1
|
Sezer I, Sacchet MD. Advanced and long-term meditation and the autonomic nervous system: A review and synthesis. Neurosci Biobehav Rev 2025; 173:106141. [PMID: 40204160 DOI: 10.1016/j.neubiorev.2025.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Meditation has become prominent in both clinical and non-clinical applications for its effects on psychological and physical well-being. Long-term meditators, who have dedicated extensive time to their practice, present a unique opportunity to explore the effects of prolonged meditation training on the autonomic nervous system. Research has reported concomitant activation of both sympathetic (aroused) and parasympathetic (relaxed) branches of the autonomic nervous system during some forms of meditation, leading to the term 'relaxed alertness.' However, findings are not consistent, with reports of both sympathetic and parasympathetic activation, sympathetic-only, parasympathetic-only, or temporally variable activations, depending on several factors. This review synthesizes these heterogeneous and seemingly inconsistent results in relation to three explanatory factors: (1) specific classification of style or type of meditation; (2) specific definition of the level of expertise of the meditators; and (3) intra-individual variations within a given meditation practice. When these factors are considered, convergent and meaningful patterns emerge, allowing for a shift from the broad notion of 'long-term' meditation to a more precise characterization of 'advanced' meditation, highlighting skills, states, and stages of mastery developed over time. Our synthesis is particularly useful for understanding both long-term and advanced meditation, as it reveals specific heart rate variability patterns, including very low and low-frequency spectral power peaks, along with cardiac and respiratory coupling. Better characterization of the role of the autonomic nervous system in the context of advanced meditation promises to inform improved meditation training, including training assisted by technology, toward more impactful outcomes.
Collapse
Affiliation(s)
- Idil Sezer
- FrontLab, INSERM U1127, Paris Brain Institute, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Harting C, Hehemann L, Stetza L, Kayser C. Respiration shapes response speed and accuracy with a systematic time lag. Proc Biol Sci 2025; 292:20242566. [PMID: 40199358 PMCID: PMC11978463 DOI: 10.1098/rspb.2024.2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
Sensory-cognitive functions are intertwined with physiological processes such as the heart beat or respiration. For example, we tend to align our respiratory cycle to expected events or actions. This happens during sports but also in computer-based tasks and systematically structures respiratory phase around relevant events. However, studies also show that trial-by-trial variations in respiratory phase shape brain activity and the speed or accuracy of individual responses. We show that both phenomena-the alignment of respiration to expected events and the explanatory power of the respiratory phase on behaviour-co-exist. In fact, both the average respiratory phase of an individual relative to the experimental trials and trial-to-trial variations in respiratory phase hold significant predictive power on behavioural performance, in particular for reaction times. This co-modulation of respiration and behaviour emerges regardless of whether an individual generally breathes faster or slower and is strongest for the respiratory phase about 2 s prior to participant's responses. The persistence of these effects across 12 datasets with 277 participants performing sensory-cognitive tasks confirms the robustness of these results, and suggests a profound and time-lagged influence of structured respiration on sensory-motor responses.
Collapse
Affiliation(s)
| | - Lena Hehemann
- Biology, Bielefeld University, Bielefeld33615, Germany
| | - Lisa Stetza
- Biology, Bielefeld University, Bielefeld33615, Germany
| | | |
Collapse
|
3
|
Ahmadian M, Erskine E, Wainman L, Wearing OH, Duffy JS, Stewart LC, Hoiland RL, Taki A, Perim RR, Mitchell GS, Little JP, Mueller PJ, Foster GE, West CR. Acute intermittent hypoxia elicits sympathetic neuroplasticity independent of peripheral chemoreflex activation and spinal cord tissue hypoxia in a rodent model of high-thoracic spinal cord injury. Exp Neurol 2025; 384:115054. [PMID: 39547501 DOI: 10.1016/j.expneurol.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The loss of medullary control of spinal circuits controlling the heart and blood vessels is a unifying mechanism linking both hemodynamic instability and the risk for cardiovascular diseases (CVD) following spinal cord injury (SCI). As such, new avenues to regulate sympathetic activity are essential to mitigate CVD in this population. Acute intermittent hypoxia (AIH) induces a type of neuroplasticity known as long-term facilitation (LTF), a persistent increase in nerve activity post-AIH in spinal motor circuits. Whether LTF occurs within the sympathetic circuit following SCI is largely unknown. We aimed to test whether AIH elicits sympathetic LTF (i.e., sLTF) and attenuates hypoactivity in sub-lesional splanchnic sympathetic circuits in a male rat model of SCI. In 3 experimental series, we tested whether 1) high-thoracic contusion SCI induces hypoactivity in splanchnic sympathetic nerve activity, 2) AIH elicits sLTF following SCI, and 3) sLTF requires carotid chemoreflex activation or spinal cord tissue hypoxia. Our results indicate that a single-session of AIH therapy (10 × 1 min of FiO2 = 0.1, interspersed with 2 min of FiO2 = 1.0) delivered at 2 weeks following SCI attenuates SCI-induced sympathetic hypoactivity by eliciting sLTF 90 min post-treatment that is independent of peripheral chemoreflex activation and/or spinal cord hypoxia. These findings advance our mechanistic understanding of AIH in the field and yield new insights into factors underpinning AIH-induced sLTF following SCI in a rat model. Our findings also set the stage for the chronic application of AIH to alleviate secondary complications resulting from sympathetic hypoactivity following SCI.
Collapse
Affiliation(s)
- Mehdi Ahmadian
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Erskine
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Liisa Wainman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Oliver H Wearing
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Duffy
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Liam C Stewart
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan L Hoiland
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alissa Taki
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Raphael R Perim
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Patrick J Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Heng W, Yin S, Chen Y, Gao W. Exhaled Breath Analysis: From Laboratory Test to Wearable Sensing. IEEE Rev Biomed Eng 2025; 18:50-73. [PMID: 39412981 PMCID: PMC11875904 DOI: 10.1109/rbme.2024.3481360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
Collapse
|
5
|
Dong J, Willner I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc 2025; 147:2216-2227. [PMID: 39740143 PMCID: PMC11744759 DOI: 10.1021/jacs.4c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis. A second system introduces photochemical triggering of a reaction circuit consisting of two coupled transcription machineries, leading to the temporally oscillatory formation and depletion of an intermediate reaction product. The concept is applied to develop a photochemically triggered transcription circuit that, in the presence of RNase H, leads to the oscillatory generation of an intermediate anti-thrombin aptamer-modified product. The oscillating aptamer-modified product induces the rhythmic inhibition of thrombin, accompanied by the cyclic activation and deactivation of the fibrinogenesis process. The operation of the transient and oscillatory-modulated transcription machinery reaction circuits is accompanied by computational kinetic models, allowing to predict the dynamic behaviors of the system under different auxiliary conditions. The phototriggered transient transcription machinery and oscillatory circuit-guided fibrinogenesis is examined under physiological-like conditions and within a human plasma environment.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Romanchuk O. Peculiarities of cardio-respiratory relationships in qualified athletes with different types of heart rhythm regulation according to respiratory maneuver data. Front Sports Act Living 2025; 6:1451643. [PMID: 39872494 PMCID: PMC11769980 DOI: 10.3389/fspor.2024.1451643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Our goal was to determine the differences in changes in cardiovascular and cardiorespiratory interaction indicators during a respiratory maneuver with a change in breathing rate in athletes with different types of heart rate regulation. METHODS The results of a study of 183 healthy men aged 21.2 ± 2.3 years, who were systematically involved in various sports, were analyzed. According to the results of the analysis of the HRV study during spontaneous breathing, the athletes were divided into 4 groups taking into account the type of heart rate regulation (HRR). Group 1 (with type I) consisted of 53 people, group 2 (with type II)-29 people, group 3 (with type III)-85 people, group 4 (with type IV)-16 people. The methodology for studying the cardiorespiratory system included combined measurements of the respiratory and cardiovascular system activity indicators in a sitting position using a spiroarteriocardiorhythmograph. The duration of the study was 6 min. RESULTS According to changes in cardiorespiratory and cardiovascular interaction indicators during controlled breathing with a frequency of 6 and 15 per minute (CR6 and CR15), it is shown that with a pronounced predominance of parasympathetic influences (type IV) in conditions of excessive cardiorespiratory control and moderate hyperventilation, differences in changes in arterial baroreflex sensitivity (δBRLF and δBRHF) are noted in comparison with other HRR. Athletes with type IV at CR6 in δBRLF significantly differ from athletes with type III (p = 0.026) and do not differ from athletes with type II (p = 0.141). In δBRHF significantly (p = 0.038 and p = 0.043)-from athletes with types I and II. It is shown that with the predominance of sympathetic influences (types I and II), the reactivity of BRS (δBRLF and δBRHF) in response to moderate hyperventilation (CR15) is significantly lower. Changes in the Hildebrandt index and the volume synchronization index additionally differentiate HRR associated with a moderate and pronounced predominance of sympathetic and parasympathetic influences. CONCLUSION The use of a respiratory maneuver in a combined study of the cardiorespiratory system in the conditions of current control of athletes showed informativeness in the differentiation of HRR types and states of functional overstrain.
