1
|
McCray LR, Kim CH, Nguyen SA, Harvey EA, Meyer TA. Panic Disorder in Patients With Vestibular Dysfunction: A Systematic Review and Meta-analysis. Otol Neurotol 2025:00129492-990000000-00787. [PMID: 40210233 DOI: 10.1097/mao.0000000000004506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
OBJECTIVE To assess the prevalence of panic disorder (PD) among patients with vestibular dysfunction. DATABASES REVIEWED CINAHL, Cochrane Library, PubMed, PsycINFO, and SCOPUS. METHODS Databases were searched from inception through August 2024. Observational studies on PD in adults with vestibular dysfunction were included. Studies of patients without a vestibular disorder diagnosis or vertigo arising from trauma or tumors were excluded. Primary outcome measures included continuous measures (mean), proportions (%), and relative risk (RR) with 95% confidence intervals (CI). Two authors extracted data and discrepancies were resolved with a third party. Level of evidence was evaluated using Oxford Centre for Evidence-Based Medicine criteria. Risk of bias was assessed with Risk Of Bias In Non-randomized Studies-of Exposure for cohort studies and Joanna Briggs Institute criteria for case-control and cross-sectional studies. RESULTS Ten studies (n = 874) on PD and vestibular disorders were included. The mean age was 49.7 years for the vestibular group and 46.0 years for the control group. Although there were no significant differences in the prevalence of anxiety and depression, there was a significantly higher prevalence of PD (7.4% vs. 2.5%) in patients with vestibular dysfunction than the control population (p = 0.02). However, the risk of developing PD among patients with vestibular disorders was not significantly higher (RR = 1.9, 95% CI: 0.4-8.1) than the controls. CONCLUSION The prevalence of PD in patients with vestibular dysfunction is nearly three times higher than in people without vestibular dysfunction. This evidence suggests otolaryngologists treating this condition should consider screening for PD.
Collapse
Affiliation(s)
| | | | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Erin A Harvey
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Ted A Meyer
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
2
|
Oliveira GVM, Hernandes PM, Santos FHD, Soares VPMN, Falconi-Sobrinho LL, Coimbra NC, Wotjak CT, Almada RC. Orexin mechanisms in the prelimbic cortex modulate the expression of contextual conditioned fear. Psychopharmacology (Berl) 2025; 242:521-532. [PMID: 39387863 DOI: 10.1007/s00213-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.
Collapse
Affiliation(s)
- Gabriela V M Oliveira
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Paloma M Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fábio H Dos Santos
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Victor P M N Soares
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael Carvalho Almada
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Tek NA, Ayten Ş, Gövez NE, Ağagündüz D. Acute change in resting energy expenditure and vital signs in response to white tea consumption in females: a pilot study. Nutr Metab (Lond) 2024; 21:88. [PMID: 39511670 PMCID: PMC11546555 DOI: 10.1186/s12986-024-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND White tea, derived from the Camellia sinensis plant like other teas, uses tender buds and young leaves and undergoes minimal processing. This results in higher levels of antioxidants and bioactive substances, which may enhance thermogenesis more effectively than other teas. This first human study aimed to investigate the acute effects of white tea consumption on resting energy expenditure (REE) and some vital signs, including blood pressure (BP), heart rate (HR), and body temperature (BT). METHODS Thirty-two healthy female volunteers with normal initial BP and whose caffeine intakes were < 300 mg/d were enrolled in the study. The caffeine and total phenolic content of white tea samples were determined by the high-performance liquid chromatography method and the Folin-Ciocalteu colorimetric method, respectively. After baseline measurements, participants consumed white tea containing 6 mg of caffeine per kilogram of lean body mass, and the white tea was prepared with bottled drinking water at 80 °C and brewed for 3 min. REE, BP, and BT were assessed at various intervals (baseline, 30 min, 120 min, and 180 min) post-consumption of the white tea. RESULTS The results revealed a significant increase in REE by 8.7% at 180 min after the consumption. In particular, there was a substantial difference in both values between the intervals of 30 min to 180 min and baseline to 180 min for REE (p < 0.05). Maximal oxygen consumption and BT also increased significantly over time (p < 0.05) and the observed increment in BT suggests a thermogenic effect associated with white tea consumption. However, systolic BP, diastolic BP, and heart rate showed no significant difference. CONCLUSIONS These findings suggest white tea consumption may acutely enhance REE and maximal oxygen consumption, so the results are promising for body weight management. This study is the first human study in the literature about the effects of white tea on energy expenditure and vital signs.
Collapse
Affiliation(s)
- Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Şerife Ayten
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey.
| |
Collapse
|
6
|
Haubjerg Østerby NC, Baandrup L, Jennum PJ. Psychiatric comorbidity in Danish patients with narcolepsy type 1, narcolepsy type 2, and idiopathic hypersomnia: a case-control study. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae073. [PMID: 39430232 PMCID: PMC11489886 DOI: 10.1093/sleepadvances/zpae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Study Objectives To examine the difference in psychiatric comorbidity of Danish patients with Narcolepsy type 1 (NT1), Narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH). Methods Polysomnography (PSG), Multiple Sleep Latency Test (MSLT), and lumbar puncture were performed on 505 patients referred to a sleep clinic for diagnostic evaluation of hypersomnia. Diagnosis, clinical characteristics, electrophysiologic data, and cerebrospinal fluid hypocretin-1 (Csf-Hcrt-1) results were retrieved. Subsequently, the patients were identified in the Danish national health registers to collect information on psychiatric diagnoses and psychotropic medication use 10 years before the sleep disorder diagnosis. The prevalence of psychiatric comorbidities per hypersomnia group was compared to a 1:4 general population control group matched on age, gender, and educational level. Results A diagnosis of NT2 and IH was significantly associated with total psychiatric comorbidity compared to the matched controls but not NT1 (NT1: OR = 1.5; NT2: OR = 6.1; IH: OR = 5.2). NT1 was not significantly associated with any psychiatric disorder. NT2 was significantly associated with schizophrenia spectrum disorders (OR = 8.5), mood disorders (OR = 6.7), neurotic disorders (OR = 3.8), personality disorders (OR = 3.1), and behavioral and emotional disorders (OR = 4.3). IH was significantly associated with schizophrenia spectrum disorders (OR = 3.3), mood disorders (OR = 5.9), neurotic disorders (OR = 3.0), and behavioral and emotional disorders (OR = 4.0). Conclusions NT2 and IH had a close relationship to psychiatric disorders before diagnosis of their sleep disorder, while NT1 did not. This supports previous studies finding higher rates of psychiatric illness in patients with hypersomnia; however, it highlights the similarity between NT2 and IH. We believe this link to psychiatric disorders could play a role in the pathophysiology. Future studies evaluating the relation between hypersomnias of central origin and psychiatric diseases should include hypersomnia subclassifications to further the understanding of the differences in these disorders.
