanik OS, Fung VSC, Trenkwalder C. A Statement of the MDS on Biological Definition, Staging, and Classification of Parkinson's Disease. Mov Disord 2024; 39:259-266. [PMID: 38093469 DOI: 10.1002/mds.29683] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Tiago A Mestre
- Ottawa Hospital Research Institute; University of Ottawa Brain and Mind Research Institute; Division of Neurology, Department of Medicine, University of Ottawa, The Ottawa Hospital Ottawa, Ottawa, Ontario, Canada
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel, Kiel, Germany
| | - Bastiaan R Bloem
- Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael S Fitts
- UAB Libraries, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas Gasser
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Marina A J de Tijssen
- Department of Neurology, Expertise Centre Movement Disorders, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Wassilios G Meissner
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center, Kassel, Germany
| | - Njideka Okubadejo
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Michael S Okun
- Adelaide Lackner Professor of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainsville, Florida, USA
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | - Taiji Tsunemi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Oscar S Gershanik
- Movement Disorders Unit, Institute of Neuroscience, Favaloro Foundation University Hospital, Buenos Aires, Argentina
- Cognitive Neuroscience Laboratory, Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center, Goettingen, Germany
| |
Collapse
|
10
|
Bétemps D, Arsac JN, Nicot S, Canal D, Tlili H, Belondrade M, Morignat E, Verchère J, Gaillard D, Bruyère-Ostells L, Mayran C, Lakhdar L, Bougard D, Baron T. Protease-Sensitive and -Resistant Forms of Human and Murine Alpha-Synucleins in Distinct Brain Regions of Transgenic Mice (M83) Expressing the Human Mutated A53T Protein. Biomolecules 2023; 13:1788. [PMID: 38136658 PMCID: PMC10741842 DOI: 10.3390/biom13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Human neurodegenerative diseases associated with the misfolding of the alpha-synuclein (aS) protein (synucleinopathies) are similar to prion diseases to the extent that lesions are spread by similar molecular mechanisms. In a transgenic mouse model (M83) overexpressing a mutated (A53T) form of human aS, we had previously found that Protein Misfolding Cyclic Amplification (PMCA) triggered the aggregation of aS, which is associated with a high resistance to the proteinase K (PK) digestion of both human and murine aS, a major hallmark of the disease-associated prion protein. In addition, PMCA was also able to trigger the aggregation of murine aS in C57Bl/6 mouse brains after seeding with sick M83 mouse brains. Here, we show that intracerebral inoculations of M83 mice with C57Bl/6-PMCA samples strikingly shortens the incubation period before the typical paralysis that develops in this transgenic model, demonstrating the pathogenicity of PMCA-aggregated murine aS. In the hind brain regions of these sick M83 mice containing lesions with an accumulation of aS phosphorylated at serine 129, aS also showed a high PK resistance in the N-terminal part of the protein. In contrast to M83 mice, old APPxM83 mice co-expressing human mutated amyloid precursor and presenilin 1 proteins were seen to have an aggregation of aS, especially in the cerebral cortex, hippocampus and striatum, which also contained the highest load of aS phosphorylated at serine 129. This was proven by three techniques: a Western blot analysis of PK-resistant aS; an ELISA detection of aS aggregates; or the identification of aggregates of aS using immunohistochemical analyses of cytoplasmic/neuritic aS deposits. The results obtained with the D37A6 antibody suggest a higher involvement of murine aS in APPxM83 mice than in M83 mice. Our study used novel tools for the molecular study of synucleinopathies, which highlight similarities with the molecular mechanisms involved in prion diseases.