Collapse
Affiliation(s)
- Oleksandr Romanchuk
- Department of Internal and Family Medicine, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
- Department of Therapy and Rehabilitation, Ivan Boberskij Ivan Bobersky Lviv State University of Physical Culture, Lviv, Ukraine
| |
Collapse
|
7
|
Schumann A, Lukas F, Rieger K, Gupta Y, Bär KJ. One-week test-retest recordings of resting cardiorespiratory data for reliability analysis. Sci Data 2025; 12:12. [PMID: 39754019 PMCID: PMC11698850 DOI: 10.1038/s41597-024-04303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Heart rate variability (HRV) is a key indicator of cardiac autonomic function, making reliable assessment crucial. To examine the test-retest stability of resting HRV in healthy individuals, fifty participants attended two lab sessions within a week, at the same time of day. After a 5-minute acclimatization period, electrocardiogram and respiration were recorded at rest. For validation, average heart rate and RMSSD were assessed over 15 minutes using a validated open-source toolbox. Test-retest agreement was evaluated using intra-class correlation (ICC), and coefficients of variation (CV). Mean heart rate showed high stability (ICC = 0.81, CV = 6%), while RMSSD had lower concordance (ICC = 0.75) and greater variation (CV = 30%). These findings indicate good test-retest agreement for standard HRV features. However, a wide range of methodologies exists for assessing various properties of heart rate dynamics. This database is intended to support other researchers in testing additional HRV metrics to evaluate their reliability in healthy individuals.
Collapse
Affiliation(s)
- Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Franziska Lukas
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yubraj Gupta
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Rosoł M, Gąsior JS, Korzeniewski K, Łaba J, Makuch R, Werner B, Młyńczak M. Machine Learning Classification of Pediatric Health Status Based on Cardiorespiratory Signals with Causal and Information Domain Features Applied-An Exploratory Study. J Clin Med 2024; 13:7353. [PMID: 39685811 DOI: 10.3390/jcm13237353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This study aimed to evaluate the accuracy of machine learning (ML) techniques in classifying pediatric individuals-cardiological patients, healthy participants, and athletes-based on cardiorespiratory features from short-term static measurements. It also examined the impact of cardiorespiratory coupling (CRC)-related features (from causal and information domains) on the modeling accuracy to identify a preferred cardiorespiratory feature set that could be further explored for specialized tasks, such as monitoring training progress or diagnosing health conditions. Methods: We utilized six self-prepared datasets that comprised various subsets of cardiorespiratory parameters and applied several ML algorithms to classify subjects into three distinct groups. This research also leveraged explainable artificial intelligence (XAI) techniques to interpret model decisions and investigate feature importance. Results: The highest accuracy, over 89%, was obtained using the dataset that included most important demographic, cardiac, respiratory, and interrelated (causal and information) domain features. The dataset that comprised the most influential features but without demographic data yielded the second best accuracy, equal to 85%. Incorporation of the causal and information domain features significantly improved the classification accuracy. The use of XAI tools further highlighted the importance of these features with respect to each individual group. Conclusions: The integration of ML algorithms with a broad spectrum of cardiorespiratory features provided satisfactory efficiency in classifying pediatric individuals into groups according to their actual health status. This study underscored the potential of ML and XAI in advancing the analysis of cardiorespiratory signals and emphasized the importance of CRC-related features. The established set of features that appeared optimal for the classification of pediatric patients should be further explored for their potential in assessing individual progress through training or rehabilitation.
Collapse
Affiliation(s)
- Maciej Rosoł
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland
| | - Jakub S Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kacper Korzeniewski
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland
| | - Jonasz Łaba
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland
| | - Robert Makuch
- Department of Physical Education, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marcel Młyńczak
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland
| |
Collapse
|
9
|
Cairo B, Bari V, Gelpi F, De Maria B, Barbic F, Furlan R, Porta A. Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome. CHAOS (WOODBURY, N.Y.) 2024; 34:122102. [PMID: 39661969 DOI: 10.1063/5.0237304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.
Collapse
Affiliation(s)
- Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, 20089 Milan, Italy
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, 20089 Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
10
|
Toor RUAS, Burke PGR, Dempsey B, Sun QJ, Hildreth CM, Phillips JK, McMullan S. Role of the Kölliker-Fuse/parabrachial complex in the generation of postinspiratory vagal and sympathetic nerve activities and their recruitment by hypoxemic stimuli in the rat. J Neurophysiol 2024; 132:1496-1506. [PMID: 39356076 DOI: 10.1152/jn.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
In the rat, the activity of laryngeal adductor muscles, the crural diaphragm, and sympathetic vasomotor neurons is entrained to the postinspiratory (post-I) phase of the respiratory cycle, a mechanism thought to enhance cardiorespiratory efficiency. The identity of the central neurons responsible for transmitting respiratory activity to these outputs remains unresolved. Here we explore the contribution of the Kölliker-Fuse/parabrachial nuclei (KF-PBN) in the generation of post-I activity in vagal and sympathetic outputs under steady-state conditions and during acute hypoxemia, a condition that potently recruits post-I activity. In artificially ventilated, vagotomized, and urethane-anesthetized rats, bilateral KF-PBN inhibition by microinjection of the GABAA receptor agonist isoguvacine evoked stereotypical responses on respiratory pattern, characterized by a reduction in phrenic nerve burst amplitude, a modest lengthening of inspiratory time, and an increase in breath-to-breath variability, while post-I vagal nerve activity was abolished and post-I sympathetic nerve activity diminished. During acute hypoxemia, KF-PBN inhibition attenuated tachypneic responses and completely abolished post-I vagal activity while preserving respiratory-sympathetic coupling. Furthermore, KF-PBN inhibition disrupted the decline in respiratory frequency that normally follows resumption of oxygenation. These findings suggest that the KF-PBN is a critical hub for the distribution of post-I activities to vagal and sympathetic outputs and is an important contributor to the dynamic adjustments to respiratory patterns that occur in response to acute hypoxia. Although KF-PBN appears essential for post-I vagal activity, it only partially contributes to post-I sympathetic nerve activity, suggesting the contribution of multiple neural pathways to respiratory-sympathetic coupling.NEW & NOTEWORTHY Inhibition of neurons in the pontine Kölliker-Fuse/parabrachial complex (KF-PBN) differentially inhibited postinspiratory (post-I) activity in vagal and sympathetic outputs. The strong recruitment of post-I vagal activity that occurs in response to hypoxemia is selectively abolished by KF-PBN inhibition. This suggests that 1) post-I activity in vagal and sympathetic outputs may be generated by partially independent mechanisms and 2) neurons in the KF-PBN are a preeminent source of drive for the generation of eupneic post-I activity.