Collapse
Affiliation(s)
| | - Lone Baandrup
- Department Bispebjerg-Gentofte, Mental Health Centre Copenhagen, Denmark
| | - Poul Jørgen Jennum
- Danish Centre for Sleep Medicine, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
7
|
Guo Y, Gharibani P, Agarwal P, Modi H, Cho SM, Thakor NV, Geocadin RG. Endogenous orexin and hyperacute autonomic responses after resuscitation in a preclinical model of cardiac arrest. Front Neurosci 2024; 18:1437464. [PMID: 39347533 PMCID: PMC11427410 DOI: 10.3389/fnins.2024.1437464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives The study of autonomic responses to cardiac arrest (CA) resuscitation deserves attention due to the impact of autonomic function on survival and arousal. Orexins are known to modulate autonomic function, but the role of endogenous orexin in hyperacute recovery of autonomic function post-resuscitation is not well understood. We hypothesized that endogenous orexin facilitates hyperacute cardiovascular sympathetic activity post-resuscitation, and this response could be attenuated by suvorexant, a dual orexin receptor antagonist. Methods A well-established 7-min asphyxial CA rat model was studied. Heart rate (HR) and blood pressure were monitored from baseline to 90-min post-resuscitation. Autonomic function was evaluated by spectral analysis of HR variability, whereby the ratio of low- and high-frequency components (LF/HF ratio) represents the balance between sympathetic/parasympathetic activities. Plasma orexin-A levels and orexin receptors immunoreactivity in the rostral ventrolateral medulla (RVLM), the key central region for regulating sympathetic output, were measured post-resuscitation. Neurological outcome was assessed via neurologic-deficit score at 4-h post-resuscitation. Key results A significant increase in HR was found over 25-40 min post-resuscitation (p < 0.01 vs. baseline), which was attenuated by suvorexant significantly (p < 0.05). Increased HR (from 15-to 25-min post-resuscitation) was correlated with better neurological outcomes (rs = 0.827, p = 0.005). There was no evident increase in mean arterial pressure over 25-40 min post-resuscitation, while systolic pressure was reduced greatly by suvorexant (p < 0.05). The LF/HF ratio was higher in animals with favorable outcomes than in animals injected with suvorexant over 30-40 min post-resuscitation (p < 0.05). Plasma orexin-A levels elevated at 15-min and peaked at 30-min post-resuscitation (p < 0.01 vs. baseline). Activated orexin receptors-immunoreactive neurons were found co-stained with tyrosine hydroxylase-immunopositive cells in the RVLM at 2-h post-resuscitation. Conclusion Together, increased HR and elevated LF/HF ratio indicative of sympathetic arousal during a critical window (25-40 min) post-resuscitation are observed in animals with favorable outcomes. The orexin system appears to facilitate this hyperacute autonomic response post-CA.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Department of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Prachi Agarwal
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, United States
| | - Hiren Modi
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Matsuyama M, Horiuchi J. A descending pathway from the lateral/ventrolateral PAG to the rostroventral medulla mediating the vasomotor response evoked by social defeat stress in rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R66-R78. [PMID: 38708545 DOI: 10.1152/ajpregu.00295.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.NEW & NOTEWORTHY The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.
Collapse
Affiliation(s)
- Mio Matsuyama
- Department of Biomedical EngineeringToyo UniversityKawagoeJapan
| | - Jouji Horiuchi
- Department of Biomedical EngineeringToyo UniversityKawagoeJapan
| |
Collapse
|
9
|
Zhang VY, O’Connor SL, Welsh WJ, James MH. Machine learning models to predict ligand binding affinity for the orexin 1 receptor. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100040. [PMID: 38476266 PMCID: PMC10927255 DOI: 10.1016/j.aichem.2023.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The orexin 1 receptor (OX1R) is a G-protein coupled receptor that regulates a variety of physiological processes through interactions with the neuropeptides orexin A and B. Selective OX1R antagonists exhibit therapeutic effects in preclinical models of several behavioral disorders, including drug seeking and overeating. However, currently there are no selective OX1R antagonists approved for clinical use, fueling demand for novel compounds that act at this target. In this study, we meticulously curated a dataset comprising over 1300 OX1R ligands using a stringent filter and criteria cascade. Subsequently, we developed highly predictive quantitative structure-activity relationship (QSAR) models employing the optimized hyper-parameters for the random forest machine learning algorithm and twelve 2D molecular descriptors selected by recursive feature elimination with a 5-fold cross-validation process. The predictive capacity of the QSAR model was further assessed using an external test set and enrichment study, confirming its high predictivity. The practical applicability of our final QSAR model was demonstrated through virtual screening of the DrugBank database. This revealed two FDA-approved drugs (isavuconazole and cabozantinib) as potential OX1R ligands, confirmed by radiolabeled OX1R binding assays. To our best knowledge, this study represents the first report of highly predictive QSAR models on a large comprehensive dataset of diverse OX1R ligands, which should prove useful for the discovery and design of new compounds targeting this receptor.
Collapse
Affiliation(s)
- Vanessa Y. Zhang
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
- West Windsor-Plainsboro High School South, West Windsor, NJ, USA
| | - Shayna L. O’Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
10
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
11
|
Geng C, Chen C. Causal relationship between narcolepsy and anxiety: A two-sample Mendelian randomization study. J Psychosom Res 2024; 182:111802. [PMID: 38762991 DOI: 10.1016/j.jpsychores.2024.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND The aim of this study was to assess the causal relationship between narcolepsy and anxiety using Mendelian randomization (MR) methodology. METHODS Our research applied a bidirectional two-sample Mendelian Randomization strategy to explore the linkage between narcolepsy and anxiety. Utilizing summary data from GWAS on both conditions, we primarily employed the inverse-variance weighted technique for our analysis. To evaluate heterogeneity and horizontal pleiotropy, we utilized tools such as the MR Egger method, the weighted median method, Cochran's Q statistic, and the MR Egger intercept. RESULTS The analysis using the inverse variance-weighted method showed a clear positive link between narcolepsy and anxiety, with an odds ratio of 1.381 (95% CI: 1.161-1.642, p < 0.001). Tests for heterogeneity and horizontal pleiotropy, including MR Egger and IVW methods, indicated no significant findings (p-values 0.616 and 0.637, respectively, for heterogeneity; p = 0.463 for pleiotropy). Furthermore, no reverse causation was observed between anxiety and narcolepsy (odds ratio 1.034, 95% CI: 0.992-1.078, p = 0.111), with consistent findings across various analytical approaches. CONCLUSION This research suggests a possible causal link between narcolepsy and anxiety disorders. The results illuminate this connection and advocate additional studies to elucidate the mechanisms involved and to identify effective interventions.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chen Chen
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
12
|
Carpi M, Palagini L, Fernandes M, Calvello C, Geoffroy PA, Miniati M, Pini S, Gemignani A, Mercuri NB, Liguori C. Clinical usefulness of dual orexin receptor antagonism beyond insomnia: Neurological and psychiatric comorbidities. Neuropharmacology 2024; 245:109815. [PMID: 38114045 DOI: 10.1016/j.neuropharm.2023.109815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.
Collapse
Affiliation(s)
- Matteo Carpi
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Pierre Alexis Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France; GHU Paris - Psychiatry & Neurosciences, Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France.
