1
|
Sun H, Long S, Wu B, Liu J, Li G. NKCC1 involvement in the epithelial-to-mesenchymal transition is a prognostic biomarker in gliomas. PeerJ 2020; 8:e8787. [PMID: 32211242 PMCID: PMC7081783 DOI: 10.7717/peerj.8787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Gliomas are the most prevalent type of intracranial tumors. NKCC1 is an important regulator in tumor cell volume. We noticed that abnormally high NKCC1 expression resulted in changes in the shape and adhesion of glioma cells. However, little is known about the role of NKCC1 in the epithelial-mesenchymal transition (EMT) of gliomas. This study aims to clarify the biological function of NKCC1 in glioblastoma multiforme (GBM) progression. Methods Using data from The Cancer Genome Atlas (TCGA), we performed a Kaplan–Meier analysis on NKCC1 expression levels to estimate the rate of survival of mesenchymal GBM patients. The correlation between NKCC1 and EMT-related proteins was analyzed from the Gene Expression Profiling Interactive Analysis (GEPIA) server. We conducted Gene Set Enrichment Analysis (GSEA) to verify molecular signatures and pathways. We then studied the expression of NKCC1 in grade I–IV glioma tissue samples collected from patients using immunohistochemistry (IHC). Finally, we evaluated the effects of NKCC1 migration and invasion on the cellular behaviors of U251 cells using the transwell assay and western blots. Results High NKCC1 expression was associated with poor prognoses in mesenchymal GBM. Our results suggest a correlation between NKCC1 and EMT-protein markers: CDH2 and VIM. GSEA showed that gliomas, TGF-beta signaling and EMT were enriched in the NKCC1 high expression phenotype. Higher expression levels of NKCC1 in gliomas correlate with higher glioma grades. Transwell assay and western blot results demonstrated that the knockdown of NKCC1 led to a reduction in migration and invasion, while also inhibiting MMP-2 and MMP-9 expression in U251. Conclusion These results suggest that high expression of NKCC1 regulates EMT in gliomas, providing a new therapeutic strategy for addressing the spread of gliomas by inhibiting the spread of intracranial tumors.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, China
| | - Shengrong Long
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, China
| | - Bingbing Wu
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, China
| | - Jia Liu
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, China
| | - Guangyu Li
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget 2018; 7:78813-78826. [PMID: 27705931 PMCID: PMC5346679 DOI: 10.18632/oncotarget.12385] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/25/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA128-1 (miR128-1), as a brain-specific miRNA, is downregulated in glioblastoma multiforme (GBM) and closely associated with the progression of GBM. However, the underlying molecular mechanism of the downregulation and its role in the regulation of tumorigenesis and anticancer drug resistance in GBM remains largely unknown. In the current study,we found that miR128-1 was downregulated in GBM and glioma stem-like cells (GSCs). Intriguingly, treatment with the DNA methylation inhibitors 5-Aza-CdR (Aza) and 4-phenylbutyric acid (PBA) resulted in miR128-1 upregulation in both GBM cells and GSCs. Either forced expression of miR128-1 or Aza/PBA treatment inhibited tumor cell proliferation, migration and invasion in vitro. Moreover, overexpression of miR128-1 inhibited the growth of transplant tumor in vivo. BMI1 and E2F3 were found to be direct targets of miR128-1 and downregulated by miR128-1 in vitro and in vivo. Our results revealed a mechanism of methylation that controls miR128-1 expression in GBM cells and GSCs and indicate miR128-1 could function as a tumor suppressor in GBM by negatively regulating tumor cell proliferation, invasion and self-renewal through direct targeting BMI1 and E2F3. Our findings suggest that DNA methylation inhibitors are potential agents for GBM treatment by upregulating miR-128-1.
Collapse
|
3
|
NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin. EBioMedicine 2017; 21:94-103. [PMID: 28679472 PMCID: PMC5514434 DOI: 10.1016/j.ebiom.2017.06.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl- co-transporter 1 (NKCC1) is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD). To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.
Collapse
|
4
|
Kondapalli KC, Llongueras JP, Capilla-González V, Prasad H, Hack A, Smith C, Guerrero-Cázares H, Quiñones-Hinojosa A, Rao R. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun 2015; 6:6289. [PMID: 25662504 PMCID: PMC4354686 DOI: 10.1038/ncomms7289] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective and EGFR persists on the plasma membrane to maintain tumour growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na(+)/H(+) exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signalling pathways that drive tumour growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumour-initiating cells attenuates tumoursphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signalling and is a highly druggable target for pan-specific receptor clearance in cancer therapy.