Collapse
Affiliation(s)
- Rahat Ul Ain Summan Toor
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Qi-Jian Sun
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Jacqueline K Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| |
Collapse
|
11
|
Nagai M, Ewbank H, Po SS, Dasari TW. Cardio-respiratory coupling and myocardial recovery in heart failure with reduced ejection fraction. Respir Physiol Neurobiol 2024; 328:104313. [PMID: 39122159 DOI: 10.1016/j.resp.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION The interaction between the cardiovascular and respiratory systems in healthy subjects is determined by the autonomic nervous system and reflected in respiratory sinus arrhythmia. Recently, another pattern of cardio-respiratory coupling (CRC) has been proposed linking synchronization of heart and respiratory system. However, CRC has not been studied precisely in heart failure (HF) with reduced ejection fraction (EF) (HFrEF) according to the myocardial recovery. METHODS 10-min resting electrocardiography measurements were performed in persistent HFrEF patients (n=40) who had a subsequent left ventricular EF (LVEF) of ≤ 40 %, HF with recovered EF patients (HFrecEF) (n=41) who had a subsequent LVEF of > 40 % and healthy controls (n=40). Respiratory frequency, respiratory rate, CRC index, time-domain, frequency-domain and nonlinear heart rate variability indices were obtained using standardized software-Kubios™. CRC index was defined as respiratory high-frequency peak minus heart rate variability high-frequency peak. RESULTS Respiratory rate was positively correlated with high-frequency (HF) peak (Hz) in both persistent HFrEF group (p<0.001) and HFrecEF group (p<0.001), while respiratory rate was negatively correlated with HF power (ms2) in the healthy controls (p<0.05). CRC index was lowest in the persistent HFrEF group followed by HFrecEF and was high in healthy controls (0.008 vs 0.012 vs 0.056 Hz, p=0.03). CONCLUSION CRC index was lowest in patients with impaired myocardial recovery, which indicates that cardio-respiratory synchrony is stronger in persistent HFrEF. This may represent a higher HF peak (Hz)/lower HF power (ms2) and abnormal sympathovagal balance in persistent HFrEF group compared to healthy controls. Further work is underway to tests this hypothesis and determine the utility of CRC index in HF phenotypes and its utility as a potential biomarker of response with neuromodulation.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| | - Hallum Ewbank
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Sunny S Po
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| |
Collapse
|
12
|
Fava de Lima F, Siqueira de Nóbrega R, Cesare Biselli PJ, Takachi Moriya H. Central venous pressure waveform analysis during sleep/rest: a novel approach to enhance intensive care unit post-extubation monitoring of extubation failure. J Clin Monit Comput 2024; 38:961-979. [PMID: 38954170 DOI: 10.1007/s10877-024-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
This pilot study aimed to investigate the relation between cardio-respiratory parameters derived from Central Venous Pressure (CVP) waveform and Extubation Failure (EF) in mechanically ventilated ICU patients during post-extubation period. This study also proposes a new methodology for analysing these parameters during rest/sleep periods to try to improve the identification of EF. We conducted a prospective observational study, computing CVP-derived parameters including breathing effort, spectral analyses, and entropy in twenty critically ill patients post-extubation. The Dynamic Warping Index (DWi) was calculated from the respiratory component extracted from the CVP signal to identify rest/sleep states. The obtained parameters from EF patients and patients without EF were compared both during arbitrary periods and during reduced DWi (rest/sleep). We have analysed data from twenty patients of which nine experienced EF. Our findings may suggest significantly increased respiratory effort in EF patients compared to those successfully extubated. Our study also suggests the occurrence of significant change in the frequency dispersion of the cardiac signal component. We also identified a possible improvement in the differentiation between the two groups of patients when assessed during rest/sleep states. Although with caveats regarding the sample size, the results of this pilot study may suggest that CVP-derived cardio-respiratory parameters are valuable for monitoring respiratory failure during post-extubation, which could aid in managing non-invasive interventions and possibly reduce the incidence of EF. Our findings also indicate the possible importance of considering sleep/rest state when assessing cardio-respiratory parameters, which could enhance respiratory failure detection/monitoring.
Collapse
Affiliation(s)
- Felipe Fava de Lima
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo (USP), São Paulo, Brazil.
| | | | | | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
13
|
Huff A, Oliveira LM, Karlen-Amarante M, Ebiala F, Ramirez JM, Kalume F. Ndufs4 inactivation in glutamatergic neurons reveals swallow-breathing discoordination in a mouse model of Leigh Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612506. [PMID: 39314482 PMCID: PMC11419062 DOI: 10.1101/2024.09.11.612506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration. We used a genetic mouse model of LS in which the NDUFS4 gene is knocked out (KO) specifically in Vglut2 or Gad2 neurons. We found increased variability of the swallow motor pattern, disruption in breathing regeneration post swallow, and water-induced apneas only in Vglut2 KO mice. These physiological changes likely contribute to weight loss and premature death seen in this mouse model. Following chronic hypoxia (CH) exposure, swallow motor pattern, breathing regeneration, weight, and life expectancy were not changed in the Vglut2-Ndufs4-KO CH mice compared to control, indicating a rescue of phenotypes. These findings show that like patients with LS, Ndufs4 mouse models of LS exhibit swallow impairments as well as swallow-breathing dyscoordination alongside the other phenotypic traits described in previous studies. Understanding this aspect of LS will open roads for the development of future more efficacious therapeutic intervention for this illness.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Favour Ebiala
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
14
|
Stoupi NA, Weijs ML, Imbach L, Lenggenhager B. Heartbeat-evoked potentials following voluntary hyperventilation in epilepsy patients: respiratory influences on cardiac interoception. Front Neurosci 2024; 18:1391437. [PMID: 39035777 PMCID: PMC11259972 DOI: 10.3389/fnins.2024.1391437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Current evidence indicates a modulating role of respiratory processes in cardiac interoception, yet whether altered breathing patterns influence heartbeat-evoked potentials (HEP) remains inconclusive. Methods Here, we examined the effects of voluntary hyperventilation (VH) as part of a clinical routine examination on scalp-recorded HEPs in epilepsy patients (N = 80). Results Using cluster-based permutation analyses, HEP amplitudes were compared across pre-VH and post-VH conditions within young and elderly subgroups, as well as for the total sample. No differences in the HEP were detected for younger participants or across the full sample, while an increased late HEP during pre-VH compared to post-VH was fond in the senior group, denoting decreased cardiac interoceptive processing after hyperventilation. Discussion The present study, thus, provides initial evidence of breathing-related HEP modulations in elderly epilepsy patients, emphasizing the potential of HEP as an interoceptive neural marker that could partially extend to the representation of pulmonary signaling. We speculate that aberrant CO2-chemosensing, coupled with disturbances in autonomic regulation, might constitute the underlying pathophysiological mechanism behind the obtained effect. Available databases involving patient records of routine VH assessment may constitute a valuable asset in disentangling the interplay of cardiac and ventilatory interoceptive information in various patient groups, providing thorough clinical data to parse, as well as increased statistical power and estimates of effects with higher precision through large-scale studies.
Collapse
Affiliation(s)
- Niovi A Stoupi
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Marieke L Weijs
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Lukas Imbach
- Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zürich, Switzerland
| | | |
Collapse
|
15
|
Santhana Gopalan PR, Xu W, Waselius T, Wikgren J, Penttonen M, Nokia MS. Cardiorespiratory rhythm-contingent trace eyeblink conditioning in elderly adults. J Neurophysiol 2024; 131:797-806. [PMID: 38533969 DOI: 10.1152/jn.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.
Collapse
Affiliation(s)
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Jan Wikgren
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
16
|
Krnić J, Madirazza K, Pecotić R, Benzon B, Carev M, Đogaš Z. The Effects of Volatile Anesthetics on Renal Sympathetic and Phrenic Nerve Activity during Acute Intermittent Hypoxia in Rats. Biomedicines 2024; 12:910. [PMID: 38672264 PMCID: PMC11048470 DOI: 10.3390/biomedicines12040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Coordinated activation of sympathetic and respiratory nervous systems is crucial in responses to noxious stimuli such as intermittent hypoxia. Acute intermittent hypoxia (AIH) is a valuable model for studying obstructive sleep apnea (OSA) pathophysiology, and stimulation of breathing during AIH is known to elicit long-term changes in respiratory and sympathetic functions. The aim of this study was to record the renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA) during the AIH protocol in rats exposed to monoanesthesia with sevoflurane or isoflurane. Adult male Sprague-Dawley rats (n = 24; weight: 280-360 g) were selected and randomly divided into three groups: two experimental groups (sevoflurane group, n = 6; isoflurane group, n = 6) and a control group (urethane group, n = 12). The AIH protocol was identical in all studied groups and consisted in delivering five 3 min-long hypoxic episodes (fraction of inspired oxygen, FiO2 = 0.09), separated by 3 min recovery intervals at FiO2 = 0.5. Volatile anesthetics, isoflurane and sevoflurane, blunted the RSNA response to AIH in comparison to urethane anesthesia. Additionally, the PNA response to acute intermittent hypoxia was preserved, indicating that the respiratory system might be more robust than the sympathetic system response during exposure to acute intermittent hypoxia.
Collapse
Affiliation(s)
- Josip Krnić
- Department of Emergency Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Katarina Madirazza
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Renata Pecotić
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Mladen Carev
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Zoran Đogaš
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
17
|
Mahmoud A, Tarhuni M, Beilani T, Ismail-Sayed I, Pelidis M. Atrial Myxoma in a Patient With Chronic Obstructive Pulmonary Disease (COPD): Unmasking Overlapping Symptomatology. Cureus 2024; 16:e55974. [PMID: 38601400 PMCID: PMC11006435 DOI: 10.7759/cureus.55974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
Atrial myxoma, though the most common primary cardiac tumor, often presents with nonspecific symptoms that can obscure its diagnosis. This case report details an unusual presentation of dyspnea on exertion (DOE) in a patient initially considered to have chronic obstructive pulmonary disease (COPD), a common pulmonary etiology of DOE. The diagnostic journey underscores the critical importance of considering atrial myxoma in patients with DOE, especially when symptoms are not fully explained by apparent pulmonary conditions. Our findings highlight the necessity of a comprehensive diagnostic approach, including the early use of resting transthoracic echocardiogram, to unveil less common causes like atrial myxoma. This case reinforces the pivotal role of considering alternative diagnoses in complex presentations of DOE, thereby guiding more accurate and tailored patient management.