Collapse
Affiliation(s)
- Dominique Bétemps
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jean-Noël Arsac
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Simon Nicot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Dominique Canal
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Habiba Tlili
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Maxime Belondrade
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Eric Morignat
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jérémy Verchère
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Damien Gaillard
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Charly Mayran
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Latifa Lakhdar
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Daisy Bougard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Thierry Baron
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| |
Collapse
|
11
|
Venuto CS, Smith G, Herbst K, Zielinski R, Yung NC, Grosset DG, Dorsey ER, Kieburtz K. Predicting Ambulatory Capacity in Parkinson's Disease to Analyze Progression, Biomarkers, and Trial Design. Mov Disord 2023; 38:1774-1785. [PMID: 37363815 PMCID: PMC10615710 DOI: 10.1002/mds.29519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND In Parkinson's disease (PD), gait and balance is impaired, relatively resistant to available treatment and associated with falls and disability. Predictive models of ambulatory progression could enhance understanding of gait/balance disturbances and aid in trial design. OBJECTIVES To predict trajectories of ambulatory abilities from baseline clinical data in early PD, relate trajectories to clinical milestones, compare biomarkers, and evaluate trajectories for enrichment of clinical trials. METHODS Data from two multicenter, longitudinal, observational studies were used for model training (Tracking Parkinson's, n = 1598) and external testing (Parkinson's Progression Markers Initiative, n = 407). Models were trained and validated to predict individuals as having a "Progressive" or "Stable" trajectory based on changes of ambulatory capacity scores from the Movement Disorders Society Unified Parkinson's Disease Rating Scale parts II and III. Survival analyses compared time-to-clinical milestones and trial outcomes between predicted trajectories. RESULTS On external evaluation, a support vector machine model predicted Progressive trajectories using baseline clinical data with an accuracy, weighted-F1 (proportionally weighted harmonic mean of precision and sensitivity), and sensitivity/specificity of 0.735, 0.799, and 0.688/0.739, respectively. Over 4 years, the predicted Progressive trajectory was more likely to experience impaired balance, loss of independence, impaired function and cognition. Baseline dopamine transporter imaging and select biomarkers of neurodegeneration were significantly different between predicted trajectory groups. For an 18-month, randomized (1:1) clinical trial, sample size savings up to 30% were possible when enrollment was enriched for the Progressive trajectory versus no enrichment. CONCLUSIONS It is possible to predict ambulatory abilities from clinical data that are associated with meaningful outcomes in people with early PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles S. Venuto
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Greta Smith
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Konnor Herbst
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Robert Zielinski
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Norman C.W. Yung
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Karl Kieburtz
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Tomé SO, Tsaka G, Ronisz A, Ospitalieri S, Gawor K, Gomes LA, Otto M, von Arnim CAF, Van Damme P, Van Den Bosch L, Ghebremedhin E, Laureyssen C, Sleegers K, Vandenberghe R, Rousseau F, Schymkowitz J, Thal DR. TDP-43 pathology is associated with increased tau burdens and seeding. Mol Neurodegener 2023; 18:71. [PMID: 37777806 PMCID: PMC10544192 DOI: 10.1186/s13024-023-00653-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Most Alzheimer's Disease (AD) cases also exhibit limbic predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), besides amyloid-β plaques and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau (p-tau). LATE-NC is characterized by cytoplasmic aggregates positive for pathological TDP-43 and is associated with more severe clinical outcomes in AD, compared to AD cases lacking TDP-43 pathology TDP-43: AD(LATE-NC-). Accumulating evidence suggests that TDP-43 and p-tau interact and exhibit pathological synergy during AD pathogenesis. However, it is not yet fully understood how the presence of TDP-43 affects p-tau aggregation in symptomatic AD. METHODS In this study, we investigated the impact of TDP-43 proteinopathy on p-tau pathology with different approaches: histologically, in a human post-mortem cohort (n = 98), as well as functionally using a tau biosensor cell line and TDP-43A315T transgenic mice. RESULTS We found that AD cases with comorbid LATE-NC, AD(LATE-NC+), have increased burdens of pretangles and/or NFTs as well as increased brain levels of p-tau199, compared to AD(LATE-NC-) cases and controls. The burden of TDP-43 pathology was also correlated with the Braak NFT stages. A tau biosensor cell line treated with sarkosyl-insoluble, brain-derived homogenates from AD(LATE-NC+) cases displayed exacerbated p-tau seeding, compared to control and AD(LATE-NC-)-treated cells. Consistently, TDP-43A315T mice injected with AD(LATE-NC+)-derived extracts also exhibited a more severe hippocampal seeding, compared to the remaining experimental groups, albeit no TDP-43 aggregation was observed. CONCLUSIONS Our findings extend the current knowledge by supporting a functional synergy between TDP-43 and p-tau. We further demonstrate that TDP-43 pathology worsens p-tau aggregation in an indirect manner and increases its seeding potential, probably by increasing p-tau levels. This may ultimately contribute to tau-driven neurotoxicity and cell death. Because most AD cases present with comorbid LATE-NC, this study has an impact on the understanding of TDP-43 and tau pathogenesis in AD and LATE, which account for the majority of dementia cases worldwide. Moreover, it highlights the need for the development of a biomarker that detects TDP-43 during life, in order to properly stratify AD and LATE patients.
Collapse
Affiliation(s)
- Sandra O Tomé
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Grigoria Tsaka
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Klara Gawor
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Luis Aragão Gomes
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Halle, Halle, Germany
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Philip Van Damme
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory for Neurobiology - VIB-KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory for Neurobiology - VIB-KU Leuven, Leuven, Belgium
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy - Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Celeste Laureyssen
- Complex Genetics of Alzheimer's Disease Group, VIB-University of Antwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-University of Antwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
- Laboratory of Experimental Neurology - Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Cilia R, Piacentini SHMJ, Cummings J. The challenges of finding novel and effective drugs targeting dementia and neuropsychiatric disturbances in PD: Insights from the SYNAPSE trial. Parkinsonism Relat Disord 2023; 114:105804. [PMID: 37633806 DOI: 10.1016/j.parkreldis.2023.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Affiliation(s)
- Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milano, Italy
| | | | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| |
Collapse
|