1
|
Schenone A, Massucco S, Schenone C, Venturi CB, Nozza P, Prada V, Pomili T, Di Patrizi I, Capodivento G, Nobbio L, Grandis M. Basic Pathological Mechanisms in Peripheral Nerve Diseases. Int J Mol Sci 2025; 26:3377. [PMID: 40244242 PMCID: PMC11989557 DOI: 10.3390/ijms26073377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies.
Collapse
Affiliation(s)
- Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Consuelo Barbara Venturi
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Paolo Nozza
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Valeria Prada
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149 Genoa, Italy;
| | - Tania Pomili
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Irene Di Patrizi
- IRCCS Ospedale Policlinico San Martino, UO Radiologia, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| |
Collapse
|
2
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Cook SR, Schwarz C, Guevar J, Assenmacher CA, Sheehy M, Fanzone N, Church ME, Murgiano L, Casal ML, Jagannathan V, Gutierrez-Quintana R, Lowrie M, Steffen F, Leeb T, Ekenstedt KJ. Canine RNF170 Single Base Deletion in a Naturally Occurring Model for Human Neuroaxonal Dystrophy. Mov Disord 2024; 39:2049-2057. [PMID: 39177409 DOI: 10.1002/mds.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Neuroaxonal dystrophy (NAD) is a group of inherited neurodegenerative disorders characterized primarily by the presence of spheroids (swollen axons) throughout the central nervous system. In humans, NAD is heterogeneous, both clinically and genetically. NAD has also been described to naturally occur in large animal models, such as dogs. A newly recognized disorder in Miniature American Shepherd dogs (MAS), consisting of a slowly progressive neurodegenerative syndrome, was diagnosed as NAD via histopathology. OBJECTIVES To describe the clinical and pathological phenotype together with the identification of the underlying genetic cause. METHODS Clinical and postmortem evaluations, together with a genome-wide association study and autozygosity mapping approach, followed by whole-genome sequencing. RESULTS Affected dogs were typically young adults and displayed an abnormal gait characterized by pelvic limb weakness and ataxia. The underlying genetic cause was identified as a 1-bp (base pair) deletion in RNF170 encoding ring finger protein 170, which perfectly segregates in an autosomal recessive pattern. This deletion is predicted to create a frameshift (XM_038559916.1:c.367delG) and early truncation of the RNF170 protein (XP_038415844.1:(p.Ala123Glnfs*11)). The age of this canine RNF170 variant was estimated at ~30 years, before the reproductive isolation of the MAS breed. CONCLUSIONS RNF170 variants were previously identified in human patients with autosomal recessive spastic paraplegia-85 (SPG85); this clinical phenotype shows similarities to the dogs described herein. We therefore propose that this novel MAS NAD could serve as an excellent large animal model for equivalent human diseases, particularly since affected dogs demonstrate a relatively long lifespan, which represents an opportunity for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shawna R Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Cleo Schwarz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julien Guevar
- AniCura Thun, Neurology Department, Burgerstrasse, Switzerland
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeve Sheehy
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Nathan Fanzone
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly E Church
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- Small Animal Hospital, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, UK
| | - Frank Steffen
- Neurology Service, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Anderson S, Cavaletti G, Hood LJ, Polydefkis M, Herrmann DN, Rance G, King B, McMichael AJ, Senna MM, Kim BS, Napatalung L, Wolk R, Zwillich SH, Schaefer G, Gong Y, Sisson M, Posner HB. A phase 2a study investigating the effects of ritlecitinib on brainstem auditory evoked potentials and intraepidermal nerve fiber histology in adults with alopecia areata. Pharmacol Res Perspect 2024; 12:e1204. [PMID: 38969959 PMCID: PMC11226387 DOI: 10.1002/prp2.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 07/07/2024] Open
Abstract