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | | | - Claudio Liguori
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Haghdoost-Yazdi H, Piri H, Rahmani B. Unraveling the function and structure impact of deleterious missense SNPs in the human OX1R receptor by computational analysis. Sci Rep 2024; 14:833. [PMID: 38191899 PMCID: PMC10774445 DOI: 10.1038/s41598-023-49809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
The orexin/hypocretin receptor type 1 (OX1R) plays a crucial role in regulating various physiological functions, especially feeding behavior, addiction, and reward. Genetic variations in the OX1R have been associated with several neurological disorders. In this study, we utilized a combination of sequence and structure-based computational tools to identify the most deleterious missense single nucleotide polymorphisms (SNPs) in the OX1R gene. Our findings revealed four highly conserved and structurally destabilizing missense SNPs, namely R144C, I148N, S172W, and A297D, located in the GTP-binding domain. Molecular dynamics simulations analysis demonstrated that all four most detrimental mutant proteins altered the overall structural flexibility and dynamics of OX1R protein, resulting in significant changes in the structural organization and motion of the protein. These findings provide valuable insights into the impact of missense SNPs on OX1R function loss and their potential contribution to the development of neurological disorders, thereby guiding future research in this field.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Hormozgan, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
15
|
Ravaglia IC, Jasodanand V, Bhatnagar S, Grafe LA. Sex differences in body temperature and neural power spectra in response to repeated restraint stress. Stress 2024; 27:2320780. [PMID: 38414377 PMCID: PMC10989713 DOI: 10.1080/10253890.2024.2320780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Repeated stress is associated with an increased risk of developing psychiatric illnesses such as post-traumatic stress disorder (PTSD), which is more common in women, yet the neurobiology behind this sex difference is unknown. Habituation to repeated stress is impaired in PTSD, and recent preclinical studies have shown that female rats do not habituate as fully as male rats to repeated stress, which leads to impairments in cognition and sleep. Further research should examine sex differences after repeated stress in other relevant measures, such as body temperature and neural activity. In this study, we analyzed core body temperature and EEG power spectra in adult male and female rats during restraint, as well as during sleep transitions following stress. We found that core body temperature of male rats habituated to repeated restraint more fully than female rats. Additionally, we found that females had a higher average beta band power than males on both days of restraint, indicating higher levels of arousal. Lastly, we observed that females had lower delta band power than males during sleep transitions on Day 1 of restraint, however, females demonstrated higher delta band power than males by Day 5 of restraint. This suggests that it may take females longer to initiate sleep recovery compared with males. These findings indicate that there are differences in the physiological and neural processes of males and females after repeated stress. Understanding the way that the stress response is regulated in both sexes can provide insight into individualized treatment for stress-related disorders.
Collapse
Affiliation(s)
- IC Ravaglia
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - V Jasodanand
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - S Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LA Grafe
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| |
Collapse
|
16
|
Wilson C, Gattuso JJ, Hannan AJ, Renoir T. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol Dis 2023; 185:106223. [PMID: 37423502 DOI: 10.1016/j.nbd.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
17
|
Scala M, Fanelli G, De Ronchi D, Serretti A, Fabbri C. Clinical specificity profile for novel rapid acting antidepressant drugs. Int Clin Psychopharmacol 2023; 38:297-328. [PMID: 37381161 PMCID: PMC10373854 DOI: 10.1097/yic.0000000000000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Mood disorders are recurrent/chronic diseases with variable clinical remission rates. Available antidepressants are not effective in all patients and often show a relevant response latency, with a range of adverse events, including weight gain and sexual dysfunction. Novel rapid agents were developed with the aim of overcoming at least in part these issues. Novel drugs target glutamate, gamma-aminobutyric acid, orexin, and other receptors, providing a broader range of pharmacodynamic mechanisms, that is, expected to increase the possibility of personalizing treatments on the individual clinical profile. These new drugs were developed with the aim of combining a rapid action, a tolerable profile, and higher effectiveness on specific symptoms, which were relatively poorly targeted by standard antidepressants, such as anhedonia and response to reward, suicidal ideation/behaviours, insomnia, cognitive deficits, and irritability. This review discusses the clinical specificity profile of new antidepressants, namely 4-chlorokynurenine (AV-101), dextromethorphan-bupropion, pregn-4-en-20-yn-3-one (PH-10), pimavanserin, PRAX-114, psilocybin, esmethadone (REL-1017/dextromethadone), seltorexant (JNJ-42847922/MIN-202), and zuranolone (SAGE-217). The main aim is to provide an overview of the efficacy/tolerability of these compounds in patients with mood disorders having different symptom/comorbidity patterns, to help clinicians in the optimization of the risk/benefit ratio when prescribing these drugs.
Collapse
Affiliation(s)
- Mauro Scala
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
18
|
Wang H, Zhao Y, Schrag A. Development of anxiety in early Parkinson's disease: A clinical and biomarker study. Eur J Neurol 2023; 30:2661-2668. [PMID: 37227928 DOI: 10.1111/ene.15890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anxiety affects approximately 40% of Parkinson's disease (PD) patients. However, little is known about its predictors and development over time. OBJECTIVE To identify the clinical factors and biomarkers associated with development of anxiety in patients with newly diagnosed PD, and to test which risk factors predict increases in anxiety over time. METHODS Data from the Parkinson's Progression Markers Initiative (PPMI) were utilized. The primary outcome was the State-Trait Anxiety Inventory (STAI). Covariates were demographics, motor and non-motor symptoms, cognitive functions, dopamine transporter imaging data, and cerebrospinal fluid (CSF) biomarkers. We examined the association of risk factors at baseline and over 4 years with changes in anxiety scores over time. RESULTS A total of 252 patients met the inclusion criteria (mean age: 61.36 years, SD 9.53). At year 4, 42 patients had developed anxiety. Baseline predictors of increase in anxiety scores were greater autonomic dysfunction, dysexecutive function, CSF t-tau levels, excessive daytime sleepiness, and lower olfactory function scores but not motor scores. Over 4 years, change in anxiety scores correlated with deterioration in overall cognitive function, excessive daytime sleepiness, as well as depression and disability, and to a lesser degree worsening of Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor scores and caudate dopaminergic uptake changes. CONCLUSIONS These findings suggest that development of anxiety in PD is not primarily based on a dopaminergic deficit in the basal ganglia but related to non-dopaminergic or extrastriatal pathology. Early dysexecutive function predicts development of anxiety but increase in anxiety levels correlates most strongly with more global cognitive decline.
Collapse
Affiliation(s)
- Hanyuying Wang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yibo Zhao
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- School of Pharmacy, UCL, London, UK
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
19
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
20
|
Moteshakereh SM, Nikoohemmat M, Farmani D, Khosrowabadi E, Salehi S, Haghparast A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023; 98:102323. [PMID: 36736068 DOI: 10.1016/j.npep.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 μl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 μl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.
Collapse
Affiliation(s)
| | - Mohammad Nikoohemmat
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Farmani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- epartment of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Amezawa M, Yamamoto N, Nagumo Y, Kutsumura N, Ishikawa Y, Yanagisawa M, Nagase H, Saitoh T. Design and synthesis of novel orexin 2 receptor agonists with a 1,3,5‑trioxazatriquinane skeleton. Bioorg Med Chem Lett 2023; 82:129151. [PMID: 36690040 DOI: 10.1016/j.bmcl.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
A novel series of 1,3,5‑trioxazatriquinane with multiple effective residues (TriMER) derivatives with amino-methylene side chains was designed and synthesized based on the docking-simulation results between orexin receptors (OXRs) and TriMER-type OXR antagonists. In vitro screening against orexin receptors identified six TriMER derivatives with a cis side-chain configuration, and, among these, 20d and 28d showed full agonist activity against OX2R at a concentration of 10 µM. To determine the absolute stereochemistry of these hit compounds, we also conducted the first asymmetric synthesis of a 1,3,5‑trioxazatriquinane skeleton using a Katsuki-Sharpless asymmetric epoxidation as the key reaction and obtained a set of the individual stereoisomers. After evaluating their activity, (+)-20d (EC50 = 3.87 μM for OX2R) and (+)-28d (EC50 = 1.62 μM for OX2R) were determined as eutomers for OX2R agonist activity. Our results provide a new class of skeleton consisting of an (R)-1,3,5‑trioxazatriquinane core with flexible methylene linkers and hydrophobic substituents at the terminals of the side chains via carbamates/sulfonamides as OX2R agonists.