Collapse
Affiliation(s)
- Anas Mahmoud
- Internal Medicine, St. Joseph's University Medical Center, Paterson, USA
| | - Mawada Tarhuni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tala Beilani
- Oncology, Kansas City University, Kansas City, USA
| | | | - Michael Pelidis
- Internal Medicine, St. Joseph's University Medical Center, Paterson, USA
| |
Collapse
|
18
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
19
|
Abreu RMD, Cairo B, Rehder-Santos P, da Silva CD, Signini ÉDF, Milan-Mattos JC, Sakaguchi CA, Catai AM, Porta A. Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study. Respir Physiol Neurobiol 2024; 320:104198. [PMID: 37956746 DOI: 10.1016/j.resp.2023.104198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To determine the association between exercise capacity based on peak oxygen uptake (VO2peak) and resting cardiorespiratory coupling (CRC) levels in athletes and non-athletes' subjects. METHODS A cross-sectional study was carried out in 42 apparently healthy male subjects, aged between 20 and 40 years old. The participants were allocated into athletes (n = 21) and non-athletes (n = 21) groups. Resting electrocardiogram and respiratory movement (RESP) were simultaneously acquired during 15 min in supine position and quiet breathing. The beat-to-beat heart period (HP) and RESP series were determined from the recorded signals. Traditional analysis of HP based on frequency domain indexes was performed considering the high-frequency (0.15 - 0.45 Hz) components. To compute the CRC, the linear association between HP and RESP series was determined via squared coherence function and directionality of interaction was investigated through the causal extension of this approach. The exercise capacity was assessed through incremental cardiopulmonary exercise testing in order to determine the VO2peak. RESULTS Traditional analysis of HP based on high-frequency index was not correlated with exercise capacity in the athletes (r = -0.1, p = 0.5) and non-athletes (r = -0.1, p = 0.3) cohorts. However, resting CRC values was associated with exercise capacity in athletes (r = 0.4, p = 0.03), but not in the non-athletes group (r = -0.2, p = 0.3). CONCLUSION These results suggest that improved resting values of CRC is associated with higher exercise capacity (VO2peak) in endurance athletes. Moreover, frequency domain of HP was not sensitive to identifying this relationship, probably because effects of training on parasympathetic modulation might be affected by respiratory dynamics, and this influence has a directionality (i.e., from RESP to HP).
Collapse
Affiliation(s)
- Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg; Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil.
| | - Beatrice Cairo
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy
| | - Patricia Rehder-Santos
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | | | - Étore De Favari Signini
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | | | - Camila Akemi Sakaguchi
- Appalachian State University, Department of Health, Leisure, and Exercise Science, NC, United States
| | - Aparecida Maria Catai
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | - Alberto Porta
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy; IRCCS Policlinico San Donato, Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, San Donato Milanese, Milan, Italy
| |
Collapse
|
20
|
de Abreu RM, Neves VR, Cairo B. Editorial: Measurements of cardiorespiratory coupling applied to sports and rehabilitation medicine: insights, implications and perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1370452. [PMID: 38328350 PMCID: PMC10847565 DOI: 10.3389/fnetp.2024.1370452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Raphael Martins de Abreu
- Department of Physiotherapy, LUNEX University, International University of Health, Exercise and Sports, Differdange, Luxembourg
- LUNEX ASBL Luxembourg Health and Sport Sciences Research Institute, Differdange, Luxembourg
| | - Victor Ribeiro Neves
- Department of Physiotherapy, University of Pernambuco (UPE), Petrolina, PE, Brazil
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Hietakoste S, Armanac-Julian P, Karhu T, Bailon R, Sillanmaki S, Toyras J, Leppanen T, Myllymaa S, Kainulainen S. Acute Cardiorespiratory Coupling Impairment in Worsening Sleep Apnea-Related Intermittent Hypoxemia. IEEE Trans Biomed Eng 2024; 71:326-333. [PMID: 37523277 DOI: 10.1109/tbme.2023.3300079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
OBJECTIVE Hypoxic load is one of the main characteristics of obstructive sleep apnea (OSA) contributing to sympathetic overdrive and weakened cardiorespiratory coupling (CRC). Whether this association changes with increasing hypoxic load has remained obscure. Therefore, we aimed to study our hypothesis that increasing hypoxic load acutely decreases the CRC. METHODS We retrospectively analyzed the electrocardiography and nasal pressure signals in 5-min segment pairs (n = 36 926) recorded during clinical polysomnographies of 603 patients with suspected OSA. The segment pairs were pooled into five groups based on the hypoxic load severity described with the the total integrated area under the blood oxygen saturation curve during desaturations. In these severity groups, we determined the frequency-domain heart rate variability (HRV) parameters, the HRV and respiratory high-frequency (HF, 0.15-0.4 Hz) peaks, and the difference between those peaks. We also computed the spectral HF coherence between HRV and respiration in the HF band. RESULTS The ratio of low-frequency (LF, 0.04-0.15 Hz) to HF power increased from 1.047 to 1.805 (p < 0.001); the difference between the HRV and respiratory HF peaks increased from 0.001 Hz to 0.039 Hz (p < 0.001); and the spectral coherence between HRV and respiration in the HF band decreased from 0.813 to 0.689 (p < 0.001) as the hypoxic load increased. CONCLUSION AND SIGNIFICANCE The vagal modulation decreases and CRC weakens significantly with increasing hypoxic load. Thus, the hypoxic load could be utilized more thoroughly in contemporary OSA diagnostics to better assess the severity of OSA-related cardiac stress.
Collapse
|
22
|
Chhabra D, Kharya C, PremKrishanan A, Singh P, Bhagat OL, Deepak KK, Kochupillai V. Long Sudarshan Kriya Yoga enhances cardiovascular and respiratory synchronization: An observational study. J Ayurveda Integr Med 2024; 15:100867. [PMID: 38244476 PMCID: PMC10831935 DOI: 10.1016/j.jaim.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Sudarshan Kriya Yoga (SKY - a rhythmic cyclic breathing) is known to produce several physiological changes in human body. Earlier it has been reported that SKY improves cardiovascular modulations, namely increase in heart rate variability. OBJECTIVE To observe the synchronization in oscillatory modulations in cardiac autonomic tone and ventilatory exchange during Long Sudarshan Kriya Yoga (LSKY). LSKY is a sequential combination of pranayama in ujjayi breath, bhastrika, and cyclic rhythmic breathing followed by yog-nidra. METHODS Regular LSKY practitioners from the Art of Living community with more than two years of experience participated in the study (n = 22; age 40.09 ± 12.68). The Electrocardiogram (ECG), respiration, oxygen saturation, and concentrations of oxygen and carbon-di-oxide from exhaled air were recorded before and during LSKY. The time domain parameters of heart rate variability (HRV) were calculated from ECG. All parameters were compared and correlated at each stage of LSKY. RESULTS Highly significant reciprocal correlation was found between HRV parameters and respiration rate during LSKY. Both O2 consumption and CO2 production increased significantly during three stages of pranayama and decreased towards the end of cyclic breathing. We also saw increased SPO2 simultaneously. CONCLUSION The autonomic parameters exhibited reciprocal response to respiratory rate and correlated well to the ventilatory parameters. Further during LSKY we observed enhanced synchronization. In conclusion the LSKY has a potential to influence cardiorespiratory parameters for improving the performance of both systems. LSKY - enhances oscillations in HRV that resets the autonomic system, indicative of better cardiac health and prepares body for better metabolic response. Such changes are capable of inducing resilience along with physiological, psychological relaxation and emotional well-being.