Reversible axonal swelling and brainstem auditory evoked potential (BAEP) changes were observed in standard chronic (9-month) toxicology studies in dogs treated with ritlecitinib, an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor, at exposures higher than the approved 50-mg human dose. To evaluate the clinical relevance of the dog toxicity finding, this phase 2a, double-blind study assessed BAEP changes and intraepidermal nerve fiber (IENF) histology in adults with alopecia areata treated with ritlecitinib. Patients were randomized to receive oral ritlecitinib 50 mg once daily (QD) with a 4-week loading dose of 200 mg QD or placebo for 9 months (placebo-controlled phase); they then entered the active-therapy extension and received ritlecitinib 50 mg QD (with a 4-week loading dose of 200 mg in patients switching from placebo). Among the 71 patients, no notable mean differences in change from baseline (CFB) in Waves I-V interwave latency (primary outcome) or Wave V amplitude on BAEP at a stimulus intensity of 80 dB nHL were observed in the ritlecitinib or placebo group at Month 9, with no notable differences in interwave latency or Wave V amplitude between groups. The CFB in mean or median IENF density and in percentage of IENFs with axonal swellings was minimal and similar between groups at Month 9. Ritlecitinib treatment was also not associated with an imbalanced incidence of neurological and audiological adverse events. These results provide evidence that the BAEP and axonal swelling finding in dogs are not clinically relevant in humans.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Linda J. Hood
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Polydefkis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Gary Rance
- Department of Audiology and Speech PathologyThe University of MelbourneCarltonVictoriaAustralia
| | - Brett King
- Department of DermatologyYale University School of MedicineNew HavenConnecticutUSA
| | - Amy J. McMichael
- Department of DermatologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maryanne M. Senna
- Department of DermatologyLahey Hospital and Medical CenterBurlingtonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian S. Kim
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lynne Napatalung
- Pfizer IncNew YorkNew YorkUSA
- Mount Sinai HospitalNew YorkNew YorkUSA
| | | | | | | | | | | | | |
Collapse
|
5
|
Tanaka M, Fujikawa R, Sekiguchi T, Hernandez J, Johnson OT, Tanaka D, Kumafuji K, Serikawa T, Hoang Trung H, Hattori K, Mashimo T, Kuwamura M, Gestwicki JE, Kuramoto T. A missense mutation in the Hspa8 gene encoding heat shock cognate protein 70 causes neuroaxonal dystrophy in rats. Front Neurosci 2024; 18:1263724. [PMID: 38384479 PMCID: PMC10880117 DOI: 10.3389/fnins.2024.1263724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by spheroid (swollen axon) formation in the nervous system. In the present study, we focused on a newly established autosomal recessive mutant strain of F344-kk/kk rats with hind limb gait abnormalities and ataxia from a young age. Histopathologically, a number of axonal spheroids were observed throughout the central nervous system, including the spinal cord (mainly in the dorsal cord), brain stem, and cerebellum in F344-kk/kk rats. Transmission electron microscopic observation of the spinal cord revealed accumulation of electron-dense bodies, degenerated abnormal mitochondria, as well as membranous or tubular structures in the axonal spheroids. Based on these neuropathological findings, F344-kk/kk rats were diagnosed with NAD. By a positional cloning approach, we identified a missense mutation (V95E) in the Hspa8 (heat shock protein family A (Hsp70) member 8) gene located on chromosome 8 of the F344-kk/kk rat genome. Furthermore, we developed the Hspa8 knock-in (KI) rats with the V95E mutation using the CRISPR-Cas system. Homozygous Hspa8-KI rats exhibited ataxia and axonal spheroids similar to those of F344-kk/kk rats. The V95E mutant HSC70 protein exhibited the significant but modest decrease in the maximum hydrolysis rate of ATPase when stimulated by co-chaperons DnaJB4 and BAG1 in vitro, which suggests the functional deficit in the V95E HSC70. Together, our findings provide the first evidence that the genetic alteration of the Hspa8 gene caused NAD in mammals.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Ryoko Fujikawa
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Takahiro Sekiguchi
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason Hernandez
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Oleta T. Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Daisuke Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenta Kumafuji
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hieu Hoang Trung
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
6
|
Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, Massaro G, Rahim AA. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep 2022; 12:13825. [PMID: 35970890 PMCID: PMC9378686 DOI: 10.1038/s41598-022-17338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.
Collapse
Affiliation(s)
- L Poupon-Bejuit
- UCL School of Pharmacy, University College London, London, UK
| | - M P Hughes
- UCL School of Pharmacy, University College London, London, UK
| | - W Liu
- UCL School of Pharmacy, University College London, London, UK
| | - A Geard
- UCL School of Pharmacy, University College London, London, UK
| | - N Faour-Slika
- UCL School of Pharmacy, University College London, London, UK
| | - S Whaler
- UCL School of Pharmacy, University College London, London, UK
| | - G Massaro
- UCL School of Pharmacy, University College London, London, UK.
| | - A A Rahim
- UCL School of Pharmacy, University College London, London, UK.