Collapse
Affiliation(s)
- Mao Amezawa
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriki Kutsumura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, US
| | - Hiroshi Nagase
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
23
|
Palagini L, Geoffroy PA, Balestrieri M, Miniati M, Biggio G, Liguori C, Menicucci D, Ferini-Strambi L, Nobili L, Riemann D, Gemignani A. Current models of insomnia disorder: a theoretical review on the potential role of the orexinergic pathway with implications for insomnia treatment. J Sleep Res 2023:e13825. [PMID: 36786121 DOI: 10.1111/jsr.13825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
Insomnia disorder is considered as a stress-related disorder associated with hyperarousal, stress and emotion dysregulation and the instability of the 'flip-flop' switch system. The orexinergic system is well known for its key role in sleep and arousal processes but also in the allostatic system regulating stress and emotions and may thus be of major interest for insomnia and its treatment. Accordingly, we discuss the potential role of orexins on sleep processes, brain systems modulating stress and emotions with potential implications for insomnia pathophysiology. We reviewed available data on the effect of dual orexin receptor antagonists (DORAs) on sleep and brain systems modulating stress/emotions with implications for insomnia treatment. We present our findings as a narrative review. Few data in animals and humans have reported that disrupted sleep and insomnia may be related to the overactivation of orexinergic system, while some more consistent data in humans and animals reported the overactivation of orexins in response to acute stress and in stress-related disorders. Taken together these findings may let us hypothesise that an orexins overactivation may be associated with stress-related hyperarousal and the hyperactivation of arousal-promoting systems in insomnia. On the other hand, it is possible that by rebalancing orexins with DORAs we may regulate both sleep and allostatic systems, in turn, contributing to a 'switch off' of hyperarousal in insomnia. Nevertheless, more studies are needed to clarify the role of the orexin system in insomnia and to evaluate the effects of DORAs on sleep, stress and emotions regulating systems.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry and Neurosciences, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neuroscience, University of Cagliari, National Research Council (C.N.R.), Cagliari, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology Sleep Disorders Centre, RCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lino Nobili
- Sleep Medicine Center, Department of Neuroscience, Niguarda Hospital, Milan, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Dual Cannabinoid and Orexin Regulation of Anhedonic Behaviour Caused by Prolonged Restraint Stress. Brain Sci 2023; 13:brainsci13020314. [PMID: 36831860 PMCID: PMC9954020 DOI: 10.3390/brainsci13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The endocannabinoid and orexin systems share many biological functions, including wakefulness, stress response, reward processing, and mood. While these systems work against one another with respect to arousal, chronic stress-induced downregulation of both systems often leads to anhedonia or the inability to experience pleasure from natural rewards. In the current study, a 24 h restraint stress test (24 h RST) reduced sucrose preference in adult male and female C57BL/6 mice. Prior to the stressor, subsets of mice were intraperitoneally administered cannabinoid and orexin receptor agonists, antagonists, and combinations of these drugs. Restraint mice that received the cannabinoid receptor type 1 (CB1R) antagonist SR141716A, orexin receptor type 2 (OX2R) agonist YNT-185, and the combination of SR141716A and YNT-185, exhibited less anhedonia compared to vehicle/control mice. Thus, the 24 h RST likely decreased orexin signaling, which was then restored by YNT-185. Receptor colocalization analysis throughout mesocorticolimbic brain regions revealed increased CB1R-OX1R colocalization from SR141716A and YNT-185 treatments. Although a previous study from our group showed additive cataleptic effects between CP55,940 and the dual orexin receptor antagonist (TCS-1102), the opposite combination of pharmacological agents proved additive for sucrose preference. Taken together, these results reveal more of the complex interactions between the endocannabinoid and orexin systems.
Collapse
|
25
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Collier AD, Yasmin N, Karatayev O, Abdulai AR, Yu B, Khalizova N, Fam M, Leibowitz SF. Neuronal chemokine concentration gradients mediate effects of embryonic ethanol exposure on ectopic hypocretin/orexin neurons and behavior in zebrafish. Sci Rep 2023; 13:1447. [PMID: 36702854 PMCID: PMC9880007 DOI: 10.1038/s41598-023-28369-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Embryonic ethanol exposure in zebrafish and rats, while stimulating hypothalamic hypocretin/orexin (Hcrt) neurons along with alcohol consumption and related behaviors, increases the chemokine receptor Cxcr4 that promotes neuronal migration and may mediate ethanol's effects on neuronal development. Here we performed a more detailed anatomical analysis in zebrafish of ethanol's effects on the Cxcl12a/Cxcr4b system throughout the entire brain as it relates to Hcrt neurons developing within the anterior hypothalamus (AH) where they are normally located. We found that ethanol increased these Hcrt neurons only in the anterior part of the AH and induced ectopic Hcrt neurons further anterior in the preoptic area, and these effects along with ethanol-induced behaviors were completely blocked by a Cxcr4 antagonist. Analysis of cxcl12a transcripts and internalized Cxcr4b receptors throughout the brain showed they both exhibited natural posterior-to-anterior concentration gradients, with levels lowest in the posterior AH and highest in the anterior telencephalon. While stimulating their density in all areas and maintaining these gradients, ethanol increased chemokine expression only in the more anterior and ectopic Hcrt neurons, effects blocked by the Cxcr4 antagonist. These findings demonstrate how increased chemokine expression acting along natural gradients mediates ethanol-induced anterior migration of ectopic Hcrt neurons and behavioral disturbances.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Qin L, Luo Y, Chang H, Zhang H, Zhu Z, Du Y, Liu K, Wu H. The association between serum orexin-A levels and sleep quality in pregnant women. Sleep Med 2023; 101:93-98. [PMID: 36368074 DOI: 10.1016/j.sleep.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE/BACKGROUND Orexin has been shown to regulate the sleep-wake cycle, and it may play a major role in the pathogenesis of sleep disorders; however, its role in sleep disorders in pregnant women remains unclear. We aimed to assess the relationship between serum orexin-A (OXA) levels and sleep quality in pregnant women. PATIENTS/METHODS This study comprised 214 enrolled pregnant women (poor sleep quality, n = 125; no poor sleep quality, n = 89). We assessed participants' sleep quality and depression and anxiety levels. OXA levels were measured using enzyme-linked immunosorbent assay. RESULTS Women in the poor sleep quality group showed higher serum OXA levels (0.33[0.3] vs. 0.27[0.11], P < 0.001) than those in the no poor sleep quality group. Binary regression analysis showed that the higher the OXA levels (odds ratio [OR] 1.385, 95% CI [confidence interval] 1.160-1.655) and Zung Self-Rating Anxiety Scale scores (OR 1.073, 95% CI 1.009-1.140), the greater the risk of sleep quality in pregnant women. First-trimester OXA levels differed significantly from those in the second and third trimesters (P < 0.05). CONCLUSION Serum OXA levels were higher in pregnant women with poor sleep quality than in those without poor sleep quality. OXA levels were also higher in the second and third trimesters than in the first trimester.