Collapse
Affiliation(s)
- Deepika Chhabra
- Sri Sri Institute for Advanced Research, Ved Vignan Maha Vidhya Peeth, 21st Km, Kanakpura Road, Bangaluru, 560082, India
| | - Chhaya Kharya
- Sri Sri Institute for Advanced Research, Ved Vignan Maha Vidhya Peeth, 21st Km, Kanakpura Road, Bangaluru, 560082, India.
| | - Archana PremKrishanan
- Sri Sri Institute for Advanced Research, Ved Vignan Maha Vidhya Peeth, 21st Km, Kanakpura Road, Bangaluru, 560082, India
| | - Priydarshan Singh
- Sri Sri Institute for Advanced Research, Ved Vignan Maha Vidhya Peeth, 21st Km, Kanakpura Road, Bangaluru, 560082, India
| | - Om Lata Bhagat
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - K K Deepak
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vinod Kochupillai
- Sri Sri Institute for Advanced Research, Ved Vignan Maha Vidhya Peeth, 21st Km, Kanakpura Road, Bangaluru, 560082, India
| |
Collapse
|
23
|
Ritz T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: Implications for interpretation, respiratory rhythmicity, and health. Biol Psychol 2024; 185:108728. [PMID: 38092221 DOI: 10.1016/j.biopsycho.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Research on respiratory sinus arrhythmia, or high-frequency heart rate variability (its frequency-domain equivalent), has been popular in psychology and the behavioral sciences for some time. It is typically interpreted as an indicator of cardiac vagal activity. However, as research has shown for decades, the respiratory pattern can influence the amplitude of these noninvasive measures substantially, without necessarily reflecting changes in tonic cardiac vagal activity. Although changes in respiration are systematically associated with experiential and behavioral states, this potential confound in the interpretation of RSA, or HF-HRV, is rarely considered. Interpretations of within-individual changes in these parameters are therefore only conclusive if undertaken relative to the breathing pattern. The interpretation of absolute levels of these parameters between individuals is additionally burdened with the problem of residual inspiratory cardiac vagal activity in humans. Furthermore, multiple demographic, anthropometric, life-style, health, and medication variables can act as relevant third variables that might explain associations of RSA or HF-HRV with experiential and behavioral variables. Because vagal activity measured by these parameters only represents the portion of cardiac vagal outflow that is modulated by the respiratory rhythm, alternative interpretations beyond cardiac vagal activity should be considered. Accumulating research shows that activity of multiple populations of neurons in the brain and the periphery, and with that organ activity and function, are modulated rhythmically by respiratory activity. Thus, observable health benefits ascribed to the cardiac vagal system through RSA or HF-HRV may actually reflect beneficial effects of respiratory modulation. Respiratory rhythmicity may ultimately provide the mechanism that integrates central, autonomic, and visceral activities.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
24
|
Reale G, Fusco A, Calciano R, Vallario N, Vagnarelli G, Caliandro P, Castelli L, Moci M, Tieri G, Iasevoli L, Padua L. The Immediate Effects of Immersive Virtual Reality on Autonomic Nervous System Function in Patients with Disorders of Consciousness after Severe Acquired Brain Injury: A Pilot Study. J Clin Med 2023; 12:7639. [PMID: 38137708 PMCID: PMC10744216 DOI: 10.3390/jcm12247639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Disorders of Consciousness (DoCs) after severe acquired brain injury involve substantial impairment of cognition and physical functioning, requiring comprehensive rehabilitation and support. Technological interventions, such as immersive Virtual Reality (VR), have shown promising results in promoting neural activity and enhancing cognitive and motor recovery. VR can induce physical sensations that may activate the Autonomic Nervous System (ANS) and induce ANS-regulated responses. This study aimed to investigate the effects of immersive VR on the ANS in patients with DoCs through the analysis of the electrodermal activity (EDA). EDA was measured with a wearable device during a single immersive VR session consisting of static and dynamic videos depicting naturalistic environments. A pilot case-control study was conducted with 12 healthy participants and 12 individuals with DoCs. Results showed higher EDA values in patients than in healthy participants (p = 0.035), suggesting stronger autonomic activation during immersive VR exposure, while healthy subjects, in turn, showed a decrease in EDA values. Our results revealed a significant interaction between conditions and groups (p = 0.003), with patients showing significantly increased EDA values from the baseline compared to dynamic video observation (p = 0.014) and final rest (p = 0.007). These results suggest that immersive VR can elicit sympathetic arousal in patients with DoCs. This study highlights the potential of immersive VR as a tool to strengthen autonomic responses in patients with impaired consciousness.
Collapse
Affiliation(s)
- Giuseppe Reale
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy (A.F.); (M.M.)
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy (A.F.); (M.M.)
| | - Rossella Calciano
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Noemi Vallario
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Vagnarelli
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pietro Caliandro
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Letizia Castelli
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy (A.F.); (M.M.)
| | - Marco Moci
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy (A.F.); (M.M.)
| | - Gaetano Tieri
- Virtual Reality and Digital Neuroscience Lab, Department of Law and Digital Society, University of Rome Unitelma Sapienza, Piazza Sassari, 4, 00161 Rome, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Luigi Iasevoli
- Multiple Sclerosis Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Luca Padua
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy (A.F.); (M.M.)
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
25
|
Chen RY, Chang HS, Huang HC, Hsueh YH, Tu YK, Lee KZ. Comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury in the rat. J Appl Physiol (1985) 2023; 135:1268-1283. [PMID: 37855033 DOI: 10.1152/japplphysiol.00473.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Cervical spinal cord injury interrupts supraspinal pathways innervating thoracic sympathetic preganglionic neurons and results in cardiovascular dysfunction. Both respiratory and locomotor functions were also impaired due to damages of motoneuron pools controlling respiratory and forelimb muscles, respectively. However, no study has investigated autonomic and somatic motor functions in the same animal model. The present study aimed to establish a cervical spinal cord injury model to evaluate cardiorespiratory response and locomotor activity in unanesthetized rats. Cardiovascular response and respiratory behavior following laminectomy or cervical spinal contusion were measured using noninvasive blood pressure analyzer and plethysmography systems, respectively. Locomotor activity was evaluated by an open-field test and a locomotor rating scale. The results demonstrated that mean arterial blood pressure and heart rate were significantly reduced in contused rats compared with uninjured rats at the acute injured stage. Tidal volume was also significantly reduced during the acute and subchronic stages. Moreover, locomotor function was severely impaired, evidenced by decreasing moving ability and locomotor rating scores from the acute to chronic injured stages. Retrograde neurotracer results revealed that cervical spinal cord injury caused a reduction in number of phrenic and triceps motoneurons. Immunofluorescence staining revealed a significant attenuation of serotonergic, noradrenergic, glutamatergic, and GABAergic fibers innervating the thoracic sympathetic preganglionic neurons in chronically contused rats. These results revealed the pathological mechanism underlying the comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury. We proposed that this animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.NEW & NOTEWORTHY The present study establishes a preclinical rodent model to comprehensively investigate physiological functions under unanesthetized condition following cervical spinal cord contusion. The results demonstrated that cervical spinal cord contusion is associated with impairments in cardiovascular, respiratory, and locomotor function. Respiratory and forelimb motoneurons and neurochemical innervations of sympathetic preganglionic neurons were damaged following injury. This animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Sen Chang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Vondrasek JD, Riemann BL, Grosicki GJ, Flatt AA. Validity and Efficacy of the Elite HRV Smartphone Application during Slow-Paced Breathing. SENSORS (BASEL, SWITZERLAND) 2023; 23:9496. [PMID: 38067869 PMCID: PMC10708620 DOI: 10.3390/s23239496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Slow-paced breathing is a clinical intervention used to increase heart rate variability (HRV). The practice is made more accessible via cost-free smartphone applications like Elite HRV. We investigated whether Elite HRV can accurately measure and augment HRV via its slow-paced breathing feature. Twenty young adults completed one counterbalanced cross-over protocol involving 10 min each of supine spontaneous (SPONT) and paced (PACED; 6 breaths·min-1) breathing while RR intervals were simultaneously recorded via a Polar H10 paired with Elite HRV and reference electrocardiography (ECG). Individual differences in HRV between devices were predominately skewed, reflecting a tendency for Elite HRV to underestimate ECG-derived values. Skewness was typically driven by a limited number of outliers as median bias values were ≤1.3 ms and relative agreement was ≥very large for time-domain parameters. Despite no significant bias and ≥large relative agreement for frequency-domain parameters, limits of agreement (LOAs) were excessively wide and tended to be wider during PACED for all HRV parameters. PACED significantly increased low-frequency power (LF) for Elite HRV and ECG, and between-condition differences showed very large relative agreement. Elite HRV-guided slow-paced breathing effectively increased LF values, but it demonstrated greater precision during SPONT and in computing time-domain HRV.