Collapse
Affiliation(s)
- Kalyan C. Kondapalli
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jose P. Llongueras
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Vivian Capilla-González
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Anniesha Hack
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Christopher Smith
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Mathioudakis N, Sundaresh R, Larsen A, Ruff W, Schiller J, Guerrero-Cázares H, Burger P, Salvatori R, Quiñones-Hinojosa A. Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary. Pituitary 2015; 18:31-41. [PMID: 24402129 PMCID: PMC4090297 DOI: 10.1007/s11102-014-0553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary. METHODS The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially. RESULTS GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (p < 0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (p < 0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (p < 0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke's remnant, the putative pituitary stem cell niche, and in corticotropes. CONCLUSION Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Nestoras Mathioudakis
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 333, Baltimore, MD, 21287, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
7
|
Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R, Nakano I, Kwon CH, Hayes J, Lawler SE, Ostrowski MC, Chiocca EA, Godlewski J. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro Oncol 2013; 15:1212-24. [PMID: 23733246 DOI: 10.1093/neuonc/not055] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Polycomb Repressor Complex (PRC) is an epigenetic regulator of transcription whose action is mediated by 2 protein complexes, PRC1 and PRC2. PRC is oncogenic in glioblastoma, where it is involved in cancer stem cell maintenance and radioresistance. METHODS We used a set of glioblastoma patient samples, glioma stem cells, and neural stem cells from a mouse model of glioblastoma. We characterized gene/protein expression and cellular phenotypes by quantitative PCR/Western blotting and clonogenic, cell-cycle, and DNA damage assays. We performed overexpression/knockdown studies by lentiviral infection and microRNA/small interfering RNA oligonucleotide transfection. RESULTS We show that microRNA-128 (miR-128) directly targets mRNA of SUZ12, a key component of PRC2, in addition to BMI1, a component of PRC1 that we previously showed as a target as well. This blocks the partially redundant functions of PRC1/PRC2, thereby significantly reducing PRC activity and its associated histone modifications. MiR-128 and SUZ12/BMI1 show opposite expression in human glioblastomas versus normal brain and in glioma stemlike versus neural stem cells. Furthermore, miR-128 renders glioma stemlike cells less radioresistant by preventing the radiation-induced expression of both PRC components. Finally, miR-128 expression is significantly reduced in neural stem cells from the brain of young, presymptomatic mice in our mouse model of glioblastoma. This suggests that loss of miR-128 expression in brain is an early event in gliomagenesis. Moreover, knockdown of miR-128 expression in nonmalignant mouse and human neural stem cells led to elevated expression of PRC components and increased clonogenicity. CONCLUSIONS MiR-128 is an important suppressor of PRC activity, and its absence is an early event in gliomagenesis.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang M, Li X, Qu Y, Xu O, Sun Q. Hypoxia promotes radioresistance of CD133-positive Hep-2 human laryngeal squamous carcinoma cells in vitro. Int J Oncol 2013; 43:131-40. [PMID: 23652853 DOI: 10.3892/ijo.2013.1929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/05/2013] [Indexed: 11/06/2022] Open
Abstract
Hypoxia promotes the radioresistance of laryngeal carcinomas and CD133 is one of the markers expressed by tumor-initiating, human laryngeal carcinoma cells. In order to investigate whether CD133-positive Hep-2 cells exhibit a radioresistant phenotype and to determine whether hypoxia promotes this phenotype, we performed a series of experiments. Hep-2 cells, and Hep-2 cells stably expressing hypoxia-inducible factor (HIF)-targeted small interfering RNA (siRNA) were cultured under hypoxic and normoxic conditions and were treated with varying doses of γ-rays (0, 5, 10, 15 and 20 Gy). MTT and cell cycle assays were subsequently performed. Using fluorescence-activated cell sorting (FACS), CD133-positive Hep-2 cells and CD133-positive HIF-siRNA Hep-2 cells were isolated. These cells were grown as spheres under hypoxic and normoxic conditions for MTT and soft agar colony formation assays. The expression levels of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), survivin, p53 and ataxia-telangiectasia mutated (ATM) were also assayed using flow cytometry. The data showed that the growth of Hep-2 cells exposed to hypoxic conditions and treated with 10 Gy radiation (group A) was less compared to that of groups B-D (P<0.05). In addition, more cells in group A were arrested in the G1 phase of the cell cycle compared to groups B-D (P<0.05). The percentage of CD133+ cells detected after radiation increased and was the highest for group A (P<0.05). In sphere formation assays, significantly more CD133+ cells grew in spheres than CD133- cells (P<0.001). Moreover, sphere formation was the highest for CD133+ Hep-2 cells grown under hypoxic conditions and exposed to irradiation (group E) (P<0.05). Lastly, expression of DNA-PKcs and survivin for group E was the highest (P<0.05), while ATM and p53 levels remained largely unchanged (P>0.05). In conclusion, CD133-positive Hep-2 cells exhibited a radioresistant phenotype that was enhanced with hypoxia. Furthermore, an increase in DNA-PK activity was associated with this enhancement.
Collapse
Affiliation(s)
- Maoxin Wang
- Otolaryngology Department, Fuzhou General Hospital of PLA, Fuzhou, Fujian 350025, P.R. China
| | | | | | | | | |
Collapse
|