Collapse
Affiliation(s)
- Liwei Qin
- Department of Nursing, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China.
| | - Hongjuan Chang
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xingxiang, 453003, China
| | - Zhiling Zhu
- Department of Nursing, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Yishen Du
- Department of Nursing, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Kaili Liu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Huimin Wu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| |
Collapse
|
28
|
Aldridge GM, Zarin TA, Brandner AJ, George O, Gilpin NW, Repunte-Canonigo V, Sanna PP, Koob GF, Vendruscolo LF, Schmeichel BE. Effects of single and dual hypocretin-receptor blockade or knockdown of hypocretin projections to the central amygdala on alcohol drinking in dependent male rats. ADDICTION NEUROSCIENCE 2022; 3:100028. [PMID: 35965958 PMCID: PMC9365098 DOI: 10.1016/j.addicn.2022.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypocretin/Orexin (HCRT) is a neuropeptide that is associated with both stress and reward systems in humans and rodents. The different contributions of signaling at hypocretin-receptor 1 (HCRT-R1) and hypocretin-receptor 2 (HCRT-R2) to compulsive alcohol drinking are not yet fully understood. Thus, the current studies used pharmacological and viral-mediated targeting of HCRT to determine participation in compulsive alcohol drinking and measured HCRT-receptor mRNA expression in the extended amygdala of both alcohol-dependent and non-dependent male rats. Rats were made dependent through chronic intermittent exposure to alcohol vapor and were tested for the acute effect of HCRT-R1-selective (SB-408124; SB-R1), HCRT-R2-selective (NBI-80713; NB-R2), or dual HCRT-R1/2 (NBI-87571; NB-R1/2) antagonism on alcohol intake. NB-R2 and NB-R1/2 antagonists each dose-dependently decreased overall alcohol drinking in alcohol-dependent rats, whereas, SB-R1 decreased alcohol drinking in both alcohol-dependent and non-dependent rats at the highest dose (30 mg/kg). SB-R1, NB-R2, and NB-R1/2 treatment did not significantly affect water drinking in either alcohol-dependent or non-dependent rats. Additional PCR analyses revealed a significant decrease in Hcrtr1 mRNA expression within the central amygdala (CeA) of dependent rats under acute withdrawal conditions compared to nondependent rats. Lastly, a shRNA-encoding adeno-associated viral vector with retrograde function was used to knockdown HCRT in CeA-projecting neurons from the lateral hypothalamus (LH). LH-CeA HCRT knockdown significantly attenuated alcohol self-administration in alcohol-dependent rats. These observations suggest that HCRT signaling in the CeA is necessary for alcohol-seeking behavior during dependence. Together, these data highlight a role for both HCRT-R1 and -R2 in dependent alcohol-seeking behavior.
Collapse
Affiliation(s)
- Gabriel M. Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tyler A. Zarin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Adam J. Brandner
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Nicholas W. Gilpin
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vez Repunte-Canonigo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Pietro P. Sanna
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - George F. Koob
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F. Vendruscolo
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Brooke E. Schmeichel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Gorka SM, Khorrami KJ, Manzler CA, Phan KL. Acute orexin antagonism selectively modulates anticipatory anxiety in humans: implications for addiction and anxiety. Transl Psychiatry 2022; 12:308. [PMID: 35918313 PMCID: PMC9345881 DOI: 10.1038/s41398-022-02090-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Research indicates that heightened anticipatory anxiety underlies several forms of psychopathology. Anticipatory anxiety can be reliably and objectively measured in the laboratory using the No-Predictable-Unpredictable (NPU) threat paradigm. The NPU paradigm is an ideal research tool for the NIH 'Fast-Fail' approach of screening promising compounds and testing human target engagement. Evidence from preclinical studies suggests that the hypocretin/orexin (ORX) hypothalamic neuropeptide system is a potential means for modulating anticipatory anxiety and disrupting stress-related alcohol use. The current study tested this question using a psychophysiological probe of the ORX system in humans. We examined whether a single dose of suvorexant (SUV; 10 mg; dual ORX receptor antagonist) can effectively and selectively target a well-validated human laboratory index of exaggerated anticipatory anxiety using a within-subjects placebo-controlled design. A total of twenty-one volunteers completed two laboratory sessions during acute administration of 10 mg SUV or placebo. Across sessions, we administered the NPU paradigm probing sustained anticipatory anxiety and fear while startle eyeblink was recorded as an index of aversive reactivity. Questionnaires assessing mood states and subjective drug effects were also collected. Results indicated SUV was well-tolerated. Compared with placebo, SUV was associated with decreased startle reactivity during anticipatory anxiety but not fear or no-threat conditions. Therefore, SUV selectively and effectively reduced objective indicators of anticipatory anxiety in humans and engaged our laboratory target of psychopathology. ORX antagonism may be a promising strategy for modulating human anxiety and potentially, stress-related alcohol use.
Collapse
Affiliation(s)
- Stephanie M. Gorka
- grid.412332.50000 0001 1545 0811Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210 USA
| | - Kia J. Khorrami
- grid.412332.50000 0001 1545 0811Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210 USA
| | - Charles A. Manzler
- grid.412332.50000 0001 1545 0811Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210 USA
| | - K. Luan Phan
- grid.412332.50000 0001 1545 0811Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
30
|
Chavan P, Chikahisa S, Shiuchi T, Shimizu N, Dalanon J, Okura K, Séi H, Matsuka Y. Dual orexin receptor antagonist drug suvorexant can help in amelioration of predictable chronic mild stress-induced hyperalgesia. Brain Res Bull 2022; 188:39-46. [PMID: 35868501 DOI: 10.1016/j.brainresbull.2022.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 12/31/2022]
Abstract
AIMS This study aimed to evaluate the involvement of the orexin system in predictable chronic mild stress (PCMS) and the effects of suvorexant, a dual orexin receptor antagonist, on nociceptive behavior in PCMS. MATERIALS AND METHODS Male C57BL/6 J mice were separated into various PCMS groups: a control group with sawdust on the floor of the rearing cage (C), a group with mesh wire on the floor (M), and a group with water just below the mesh wire (W). Activation of lateral hypothalamic orexin neurons was assessed using immunofluorescence. In another experiment, half of the mice in each group were administered an intraperitoneal injection of suvorexant (10 mg/kg), and the remaining mice were injected with the same amount of vehicle (normal saline). Thermal hyperalgesia was examined using tail immersion and hot plate tests, while mechanical hyperalgesia was investigated using the tail pinch test after 21 days of PCMS. KEY FINDINGS Animals subjected to PCMS showed an increased percentage of activated orexin neurons in the lateral hypothalamic region after 21 days. Mice raised in the PCMS environment showed increased pain sensitivity in several pain tests; however, the symptoms were significantly reduced by suvorexant administration. SIGNIFICANCE The findings revealed that PCMS activates hypothalamic orexin neuronal activity, and the use of suvorexant can help attenuate PCMS-induced thermal and mechanical hyperalgesia.
Collapse
Affiliation(s)
- Parimal Chavan
- Department of Stomatognathic Function and Occlusal Reconstruction, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan; Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Tokushima City, Japan.
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Noriyuki Shimizu
- Department of Integrative Physiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Junhel Dalanon
- Department of Stomatognathic Function and Occlusal Reconstruction, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Kazuo Okura
- Department of Stomatognathic Function and Occlusal Reconstruction, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Japan
| |
Collapse
|
31
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
32
|
Park TH, Lee HJ, Kwon RW, Lee IH, Lee SJ, Park JI, Choo EA, Lee JB. Effects of caffeine ingestion and thermotherapy on blood orexin circulation in humans. Food Sci Biotechnol 2022; 31:1207-1212. [PMID: 35615306 PMCID: PMC9122480 DOI: 10.1007/s10068-022-01094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeine and orexin can affect awakening, neuroendocrine, and sympathetic nerve function. Our previous study has reported that caffeine intake can increase human body temperature. However, little is known about the combined effects of thermotherapy and caffeine intake on human serum orexin concentrations. Forty-two healthy male subjects with age of 26.72 ± 5.05 years, height of 174.10 ± 7.09 cm, and body weight of 74.68 ± 8.91 kg participated in this study. They were randomly assigned to a control (CON) group (n = 21) and a caffeine (CAFF) group (n = 21). After thermotherapy (half-body immersion in a hot water bath at 42 ± 0.5 °C, circulating orexin level increased more (p < 0.05) in the CAFF group than in the CON group. Positive relationships between mean body temperature and orexin were observed before and after heat stimulation (p < 0.001). Caffeine intake boosted the upregulation of serum orexin concentrations in subjects undergoing thermotherapy.