Collapse
Affiliation(s)
- Joseph D. Vondrasek
- Biodynamics and Human Performance Center, Department of Health Sciences and Kinesiology, Georgia Southern University (Armstrong), 11935 Abercorn St., Savannah, GA 31419, USA; (B.L.R.); (G.J.G.); (A.A.F.)
| | | | | | | |
Collapse
|
27
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3. [DOI: https:/doi.org/10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation.Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz).Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators–TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators–TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative.Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
|
28
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1276899. [PMID: 38020241 PMCID: PMC10643240 DOI: 10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation. Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz). Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators-TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators-TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative. Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
Affiliation(s)
- Oleksandr Romanchuk
- Department of Medical Rehabilitation, Ukrainian Research Institute of Medical Rehabilitation and Resort Therapy of the Ministry of Health of Ukraine, Odesa, Ukraine
| |
Collapse
|
29
|
Cunha EFD, Silveira MS, Milan-Mattos JC, Cavalini HFS, Ferreira ÁA, Batista JDS, Uzumaki LC, Guimarães JPC, Roriz PIL, Dantas FMDNA, Hautala AJ, de Abreu RM, Catai AM, Schwingel PA, Neves VR. Cardiac Autonomic Function and Functional Capacity in Post-COVID-19 Individuals with Systemic Arterial Hypertension. J Pers Med 2023; 13:1391. [PMID: 37763158 PMCID: PMC10533045 DOI: 10.3390/jpm13091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Individuals diagnosed with systemic arterial hypertension (SAH) are considered risk groups for COVID-19 severity. This study assessed differences in cardiac autonomic function (CAF) and functional capacity (FC) in SAH individuals without COVID-19 infection compared to SAH individuals post-COVID-19. Participants comprised 40 SAH individuals aged 31 to 80 years old, grouped as SAH with COVID-19 (G1; n = 21) and SAH without COVID-19 (G2; n = 19). CAF was assessed via heart rate variability (HRV), measuring R-R intervals during a 10-min supine period. Four HRV indices were analyzed through symbolic analysis: 0V%, 1V%, 2LV%, and 2UV%. FC assessment was performed by a 6-min walk test (6MWT). G1 and G2 showed no significant differences in terms of age, anthropometric parameters, clinical presentation, and medication use. G2 exhibited superior 6MWT performance, covering more distance (522 ± 78 vs. 465 ± 59 m, p < 0.05). Specifically, G2 demonstrated a moderate positive correlation between 6MWT and the 2LV% index (r = 0.58; p < 0.05). Shorter walking distances were observed during 6MWT in SAH individuals post-COVID-19. However, the study did not find impaired cardiac autonomic function in SAH individuals post-COVID-19 compared to those without. This suggests that while COVID-19 impacted FC, CAF remained relatively stable in this population.
Collapse
Affiliation(s)
- Edelvita Fernanda Duarte Cunha
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Matheus Sobral Silveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Pesquisas em Desempenho Humano (LAPEDH), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Juliana Cristina Milan-Mattos
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Postgraduate Program in Physical Therapy (PPGFT), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Heitor Fernandes Silveira Cavalini
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Ádrya Aryelle Ferreira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Joice de Souza Batista
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Lara Cazé Uzumaki
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - João Paulo Coelho Guimarães
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Pedro Igor Lustosa Roriz
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Fabianne Maisa de Novaes Assis Dantas
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Arto J. Hautala
- Faculty of Sport and Health Sciences, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Raphael Martins de Abreu
- Department of Physiotherapy, LUNEX University—International University of Health, Exercise & Sports SA, 4671 Differdange, Luxembourg;
- LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, 4671 Differdange, Luxembourg
| | - Aparecida Maria Catai
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Postgraduate Program in Physical Therapy (PPGFT), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Paulo Adriano Schwingel
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Laboratório de Pesquisas em Desempenho Humano (LAPEDH), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| | - Victor Ribeiro Neves
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGRDF), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (E.F.D.C.); (M.S.S.); (H.F.S.C.); (Á.A.F.); (P.I.L.R.)
- Grupo de Estudos e Pesquisas em Fisioterapia Cardiorrespiratória (GEFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil; (J.d.S.B.); (L.C.U.); (J.P.C.G.); (F.M.d.N.A.D.); (A.M.C.)
- Laboratório de Fisioterapia Cardiopulmonar (LAFIC), Universidade de Pernambuco (UPE), Petrolina 56328-900, PE, Brazil
| |
Collapse
|
30
|
Pichardo-Carmona EY, Reyes-Lagos JJ, Ceballos-Juárez RG, Ledesma-Ramírez CI, Mendieta-Zerón H, Peña-Castillo MÁ, Nsugbe E, Porta-García MÁ, Mina-Paz Y. Changes in the autonomic cardiorespiratory activity in parturient women with severe and moderate features of preeclampsia. Front Immunol 2023; 14:1190699. [PMID: 37724103 PMCID: PMC10505439 DOI: 10.3389/fimmu.2023.1190699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/03/2023] [Indexed: 09/20/2023] Open
Abstract
Background Cardiorespiratory coupling (CRC) is a physiological phenomenon that reflects the mutual interaction between the cardiac and respiratory control systems. It is mainly associated with efferent vagal activity from the central autonomic network. Few studies have explored the autonomic changes of CRC in preeclampsia, a critical obstetric complication related to possible autonomic dysfunctions and inflammatory disturbances. This study examined the autonomic mechanisms of CRC in women with severe and moderate preeclampsia and healthy controls by applying nonlinear methods based on information theory, such as mutual information (MI) and Renyi's mutual information (RMI) and the linear and nonlinear analysis of the Pulse-Respiration Quotient (PRQ). Methods We studied three groups of parturient women in the third trimester of pregnancy with a clinical diagnosis of preeclampsia without severe symptoms (P, 38.5 ± 1.4 weeks of pregnancy, n=19), preeclampsia with severe symptoms (SP, 37.5 ± 0.9 weeks of pregnancy, n=22), and normotensive control women (C, 39.1 ± 1.3 weeks of pregnancy, n=20). 10-minutes of abdominal electrocardiograms (ECG) and respiratory signals (RESP) were recorded in all the participants. Subsequently, we obtained the maternal beat-to-beat (RR) and breath-to-breath (BB) time series from ECG and RESP, respectively. The CRC between RR and BB was quantified by nonlinear methods based on information theory, such as MI and RMI, along with the analysis of the novel index of PRQ. Subsequently, we computed the mean PRQ (mPRQ) and the normalized permutation entropy (nPermEn_PRQ) from the PRQ time series generated from BB and RR. In addition, we examined the vagal activity in the three groups by the logarithm of the median of the distribution of the absolute values of successive RR differences (logRSA). Results The MI and RMI values were significantly lower (p<0.05) in the preeclamptic groups compared to the control group. However, no significant differences were found between the preeclamptic groups. The logRSA and nPermEn_PRQ indices were significantly lower (p<0.05) in SP compared to C and P. Conclusion Our data suggest that parturient women with severe and mild preeclampsia may manifest an altered cardiorespiratory coupling compared with normotensive control women. Disrupted CRC in severe preeclampsia could be associated with vagal withdrawal and less complex cardiorespiratory dynamics. The difference in vagal activity between the preeclamptic groups may suggest a further reduction in vagal activity associated with the severity of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Mendieta-Zerón
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca, Mexico
- Mónica Pretelini Sáenz Maternal-Perinatal Hospital, Health Institute of the State of Mexico (ISEM), Toluca, Mexico
| | | | - Ejay Nsugbe
- Nsugbe Research Labs, Swindon, United Kingdom
| | | | - Yecid Mina-Paz
- Faculty of Health Sciences, Universidad Libre Seccional Cali, Cali, Colombia
| |
Collapse
|
31
|
Vlemincx E, Walentynowicz M, Zamariola G, Van Oudenhove L, Luminet O. A novel self-report scale of interoception: the three-domain interoceptive sensations questionnaire (THISQ). Psychol Health 2023; 38:1234-1253. [PMID: 34875958 DOI: 10.1080/08870446.2021.2009479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The self-reported perception of bodily sensations is assumed predictive for health and disease. Existing questionnaires mostly focus on aversive sensations, and associated emotions and cognitions, which potentially confounds associations between interoception and illness. Therefore, we developed the Three-domain Interoceptive Sensations Questionnaire (THISQ), assessing self-reported perception of neutral respiratory, cardiac, and gastroesophageal sensations. DESIGN Using cross-sectional surveys, we developed and validated the THISQ. MAIN OUTCOME MEASURES In Sample 1 (n = 357), a pool of 28 Dutch items was subjected to exploratory factor analysis. Eighteen items with a primary factor loading >.40 were retained for confirmatory factor analysis in Sample 2 (n = 374) and Sample 3 (n = 484) for the validation of the Dutch and English questionnaire, respectively. RESULTS Analyses supported the 3-factor solution: cardiorespiratory activation, cardiorespiratory deactivation, and gastroesophageal sensations. Scales showed acceptable to good internal consistency. Convergent validity was confirmed by significant medium associations between THISQ scores and other self-report measures of interoception. Divergent validity was supported by non-significant or small associations with measures of negative affectivity and symptom-related anxiety. CONCLUSION Our findings suggest that the Dutch and English THISQs are valid and reliable self-report measures of interoception, which could advance our understanding of interoceptive processes in health and disease. Supplemental data for this article is available online at https://doi.org/10.1080/08870446.2021.2009479 .
