1
|
Hofman MA. The Fractal Geometry of the Human Brain: An Evolutionary Perspective. ADVANCES IN NEUROBIOLOGY 2024; 36:241-258. [PMID: 38468036 DOI: 10.1007/978-3-031-47606-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The evolution of the brain in mammals is characterized by changes in size, architecture, and internal organization. Consequently, the geometry of the brain, and especially the size and shape of the cerebral cortex, has changed notably during evolution. Comparative studies of the cerebral cortex suggest that there are general architectural principles governing its growth and evolutionary development. In this chapter, some of the design principles and operational modes that underlie the fractal geometry and information processing capacity of the cerebral cortex in primates, including humans, will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains.
Collapse
Affiliation(s)
- Michel A Hofman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Stoltz J. Layered habitats: An evolutionary model for present-day recreational needs. Front Psychol 2022; 13:914294. [PMID: 36582316 PMCID: PMC9793991 DOI: 10.3389/fpsyg.2022.914294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Urbanisation and lifestyle-related illnesses increase globally. This highlights the need to shape modern human habitats to support basic recreational needs, promoting such things as physical activity and restoration of high stress levels and cognitive fatigue. Previous research suggests eight perceived qualities in the outdoor environment, described as eight perceived sensory dimensions, as universally meaningful to people in this regard. However quite extensively studied in relation to various health and wellbeing outcomes, human sensitivity and appreciation for these qualities has not yet been explicitly analysed from an evolutionary perspective. This paper investigates their possible evolutionary roots and suggests an order for their development. This is linked with empirical findings on their relative capacity to support restoration of stress and cognitive fatigue. Qualities of earlier origin are suggested to correspond to older, more fundamental adaptations. Each subsequently developed quality implies an increased complexity of our environmental relations, associated with higher demands on more recently developed capacities. The proposed model thus links the more restorative Serene, Sheltered, Natural, and Cohesive perceived sensory dimensions with earlier stages of our development while the more demanding Diverse, Open, Cultural, and Social qualities are associated with more recent transitions. It might be of relevance when shaping modern human habitats from a health-promoting perspective, and have applications in the planning and design of, e.g., health care settings, rehabilitation gardens, urban green areas, recreational forests or other similar outdoor environments.
Collapse
|
3
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
4
|
Aboitiz F, Montiel JF. Morphological evolution of the vertebrate forebrain: From mechanical to cellular processes. Evol Dev 2019; 21:330-341. [DOI: 10.1111/ede.12308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de Chile Santiago Chile
| | - Juan F. Montiel
- Centro de Investigación Biomédica, Facultad de MedicinaUniversidad Diego Portales Santiago Chile
| |
Collapse
|
5
|
Montiel JF, Aboitiz F. Homology in Amniote Brain Evolution: The Rise of Molecular Evidence. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:59-64. [PMID: 29860258 DOI: 10.1159/000489116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Juan F Montiel
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Universidad Diego Portales, Santiago, Chile
| | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Goffinet AM. The evolution of cortical development: the synapsid-diapsid divergence. Development 2017; 144:4061-4077. [PMID: 29138289 DOI: 10.1242/dev.153908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evolution are key issues in neurobiology. During evolution, the cortex appeared in stem amniotes and evolved divergently in two main branches of the phylogenetic tree: the synapsids (which led to present day mammals) and the diapsids (reptiles and birds). Comparative studies in organisms that belong to those two branches have identified some common principles of cortical development and organization that are possibly inherited from stem amniotes and regulated by similar molecular mechanisms. These comparisons have also highlighted certain essential features of mammalian cortices that are absent or different in diapsids and that probably evolved after the synapsid-diapsid divergence. Chief among these is the size and multi-laminar organization of the mammalian cortex, and the propensity to increase its area by folding. Here, I review recent data on cortical neurogenesis, neuronal migration and cortical layer formation and folding in this evolutionary perspective, and highlight important unanswered questions for future investigation.
Collapse
Affiliation(s)
- Andre M Goffinet
- University of Louvain, Avenue Mounier, 73 Box B1.73.16, B1200 Brussels, Belgium
| |
Collapse
|
7
|
Dicke U, Roth G. Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150180. [PMID: 26598734 DOI: 10.1098/rstb.2015.0180] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner.