Collapse
Affiliation(s)
- Tae-Hwan Park
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| | - Hye-Jin Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| | - Ryeo-Won Kwon
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| | - In-Ho Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Seung-Jea Lee
- Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jong-In Park
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| | - Eon-Ah Choo
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151 Republic of Korea
| |
Collapse
|
33
|
Eghtesad M, Elahdadi Salmani M, Lashkarbolouki T, Goudarzi I. Lateral Hypothalamus Corticotropin-releasing Hormone Receptor-1 Inhibition and Modulating Stress-induced Anxiety Behavior. Basic Clin Neurosci 2022; 13:373-384. [PMID: 36457881 PMCID: PMC9706292 DOI: 10.32598/bcn.2021.445.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Stress is a reaction to unwanted events disturbing body homeostasis and its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA), the orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH Receptor Type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and the involvement of the LHA through LHA-CRHr1. METHODS Male Wistar rats (220-250 g) implanted with a cannula on either side of the LHA received acute or chronic stress. Subsequently, exploratory behavior was examined using the Open Field (OF), and anxiety was tested by Elevated Plus Maze (EPM). Before sacrifice, the cerebrospinal fluid (CSF) and the blood were sampled. Nissl stain was performed on fixed brain tissues. RESULTS Acute stress reduced exploration in of and increased anxiety in EPM. LHA-CRHr1 inhibition reversed the variables to increase the exploration and decrease anxiety. In contrast, chronic stress did not show any effect on anxiety-related behaviors. Chronic stress decreased the cell population in the LHA, which was prevented by the CRHr1 inhibition. However, the CRHr1 inhibition could not reverse the chronic stress-induced increase in the CSF orexin level. Furthermore, plasma corticosterone levels increased through acute or chronic stress, impeded by the inhibition of CRHr1. CONCLUSION Our results recognize LHA-CRHr1 as a capable candidate that modulates acute stress-induced anxiety development and chronic stress-induced changes in the cellular population of the region. HIGHLIGHTS Acute stress, increased immobility of the rat in open field and elevated plus maze.Chronic stress, increased orexin production while decreasing neuronal survival.The anxiety and immobility were not developed in presence of CRHr1.CRHr1 blocking reversed the chronic stress changes in corticosterone and orexin. PLAIN LANGUAGE SUMMARY Lateral Hypothalamus (LH) is a region involved in sleep and appetite regulation and recently known to play role in stress pathophysiology. The stress mediating function of the LH is performed through Corticotropin Releasing Hormone Receptor type-1 (CRHr1). This study explored the role of LH- CRHr1 in anxiety development and orexin production. Acute and chronic stress affected the behavior and molecular changes, differently. The acute stress increased the anxiety condition, while the chronic stress could only change the molecular criteria. Although we assumed that the inability of the chronic stress to develop anxiety may be attributable to habituation, the chronic stress could increase the plasma corticosterone and orexin level. All of the stress mal-changes in behavior and molecular level prevented by antagonising CRHr1 in the LH, indicating a gating function of LH-CRHr1 for stress development.
Collapse
Affiliation(s)
- Masoumeh Eghtesad
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran
| | | | - Taghi Lashkarbolouki
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran
| | - Iran Goudarzi
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
34
|
Yaeger JDW, Krupp KT, Jacobs BM, Onserio BO, Meyerink BL, Cain JT, Ronan PJ, Renner KJ, DiLeone RJ, Summers CH. Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance From Pro- to Antistress Signaling and Behavior. Biol Psychiatry 2022; 91:841-852. [PMID: 35279280 PMCID: PMC9020795 DOI: 10.1016/j.biopsych.2021.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). METHODS We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies. RESULTS In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. CONCLUSIONS Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Benjamin M Jacobs
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Texas Christian University School of Medicine, Fort Worth, Texas
| | - Benard O Onserio
- Department of Biology, University of South Dakota, Vermillion, South Dakota
| | - Brandon L Meyerink
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Ralph J DiLeone
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota.
| |
Collapse
|
35
|
Abstract
SignificanceAnxiety disorders are among the most prevalent mental illnesses worldwide. Despite significant advances in their treatment, many patients remain treatment resistant. Thus, new treatment modalities and targets are much needed. Therefore, we developed a deep brain stimulation therapy that targets a recently identified anxiety center in the lateral hypothalamus. We show that this therapy rapidly silences anxiety-implicated neurons and immediately relieves diverse anxiety symptoms in a variety of stressful situations. This therapeutic effect occurs without acute or chronic side effects that are typical of many existing treatments, such as physical sedation or memory deficits. These findings identify a clinically applicable new therapeutic strategy for helping patients to manage treatment-resistant anxiety.
Collapse
|
36
|
Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Role of CRF 1 and CRF 2 receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: Evaluation of acute and chronic exposure. Neuropharmacology 2022; 212:109061. [PMID: 35452627 DOI: 10.1016/j.neuropharm.2022.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
We investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the lateral hypothalamus (LH) in cardiovascular and anxiogenic-like responses evoked by acute and repeated restraint stress in rats. For this, animals were subjected to intra-LH microinjection of a selective CRF1 (CP376395) or CRF2 (antisauvagine-30) receptor antagonist before either an acute or the 10th session of restraint stress. Restraint-evoked arterial pressure and heart rate increases, tail skin temperature decrease and anxiogenic-like effect in the elevated plus maze (EPM) were evaluated. We also assessed the effect of 10 daily sessions of restraint on expression of CRF1 and CRF2 receptors within the LH. We identified that antagonism of either CRF1 or CRF2 receptor within the LH decreased the tachycardia during both the acute and 10th session of restraint, but the effect of the CRF1 receptor antagonist was more pronounced during the 10th session. Acute restraint stress also caused anxiogenic-like effect, and this response was inhibited in animals treated with either CP376395 or antisauvagine-30. Anxiety-like behaviors were not changed following the 10th session of restraint, and pharmacological treatments did not affect the behavior in the EPM in chronically stressed animals. Repeated restraint also did not change the level of the CRF receptors within the LH. Taken together, the findings indicate that CRF1 and CRF2 receptors within the LH are involved in tachycardic and anxiogenic-like responses to aversive stimuli. Control of tachycardia by the CRF1 receptor is sensitized by previous stressful experience, and this effect seems to be independent of changes in expression of the receptor.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Lilian Liz Reis-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
37
|
Martins Fernandes Pereira K, Calheiros de Carvalho A, André Moura Veiga T, Melgoza A, Bonne Hernández R, dos Santos Grecco S, Uchiyama Nakamura M, Guo S. The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS One 2022; 17:e0264987. [PMID: 35263358 PMCID: PMC8906576 DOI: 10.1371/journal.pone.0264987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Bryophyllum pinnatum (Lam.) Oken (BP) is a plant that is used worldwide to treat inflammation, infections, anxiety, restlessness, and sleep disorders. While it is known that BP leaves are rich in flavonoids, the extent of the beneficial and toxic effects of its crude extracts remains unclear. Although some neurobehavioral studies using leaf extracts have been conducted, none has examined the effects of water-extracted leaf samples. The zebrafish is a powerful animal model used to gain insights into the efficacy and toxicity profiles of this plant due to its high fecundity, external development, and ease of performing behavioral assays. In this study, we performed behavioral testing after acute exposure to different concentrations of aqueous extract from leaves of B. pinnatum (LABP) on larval zebrafish, investigating light/dark preference, thigmotaxis, and locomotor activity parameters under both normal and stressed conditions. LABP demonstrated dose-and time-dependent biphasic effects on larval behavior. Acute exposure (25 min) to 500 mg/L LABP resulted in decreased locomotor activity. Exposure to 300 mg/L LABP during the sleep cycle decreased dark avoidance and thigmotaxis while increasing swimming velocity. After sleep deprivation, the group treated with 100 mg/L LABP showed decreased dark avoidance and increased velocity. After a heating stressor, the 30 mg/L and 300 mg/L LABP-treated groups showed decreased dark avoidance. These results suggest both anxiolytic and psychoactive effects of LABP in a dose-dependent manner in a larval zebrafish model. These findings provide a better understanding of the mechanisms underlying relevant behavioral effects, consequently supporting the safe and effective use of LABP for the treatment of mood disorders.