| |
Collapse
|
7
|
Zhang L, Fang Y, Zhao X, Zheng Y, Ma Y, Li S, Huang Z, Li L. BRUCE silencing leads to axonal dystrophy by repressing autophagosome-lysosome fusion in Alzheimer's disease. Transl Psychiatry 2021; 11:421. [PMID: 34354038 PMCID: PMC8342531 DOI: 10.1038/s41398-021-01427-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Axonal dystrophy is a swollen and tortuous neuronal process that contributes to synaptic alterations occurring in Alzheimer's disease (AD). Previous study identified that brain-derived neurotrophic factor (BDNF) binds to tropomyosin-related kinase B (TrkB) at the axon terminal and then the signal is propagated along the axon to the cell body and affects neuronal function through retrograde transport. Therefore, this study was designed to identify a microRNA (miRNA) that alters related components of the transport machinery to affect BDNF retrograde signaling deficits in AD. Hippocampus tissues were isolated from APP/PS1 transgenic (AD-model) mice and C57BL/6J wild-type mice and subject to nicotinamide adenine dinucleotide phosphate and immunohistochemical staining. Autophagosome-lysosome fusion and nuclear translocation of BDNF was detected using immunofluorescence in HT22 cells. The interaction among miR-204, BIR repeat containing ubiquitin-conjugating enzyme (BRUCE) and Syntaxin 17 (STX17) was investigated using dual luciferase reporter gene assay and co-immunoprecipitation assay. The expression of relevant genes and proteins were determined by RT-qPCR and Western blot analysis. Knockdown of STX17 or BRUCE inhibited autophagosome-lysosome fusion and impacted axon growth in HT22 cells. STX17 immunoprecipitating with BRUCE and co-localization of them demonstrated BRUCE interacted with STX17. BRUCE was the target of miR-204, and partial loss of miR-204 by inhibitor promoted autophagosome-lysosome fusion to prevent axon dystrophy and accumulated BDNF nuclear translocation to rescue BDNF/TrkB signaling deficits in HT22 cells. The overall results demonstrated that inhibition of miR-204 prevents axonal dystrophy by blocking BRUCE interaction with STX17, which unraveled potential novel therapeutic targets for delaying AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Yu Fang
- grid.412633.1ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Xinyu Zhao
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Yake Zheng
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Yunqing Ma
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Shuang Li
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Zhi Huang
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| | - Lihao Li
- grid.412633.1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P.R. China
| |
Collapse
|
8
|
Tamim-Yecheskel BC, Fraiberg M, Kokabi K, Freud S, Shatz O, Marvaldi L, Subic N, Brenner O, Tsoory M, Eilam-Altstadter R, Biton I, Savidor A, Dezorella N, Heimer G, Behrends C, Ben-Zeev B, Elazar Z. A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation. Autophagy 2020; 17:3082-3095. [PMID: 33218264 DOI: 10.1080/15548627.2020.1852724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the coding sequence of human TECPR2 were recently linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder involving intellectual disability, autonomic-sensory neuropathy, chronic respiratory disease and decreased pain sensitivity. Here, we report the generation of a novel CRISPR-Cas9 tecpr2 knockout (tecpr2-/-) mouse that exhibits behavioral pathologies observed in SPG49 patients. tecpr2-/- mice develop neurodegenerative patterns in an age-dependent manner, manifested predominantly as neuroaxonal dystrophy in the gracile (GrN) and cuneate nuclei (CuN) of the medulla oblongata in the brainstem and dorsal white matter column of the spinal cord. Age-dependent correlation with accumulation of autophagosomes suggests compromised targeting to lysosome. Taken together, our findings establish the tecpr2 knockout mouse as a potential model for SPG49 and ascribe a new role to TECPR2 in macroautophagy/autophagy-related neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Milana Fraiberg
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Kamilya Kokabi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Saskia Freud
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shatz
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Letizia Marvaldi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Nemanja Subic
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Veterinary Recourses, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Veterinary Recourses, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Inbal Biton
- Veterinary Recourses, The Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, The Weizmann Institute of Science, Rehovot, Israel
| | - Gali Heimer
- Department of Pediatric Neurology Unit, Edmond and Lilly Safra Children Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christian Behrends
- Munich Cluster for Systems Neurology (Synergy), Ludwig-Maximilians-Universität München, München, Germany
| | - Bruria Ben-Zeev
- Department of Pediatric Neurology Unit, Edmond and Lilly Safra Children Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Raj K, Giger U. Initial survey of PLA2G6 missense variant causing neuroaxonal dystrophy in Papillon dogs in North America and Europe. Canine Med Genet 2020; 7:17. [PMID: 33292730 PMCID: PMC7706237 DOI: 10.1186/s40575-020-00098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND An autosomal recessive, rapidly progressive degenerative neuropathy known as infantile neuroaxonal dystrophy (NAD) was originally reported in Papillion puppies in 1995. In 2015, a causative missense variant in the PLA2G6 gene was identified in three affected puppies. Archived samples from Papillons clinically diagnosed with NAD prior to 2015 as well as samples obtained from 660 Papillons from North America and Europe between 2015 and 2017 were screened for the presence of this PLA2G6 gene variant (XM_022424454.1:c.1579G > A) using a TaqMan assay. RESULTS Archived samples from affected puppies diagnosed prior to 2015 and three more recently acquired samples from Papillons clinically affected with NAD were all homozygous for the variant. SIFT analysis predicts that the PLA2G6 missense substitution (XP_022280162.1:p.Ala527Thr) will not be tolerated in the iPLA2β protein. Notably, 17.5% of the 660 tested Papillons were heterozygotes, resulting in a variant allele frequency of 0.092 in this initial survey. Since then, screening for NAD in Papillons by at least 10 other laboratories and data from the Health Committee of Papillon Club of America gathered between 2017 and 2019 reveal a variant allele frequency of 0.047. CONCLUSIONS This survey and data from other laboratories documents the widespread presence of the PLA2G6 variant in the Papillon population in North America and Europe. Despite the apparent declining prevalence of the PLA2G6 variant, screening of Papillons intended for breeding is still recommended to avoid inadvertent production of puppies with infantile NAD.
Collapse
Affiliation(s)
- Karthik Raj
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Urs Giger
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA.
| |
Collapse
|