Collapse
Affiliation(s)
- Elke Vlemincx
- Department of Health Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Health Psychology, KU Leuven, Leuven, Belgium
| | - Marta Walentynowicz
- Psychological Sciences Research Institute, UC Louvain, Louvain-la-Neuve, Belgium
- Belgian Fund for Scientific Research (FRS-FNRS), Brussels, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| | - Giorgia Zamariola
- Psychological Sciences Research Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Olivier Luminet
- Psychological Sciences Research Institute, UC Louvain, Louvain-la-Neuve, Belgium
- Belgian Fund for Scientific Research (FRS-FNRS), Brussels, Belgium
| |
Collapse
|
32
|
Campanaro CK, Nethery DE, Guo F, Kaffashi F, Loparo KA, Jacono FJ, Dick TE, Hsieh YH. Dynamics of ventilatory pattern variability and Cardioventilatory Coupling during systemic inflammation in rats. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1038531. [PMID: 37583625 PMCID: PMC10423997 DOI: 10.3389/fnetp.2023.1038531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/20/2023] [Indexed: 08/17/2023]
Abstract
Introduction: Biometrics of common physiologic signals can reflect health status. We have developed analytics to measure the predictability of ventilatory pattern variability (VPV, Nonlinear Complexity Index (NLCI) that quantifies the predictability of a continuous waveform associated with inhalation and exhalation) and the cardioventilatory coupling (CVC, the tendency of the last heartbeat in expiration to occur at preferred latency before the next inspiration). We hypothesized that measures of VPV and CVC are sensitive to the development of endotoxemia, which evoke neuroinflammation. Methods: We implanted Sprague Dawley male rats with BP transducers to monitor arterial blood pressure (BP) and recorded ventilatory waveforms and BP simultaneously using whole-body plethysmography in conjunction with BP transducer receivers. After baseline (BSLN) recordings, we injected lipopolysaccharide (LPS, n = 8) or phosphate buffered saline (PBS, n =3) intraperitoneally on 3 consecutive days. We recorded for 4-6 h after the injection, chose 3 epochs from each hour and analyzed VPV and CVC as well as heart rate variability (HRV). Results: First, the responses to sepsis varied across rats, but within rats the repeated measures of NLCI, CVC, as well as respiratory frequency (fR), HR, BP and HRV had a low coefficient of variation, (<0.2) at each time point. Second, HR, fR, and NLCI increased from BSLN on Days 1-3; whereas CVC decreased on Days 2 and 3. In contrast, changes in BP and the relative low-(LF) and high-frequency (HF) of HRV were not significant. The coefficient of variation decreased from BSLN to Day 3, except for CVC. Interestingly, NLCI increased before fR in LPS-treated rats. Finally, we histologically confirmed lung injury, systemic inflammation via ELISA and the presence of the proinflammatory cytokine, IL-1β, with immunohistochemistry in the ponto-medullary respiratory nuclei. Discussion: Our findings support that NLCI reflects changes in the rat's health induced by systemic injection of LPS and reflected in increases in HR and fR. CVC decreased over the course to the experiment. We conclude that NLCI reflected the increase in predictability of the ventilatory waveform and (together with our previous work) may reflect action of inflammatory cytokines on the network generating respiration.
Collapse
Affiliation(s)
- Cara K. Campanaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David E. Nethery
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Fei Guo
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Farhad Kaffashi
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Kenneth A. Loparo
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
33
|
Yoon H, Choi SH. Closed-Loop Auditory Stimulation to Guide Respiration: Preliminary Study to Evaluate the Effect on Time Spent in Sleep Initiation during a Nap. SENSORS (BASEL, SWITZERLAND) 2023; 23:6468. [PMID: 37514760 PMCID: PMC10386535 DOI: 10.3390/s23146468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Various stimulation systems to modulate sleep structure and function have been introduced. However, studies on the time spent in sleep initiation (TSSI) are limited. This study proposes a closed-loop auditory stimulation (CLAS) to gradually modulate respiratory rhythm linked to the autonomic nervous system (ANS) activity directly associated with sleep. CLAS is continuously updated to reflect the individual's current respiratory frequency and pattern. Six participants took naps on different days with and without CLAS. The average values of the TSSI are 14.00 ± 4.24 and 9.67 ± 5.31 min in the control and stimulation experiments (p < 0.03), respectively. Further, the values of respiratory instability and heart rate variability differ significantly between the control and stimulation experiments. Based on our findings, CLAS supports the individuals to gradually modulate their respiratory rhythms to have similar characteristics observed near sleep initiation, and the changed respiratory rhythms influence ANS activities, possibly influencing sleep initiation. Our approach aims to modulate the respiratory rhythm, which can be controlled intentionally. Therefore, this method can probably be used for sleep initiation and daytime applications.
Collapse
Affiliation(s)
- Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
34
|
Liu H, Liang H, Yu X, Han Y, Wang G, Yan M, Wang W, Li S. A study on the immediate effects of enhanced external counterpulsation on physiological coupling. Front Neurosci 2023; 17:1197598. [PMID: 37351421 PMCID: PMC10282182 DOI: 10.3389/fnins.2023.1197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Enhanced external counterpulsation (EECP) is a non-invasive assisted circulation technique for its clinical application in the rehabilitation and management of ischemic cardiovascular and cerebrovascular diseases, which has complex physiological and hemodynamic effects. However, the effects of EECP on the coupling of physiological systems are still unclear. We aimed to investigate the immediate effects of EECP on the coupling between integrated physiological systems such as cardiorespiratory and cardiovascular systems. Methods Based on a random sham-controlled design, simultaneous electrocardiography, photoplethysmography, bio-electrical impedance, and continuous hemodynamic data were recorded before, during and after two consecutive 30 min EECP in 41 healthy adults. Physiological coupling strength quantified by phase synchronization indexes (PSI), hemodynamic measurements and heart rate variability indices of 22 subjects (female/male: 10/12; age: 22.6 ± 2.1 years) receiving active EECP were calculated and compared with those of 19 sham control subjects (female/male: 7/12; age: 23.6 ± 2.5 years). Results Immediately after the two consecutive EECP interventions, the physiological coupling between respiratory and cardiovascular systems PSIRES-PTT (0.34 ± 0.14 vs. 0.49 ± 0.17, P = 0.002), the physiological coupling between cardiac and cardiovascular systems PSIIBI-PTT (0.41 ± 0.14 vs. 0.52 ± 0.16, P = 0.006) and the total physiological coupling PSItotal (1.21 ± 0.35 vs. 1.57 ± 0.49, P = 0.005) in the EECP group were significantly lower than those before the EECP intervention, while the physiological coupling indexes in the control group did not change significantly (P > 0.05). Conclusion Our study provides evidence that the PSI is altered by immediate EECP intervention. We speculate that the reduced PSI induced by EECP may be a marker of disturbed physiological coupling. This study provides a new method for exploring the mechanism of EECP action and may help to further optimize the EECP technique.
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Hui Liang
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Yu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Yi Han
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Guojing Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Shijun Li
- Department of Diagnostic Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 2023; 14:1035186. [PMID: 37229453 PMCID: PMC10203702 DOI: 10.3389/fendo.2023.1035186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION As a common complication of spinal cord injury (SCI), most SCI patients suffer from osteoporosis. In our previous study, chronic intermittent hypobaric hypoxia (CIHH) could promote bone fracture healing. We speculated that it may act a role in the progression of osteoporosis. The current study purposed to explore the role of CIHH in the osteoporosis triggered by SCI in rats. METHODS A SCI-induced SCI model was established by completed transection at T9-T10 spinal cord of Wistar rats. One week after SCI, the rats were conducted to CIHH treatment (PB = 404 mmHg, Po2 = 84 mmHg) 6 hours a day for continuously 7 weeks. RESULTS The results of X-radiography and Micro-CT assessment demonstrated that compared with sham rats, the areal bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, trabecular number, and trabecular connectivity were decreased. Trabecular bone pattern factor, trabecular separation, as well as structure model index were increased at the distal femur and proximal tibia of SCI rats, which were effectively reversed by CIHH treatment. Histomorphometry showed that CIHH treatment increased bone formation of SCI rats, as evidenced by the increased osteoid formation, the decreased number and surface of TRAP-positive osteoclasts. Furthermore, ELISA and real time PCR results showed that the osteoblastogenesis-related biomarkers, such as procollagen type 1 N-terminal propeptide, osteocalcin in serum, as well as ALP and OPG mRNAs in bone tissue were decreased, while the osteoclastogenesis-related biomarkers, including scleorostin in serum and RANKL and TRAP mRNAs in bone tissue were increased in SCI rats. Importantly, the deviations of aforementioned biomarkers were improved by CIHH treatment. Mechanically, the protective effects of CIHH might be at least partly mediated by hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. CONCLUSION The present study testified that CIHH treatment ameliorates osteoporosis after SCI by balancing osteoblast and osteoclast activities in rats.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Da Silva CD, Catai AM, Abreu RMD, Signini ÉDF, Galdino GAM, Lorevice L, Santos LM, Mendes RG. Cardiorespiratory coupling as an early marker of cardiac autonomic dysfunction in type 2 diabetes mellitus patients. Respir Physiol Neurobiol 2023; 311:104042. [PMID: 36858335 DOI: 10.1016/j.resp.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
The aim of this study was to assess cardiorespiratory coupling (CRC) in type 2 diabetes mellitus patients (T2DM) and apparently healthy individuals, in order to test the hypothesis that this method can provide additional knowledge to the information obtained through the heart rate variability (HRV). A cross-sectional study was conducted in T2DM patients(T2DMG=32) and health controls (CON=32). For CRC analysis, the electrocardiogram, arterial pressure, and thoracic respiratory movement were recorded at rest in supine position and during active standing. Beat-to-beat series of heart period and systolic arterial pressure were analyzed with the respiratory movement signal via a traditional non-causal approach, such as squared coherence function. In this sample of T2DM, no differences in HRV were observed when compared to the CON, but the T2DMG showed a reduction in resting CRC. We conclude that in CRC in T2DM, reflected by the squared coherence may already be compromised even before HRV changes.