Collapse
Affiliation(s)
- Kassia Martins Fernandes Pereira
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | | | | | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology–LABITA, Department of Chemistry, Universidade Federal de São Paulo. Diadema. SP. Brazil
| | | | | | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Severs L, Vlemincx E, Ramirez JM. The psychophysiology of the sigh: I: The sigh from the physiological perspective. Biol Psychol 2022; 170:108313. [DOI: 10.1016/j.biopsycho.2022.108313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
|
39
|
Ritz T. An apnea-hypothesis of anxiety generation: Novel, respiratory, and falsifiable. Biol Psychol 2022; 170:108304. [DOI: 10.1016/j.biopsycho.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022]
|
40
|
Zareie F, Ghalebandi S, Askari K, Mousavi Z, Haghparast A. Orexin receptors in the CA1 region of hippocampus modulate the stress-induced antinociceptive responses in an animal model of persistent inflammatory pain. Peptides 2022; 147:170679. [PMID: 34718063 DOI: 10.1016/j.peptides.2021.170679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
Stress activates multiple neural pathways and neurotransmitters that often suppress pain perception, the phenomenon called stress-induced analgesia (SIA). Orexin neurons from the lateral hypothalamus project to entire brain structures such as the hippocampus. The present study examined this hypothesis that orexinergic receptors in the CA1 region of the hippocampus may play a modulatory role in the development of SIA in formalin test as an animal model of persistent inflammatory pain. One hundred-two adult male Wistar rats were administered with intra-CA1 orexin-1 receptor (OX1r) antagonist, SB334867, at the doses of 3, 10, 30, and 100 nmol or TCS OX2 29 as orexin-2 receptor (OX2r) antagonist at the doses of 1, 3, 10, and 30 nmol. Five min later, rats were exposed to forced swim stress (FSS) for a 6-min period. Then, pain-related behaviors induced by formalin injection were measured at the 5-min blocks during a 60-min period of formalin test. The current study indicated that solely stress exposure elicits antinociception in the early and late phases of the formalin test. The FSS-induced analgesia was prevented by intra-CA1 administration of SB334867 or TCS OX2 29 during either phase of the formalin test. Moreover, the contribution of the OX2r in the mediation of analgesic effect of stress was more prominent than that of the OX1r during both phases of the formalin test. It is suggested that OX1r and OX2r in the CA1 region of the hippocampus are involved in stress-induced analgesia in the animal model of persistent inflammatory pain.
Collapse
Affiliation(s)
- Fatemeh Zareie
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedehdelaram Ghalebandi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey
| | - Kobra Askari
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Discovery of Orexin 2 Receptor Selective and Dual Orexin Receptor Agonists based on the Tetralin Structure: Switching of Receptor Selectivity by Chirality on the Tetralin Ring. Bioorg Med Chem Lett 2022; 60:128555. [DOI: 10.1016/j.bmcl.2022.128555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
|
42
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
43
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
44
|
Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021; 11:brainsci11121634. [PMID: 34942932 PMCID: PMC8699801 DOI: 10.3390/brainsci11121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Orexin-A (OX-A) and orexin-B (OX-B) are neuropeptides produced in the hypothalamus. Preclinical and clinical studies suggest that depression and anxiety are associated with the orexin system. In the current study, we used the learned helplessness (LH) animal model of depression to identify rats displaying LH behaviors (LH rats) and those that did not (No-LH rats). We compared the number of orexin-containing neurons in the hypothalamus of LH, No-LH, and control rats. Orexin peptides, orexin receptor 1 (OXR1) and 2 (OXR2) in brain areas involved in major depression and serum OX-A and corticosterone (CORT) concentrations were quantified and compared between rat groups. We found that LH and No-LH rats displayed higher serum OX-A concentrations compared with control rats. Comparison between LH and No-LH rats revealed that No-LH rats had significantly higher OX-A levels in the brain, more OX-A neurons, and more OX-A neuron activation. LH rats had more OX-B neurons and more OX-B neuron activation. Orexin peptides and receptors in the brain areas involved in major depression exhibited different patterns in LH and NoLH rats. Our findings revealed that activation of OX-A neurons could promote resilient behaviors under stressful situations and OX-A and OX-B neuropeptides exhibit dissimilar functions in LH behaviors.
Collapse
|
45
|
Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021; 145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hypothalamic neurons that produce the peptide transmitters orexins/hypocretins (HONs) broadcast their predominantly neuroexcitatory outputs to the entire brain via their extremely wide axonal projections. HONs were originally reported to be activated by food deprivation, and to stimulate arousal, energy expenditure, and eating. This led to extensive studies of HONs in the context of nutrient-sensing and energy balance control. While activation of HONs by body energy depletion continues to be supported by experimental evidence, it has also become clear that HONs are robustly activated not only by nutrient depletion, but also by diverse sensory stimuli (both neutral and those associated with rewarding or aversive events), seemingly unrelated to each other or to energy balance. One theory that could unify these findings is that all these stimuli signal "stress" - defined either as a potentially harmful state, or an awareness of reward deficiency. If HON activity is conceptualized as a cumulative representation of stress, then many of the reported HONs outputs - including EEG arousal, sympathetic activation, place avoidance, and exploratory behaviours - could be viewed as logical stress-counteracting responses. We discuss evidence for and against this unifying theory of HON function, including the alterations in HON activity observed in anxiety and depression disorders. We propose that, in order to orchestrate stress-countering responses, HONs need to coactivate motivation and aversion brain systems, and the impact of HON stimulation on affective states may be perceived as rewarding or aversive depending on the baseline HON activity.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| |
Collapse
|
46
|
Gargiulo AT, Jasodanand V, Luz S, O'Mara L, Kubin L, Ross RJ, Bhatnagar S, Grafe LA. Sex differences in stress-induced sleep deficits. Stress 2021; 24:541-550. [PMID: 33525935 DOI: 10.1080/10253890.2021.1879788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sleep disruptions are hallmarks in the pathophysiology of several stress-related disorders, including Major Depressive Disorder (MDD) and Post-Traumatic Stress Disorder (PTSD), both known to disproportionately affect female populations. Although previous studies have attempted to investigate disordered sleep in women, few studies have explored and compared how repeated stress affects sleep in both sexes in either human or animal models. We have previously shown that male rats exhibit behavioral and neuroendocrine habituation to 5 days of repeated restraint, whereas females do not; additional days of stress exposure are required to observe habituation in females. This study examined sex differences in sleep measures prior to, during, and after repeated restraint stress in adult male and female rats. Our data reveal that repeated stress increased time spent awake and decreased slow-wave sleep (SWS) and REM sleep (REMS) in females, and these effects persisted over 2 days of recovery. In contrast, the effects of stress on males were transient. These insomnia-like symptoms were accompanied by a greater number of exaggerated motor responses to waking from REMS in females, a phenotype similar to trauma-related nightmares. In sum, these data demonstrate that repeated stress produces disruptions in sleep that persist days after the stress is terminated in female rats. These disruptions in sleep produced by 5 days of repeated restraint may be due to their lack of habituation.