Collapse
Affiliation(s)
- Ursula Dicke
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany
| | - Gerhard Roth
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany
| |
Collapse
|
8
|
Aboitiz F, Montiel JF. Olfaction, navigation, and the origin of isocortex. Front Neurosci 2015; 9:402. [PMID: 26578863 PMCID: PMC4621927 DOI: 10.3389/fnins.2015.00402] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022] Open
Abstract
There are remarkable similarities between the brains of mammals and birds in terms of microcircuit architecture, despite obvious differences in gross morphology and development. While in reptiles and birds the most expanding component (the dorsal ventricular ridge) displays an overall nuclear shape and derives from the lateral and ventral pallium, in mammals a dorsal pallial, six-layered isocortex shows the most remarkable elaboration. Regardless of discussions about possible homologies between mammalian and avian brains, a main question remains in explaining the emergence of the mammalian isocortex, because it represents a unique phenotype across amniotes. In this article, we propose that the origin of the isocortex was driven by behavioral adaptations involving olfactory driven goal-directed and navigating behaviors. These adaptations were linked with increasing sensory development, which provided selective pressure for the expansion of the dorsal pallium. The latter appeared as an interface in olfactory-hippocampal networks, contributing somatosensory information for navigating behavior. Sensory input from other modalities like vision and audition were subsequently recruited into this expanding region, contributing to multimodal associative networks.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
9
|
Montiel JF, Aboitiz F. Pallial patterning and the origin of the isocortex. Front Neurosci 2015; 9:377. [PMID: 26512233 PMCID: PMC4604247 DOI: 10.3389/fnins.2015.00377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Together with a complex variety of behavioral, physiological, morphological, and neurobiological innovations, mammals are characterized by the development of an extensive isocortex (also called neocortex) that is both laminated and radially organized, as opposed to the brain of birds and reptiles. In this article, we will advance a developmental hypothesis in which the mechanisms of evolutionary brain growth remain partly conserved across amniotes (mammals, reptiles and birds), all based on Pax6 signaling or related morphogens. Despite this conservatism, only in mammals there is an additional upregulation of dorsal and anterior signaling centers (the cortical hem and the anterior forebrain, respectively) that promoted a laminar and a columnar structure into the neocortex. It is possible that independently, some birds also developed an upregulated dorsal pallium.
Collapse
Affiliation(s)
- Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
10
|
Zhou DW, Mowrey DD, Tang P, Xu Y. Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia. PHYSICAL REVIEW LETTERS 2015; 115:108103. [PMID: 26382705 PMCID: PMC4656020 DOI: 10.1103/physrevlett.115.108103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 06/05/2023]
Abstract
Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.
Collapse
Affiliation(s)
- David W. Zhou
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - David D. Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine
- Department of Structural Biology, University of Pittsburgh School of Medicine
| |
Collapse
|
11
|
Charvet CJ. Distinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution. Front Hum Neurosci 2014; 8:190. [PMID: 24782736 PMCID: PMC3986531 DOI: 10.3389/fnhum.2014.00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/14/2014] [Indexed: 11/13/2022] Open
Abstract
In adulthood, the isocortex of several species is characterized by a gradient in neurons per unit of cortical surface area with fewer neurons per unit of cortical surface area in the rostral pole relative to the caudal pole. A gradient in neurogenesis timing predicts differences in neurons across the isocortex: neurons per unit of cortical surface area are fewer rostrally, where neurogenesis duration is short, and higher caudally where neurogenesis duration is longer. How species differences in neurogenesis duration impact cortical progenitor cells across its axis is not known. I estimated progenitor cells per unit of ventricular area across the rostro-caudal axis of the isocortex in cats (Felis catus) and in dogs (Canis familiaris) mostly before layers VI-II neurons are generated. I also estimated the ventricular length across the rostro-caudal axis at various stages of development in both species. These two species were chosen because neurogenesis duration in dogs is extended compared with cats. Caudally, cortical progenitors expand more tangentially and in numbers in dogs compared with cats. Rostrally, the cortical proliferative zone expands more tangentially in dogs compared with cats. However, the tangential expansion in the rostral cortical proliferative zone occurs without a concomitant increase in progenitor cell numbers. The tangential expansion of the ventricular surface in the rostral cortex is mediated by a reduction in cell density. These different developmental growth patterns account for the disproportionate expansion of the rostral (i.e., frontal cortex) and caudal cortex (e.g., primary visual cortex) when neurogenesis duration lengthens in evolution.
Collapse
|
12
|
Hofman MA. Evolution of the human brain: when bigger is better. Front Neuroanat 2014; 8:15. [PMID: 24723857 PMCID: PMC3973910 DOI: 10.3389/fnana.2014.00015] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 12/24/2022] Open
Abstract
Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain's complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm(3), corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power.
Collapse
Affiliation(s)
- Michel A Hofman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| |
Collapse
|
13
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
14
|
Montiel JF, Kaune H, Maliqueo M. Maternal-fetal unit interactions and eutherian neocortical development and evolution. Front Neuroanat 2013; 7:22. [PMID: 23882189 PMCID: PMC3715729 DOI: 10.3389/fnana.2013.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/25/2013] [Indexed: 11/25/2022] Open
Abstract
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal-fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by "non-classical" endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict.
Collapse
Affiliation(s)
- Juan F. Montiel
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
| | - Heidy Kaune
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
- Nuffield Department of Obstetrics and Gynaecology, University of OxfordOxford, UK.
| | - Manuel Maliqueo
- Laboratorio de Endocrinología y Metabolismo, Departamento de Medicina Occidente, Facultad de Medicina, Universidad de ChileSantiago, Chile.
| |
Collapse
|