Collapse
Affiliation(s)
| | | | - Sandra Luz
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren O'Mara
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Ross
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Behavioral Health Service, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Grafe
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA
| |
Collapse
|
47
|
Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2021; 530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orexin neurons play an important role in stress-related mental disorders including post-traumatic stress disorder (PTSD). Anxiety- and depression-related symptoms commonly occur in combination with PTSD. However, the role of the orexin system in mediating alterations in these affective symptoms remains unclear. The medial prefrontal cortex (mPFC) is implicated in both cognitive and emotional processing. In the present study, we investigated anxiety- and depression-related behavioral changes using the elevated plus maze, the sucrose preference test, and the open field test in male rats with single prolonged stress (SPS) induced-PTSD. The expression of orexin-A in the hypothalamus and orexin receptors (OX1R and OX2R) in the mPFC was detected and quantified by immunohistochemistry, western blotting, and real-time polymerase chain reaction. We found that the SPS rats exhibited enhanced levels of anxiety, reduced exploratory activities, and anhedonia. Furthermore, SPS resulted in reductions in the expression of orexin-A in the hypothalamus and the increased the expression of OX1R in the mPFC. The intracerebroventricular administration of orexin-A alleviated behavioral changes in SPS rats and partly restored the increased levels of OX1R in the mPFC. These results suggest that the orexin system plays a role in the anxiety- and depression-related symptoms observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China.,Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Gomes-de-Souza L, Costa-Ferreira W, Mendonça MM, Xavier CH, Crestani CC. Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats. Sci Rep 2021; 11:16133. [PMID: 34373508 PMCID: PMC8352993 DOI: 10.1038/s41598-021-95401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Michelle M Mendonça
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos H Xavier
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil.
- Laboratory of Pharmacology, Department of Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
49
|
Savitz A, Wajs E, Zhang Y, Xu H, Etropolski M, Thase ME, Drevets WC. Efficacy and Safety of Seltorexant as Adjunctive Therapy in Major Depressive Disorder: A Phase 2b, Randomized, Placebo-Controlled, Adaptive Dose-Finding Study. Int J Neuropsychopharmacol 2021; 24:965-976. [PMID: 34324636 PMCID: PMC8653874 DOI: 10.1093/ijnp/pyab050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Seltorexant, a selective antagonist of human orexin-2 receptors, demonstrated antidepressant effects in a previous exploratory study in patients with major depressive disorder (MDD). METHODS To replicate and extend this observation, a double-blind, adaptive dose-finding study was performed in patients with MDD who had an inadequate response to 1-3 selective serotonin/serotonin-norepinephrine reuptake inhibitors in the current episode. Patients were randomized (2:1:1) to placebo or seltorexant (20 mg or 40 mg) once-daily, administered adjunctively to the antidepressant the patient had been receiving at screening. After an interim analysis (6 weeks post-randomization of 160th patient), newly recruited patients randomly received (3:3:1) placebo or seltorexant 10 mg or 20 mg; the 40-mg dose was no longer assigned. Patients were stratified by baseline Insomnia Severity Index (ISI) scores (ISI ≥ 15 vs < 15). The primary endpoint was change from baseline Montgomery-Åsberg Depression Rating Scale (MADRS) total score at week 6. RESULTS Mixed-Model for Repeated Measures analysis showed a greater improvement in MADRS total score in the seltorexant 20-mg group vs placebo at weeks 3 and 6; least-square means difference (90% CI): -4.5 (-6.96; -2.07), P = .003; and -3.1 (-6.13; -0.16), P = .083, respectively. The improvement in MADRS score at week 6 for seltorexant 20 mg was greater in patients with baseline ISI ≥ 15 vs those with ISI < 15; least-square means difference (90% CI) vs placebo: -4.9 (-8.98; -0.80) and -0.7 (-5.16; 3.76), respectively. The most common (≥5%) adverse events with seltorexant were somnolence, headache, and nausea. CONCLUSIONS A clinically meaningful reduction of depressive symptoms was observed for seltorexant 20 mg. In the subset of patients with sleep disturbance (ISI ≥ 15), a larger treatment difference between seltorexant 20 mg and placebo was observed, warranting further investigation. No new safety signal was identified. REGISTRATION ClinicalTrials.gov Identifier: NCT03227224. PREVIOUS PRESENTATION Poster presented at 58th Annual Meeting of American College of Neuropsychopharmacology (ACNP), December 8-11, 2019, Orlando, FL.
Collapse
Affiliation(s)
- Adam Savitz
- Janssen Research & Development, LLC, Titusville, New Jersey, USA,Correspondence: Adam Savitz, MD, Janssen Research & Development, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ 08560 ()
| | - Ewa Wajs
- Janssen Research & Development, LLC, Beerse, Belgium
| | - Yun Zhang
- Janssen Research & Development, LLC, Fremont, California, USA
| | - Haiyan Xu
- Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Mila Etropolski
- Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Michael E Thase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA
| | - Wayne C Drevets
- Janssen Research & Development LLC, San Diego, California, USA
| |
Collapse
|
50
|
Soares VPMN, de Andrade TGCS, Canteras NS, Coimbra NC, Wotjak CT, Almada RC. Orexin 1 and 2 Receptors in the Prelimbic Cortex Modulate Threat Valuation. Neuroscience 2021; 468:158-167. [PMID: 34126185 DOI: 10.1016/j.neuroscience.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The ability to distinguish between threatening (repulsors), neutral and appetitive stimuli (attractors) stimuli is essential for survival. The orexinergic neurons of hypothalamus send projections to the limbic structures, such as different subregions of the medial prefrontal cortex (mPFC), suggesting that the orexinergic mechanism in the prelimbic cortex (PL) is involved in the processing of fear and anxiety. We investigated the role of orexin receptors type 1 (OX1R) and type 2 (OX2R) in the PL in such processes upon confrontation with an erratically moving robo-beetle in mice. The selective blockade of OX1R and OX2R in the PL with SB 334867 (3, 30, 300 nM) and TCS OX2 29 (3, 30, 300 nM), respectively, did not affect general exploratory behavior or reactive fear such as avoidance, jumping or freezing, but significantly enhances tolerance and approach behavior at the highest dose of each antagonist tested (300 nM). We interpret these findings as evidence for an altered cognitive appraisal of the potential threatening stimulus. Consequently, the orexin system seems to bias the perception of stimuli towards danger or threat via OX1R and OX2R in the PL.
Collapse
Affiliation(s)
- Victor P M N Soares
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Telma G C S de Andrade
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute of the University of São Paulo (ICB-USP), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael C Almada
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|