Collapse
Affiliation(s)
- Claudio Donisete Da Silva
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | | | - Laura Lorevice
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Letícia Menegalli Santos
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil.
| |
Collapse
|
37
|
Banushi B, Brendle M, Ragnhildstveit A, Murphy T, Moore C, Egberts J, Robison R. Breathwork Interventions for Adults with Clinically Diagnosed Anxiety Disorders: A Scoping Review. Brain Sci 2023; 13:256. [PMID: 36831799 PMCID: PMC9954474 DOI: 10.3390/brainsci13020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Anxiety disorders are the most common group of mental disorders, but they are often underrecognized and undertreated in primary care. Dysfunctional breathing is a hallmark of anxiety disorders; however, mainstays of treatments do not tackle breathing in patients suffering anxiety. This scoping review aims to identify the nature and extent of the available research literature on the efficacy of breathwork interventions for adults with clinically diagnosed anxiety disorders using the DSM-5 classification system. Using the PRISMA extension for scoping reviews, a search of PubMed, Embase, and Scopus was conducted using terms related to anxiety disorders and breathwork interventions. Only clinical studies using breathwork (without the combination of other interventions) and performed on adult patients diagnosed with an anxiety disorder using the DSM-5 classification system were included. From 1081 articles identified across three databases, sixteen were included for the review. A range of breathwork interventions yielded significant improvements in anxiety symptoms in patients clinically diagnosed with anxiety disorders. The results around the role of hyperventilation in treatment of anxiety were contradictory in few of the examined studies. This evidence-based review supports the clinical utility of breathwork interventions and discusses effective treatment options and protocols that are feasible and accessible to patients suffering anxiety. Current gaps in knowledge for future research directions have also been identified.
Collapse
Affiliation(s)
- Blerida Banushi
- Faculty of Medicine, University of Queensland, Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Madeline Brendle
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
- Numinus Wellness, Draper, UT 84020, USA
- Integrated Research Literacy Group, Draper, UT 84020, USA
| | - Anya Ragnhildstveit
- Integrated Research Literacy Group, Draper, UT 84020, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Tara Murphy
- Department of Psychiatry, University of Wisconsin Hospitals & Clinics, Madison, WI 53792, USA
| | | | | | - Reid Robison
- Numinus Wellness, Draper, UT 84020, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| |
Collapse
|
38
|
Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis. Med Biol Eng Comput 2023; 61:1329-1341. [PMID: 36698031 DOI: 10.1007/s11517-023-02784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first-third quartile: 21.3-39.3) than PSV (median: 15.7%; first-third quartile: 10.9-27.8) and NAVA (median: 3.7%; first-third quartile: 3.3-19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV. The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode.
Collapse
|
39
|
de Abreu RM, Cairo B, Porta A. On the significance of estimating cardiorespiratory coupling strength in sports medicine. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 2:1114733. [PMID: 36926078 PMCID: PMC10013023 DOI: 10.3389/fnetp.2022.1114733] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The estimation of cardiorespiratory coupling (CRC) is attracting interest in sports physiology as an important tool to characterize cardiac neural regulation genuinely driven by respiration. When applied in sports medicine, cardiorespiratory coupling measurements can provide information on the effects of training, pre-competition stress, as well as cardiovascular adjustments during stressful stimuli. Furthermore, since the cardiorespiratory coupling is strongly affected by physical activity, the study of the cardiorespiratory coupling can guide the application of specific training methods to optimize the coupling between autonomic activity and heart with possible effects on performance. However, a consensus about the physiological mechanisms, as well as methodological gold standard methods to quantify the cardiorespiratory coupling, has not been reached yet, thus limiting its application in experimental settings. This review supports the relevance of assessing cardiorespiratory coupling in the sports medicine, examines the possible physiological mechanisms involved, and lists a series of methodological approaches. cardiorespiratory coupling strength seems to be increased in athletes when compared to sedentary subjects, in addition to being associated with positive physiological outcomes, such as a possible better interaction of neural subsystems to cope with stressful stimuli. Moreover, cardiorespiratory coupling seems to be influenced by specific training modalities, such as inspiratory muscle training. However, the impact of cardiorespiratory coupling on sports performance still needs to be better explored through ad hoc physical exercise tests and protocols. In addition, this review stresses that several bivariate and multivariate methods have been proposed to assess cardiorespiratory coupling, thus opening new possibilities in estimating cardiorespiratory interactions in athletes.
Collapse
Affiliation(s)
- Raphael Martins de Abreu
- Department of Physiotherapy, LUNEX University, International University of Health, Exercise & Sports S.A., Differdange, Luxembourg
- LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
40
|
Matić Z, Kalauzi A, Moser M, Platiša MM, Lazarević M, Bojić T. Pulse respiration quotient as a measure sensitive to changes in dynamic behavior of cardiorespiratory coupling such as body posture and breathing regime. Front Physiol 2022; 13:946613. [PMID: 36620213 PMCID: PMC9816793 DOI: 10.3389/fphys.2022.946613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: In this research we explored the (homeo)dynamic character of cardiorespiratory coupling (CRC) under the influence of different body posture and breathing regimes. Our tool for it was the pulse respiration quotient (PRQ), representing the number of heartbeat intervals per breathing cycle. We obtained non-integer PRQ values using our advanced Matlab® algorithm and applied it on the signals of 20 healthy subjects in four conditions: supine position with spontaneous breathing (Supin), standing with spontaneous breathing (Stand), supine position with slow (0.1 Hz) breathing (Supin01) and standing with slow (0.1 Hz) breathing (Stand01). Main results: Linear features of CRC (in PRQ signals) were dynamically very sensitive to posture and breathing rhythm perturbations. There are obvious increases in PRQ mean level and variability under the separated and joined influence of orthostasis and slow (0.1 Hz) breathing. This increase was most pronounced in Stand01 as the state of joint influences. Importantly, PRQ dynamic modification showed greater sensitivity to body posture and breathing regime changes than mean value and standard deviation of heart rhythm and breathing rhythm. In addition, as a consequence of prolonged supine position, we noticed the tendency to integer quantization of PRQ (especially after 14 min), in which the most common quantization number was 4:1 (demonstrated in other research reports as well). In orthostasis and slow breathing, quantization can also be observed, but shifted to other values. We postulate that these results manifest resonance effects induced by coupling patterns from sympathetic and parasympathetic adjustments (with the second as dominant factor). Significance: Our research confirms that cardiorespiratory coupling adaptability could be profoundly explored by precisely calculated PRQ parameter since cardiorespiratory regulation in healthy subjects is characterized by a high level of autonomic adaptability (responsiveness) to posture and breathing regime, although comparisons with pathological states has yet to be performed. We found Stand01 to be the most provoking state for the dynamic modification of PRQ (cardiorespiratory inducement). As such, Stand01 has the potential of using for PRQ tuning by conditioning the cardiorespiratory autonomic neural networks, e.g., in the cases where PRQ is disturbed by environmental (i.e., microgravity) or pathologic conditions.
Collapse
Affiliation(s)
- Zoran Matić
- Biomedical Engineering and Technologies, University of Belgrade, Belgrade, Serbia,*Correspondence: Zoran Matić,
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Maximilian Moser
- Chair of Physiology, Medical University of Graz, Graz, Austria; Human Research Institute, Weiz, Austria
| | - Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mihailo Lazarević
- Department for Mechanics, Faculty for Mechanical Engineering, University of Belgrade, Belgrade, Serbia
| | - Tijana Bojić
- Department of Radiation Chemistry and Physics, “VINČA” Institute of Nuclear Sciences - National Institute of Thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Investigating the role of auditory and visual sensory inputs for inducing relaxation during virtual reality stimulation. Sci Rep 2022; 12:17073. [PMID: 36224289 PMCID: PMC9560033 DOI: 10.1038/s41598-022-21575-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2022] [Indexed: 12/30/2022] Open
Abstract
Stress is a part of everyday life which can be counteracted by evoking the relaxation response via nature scenes presented using immersive virtual reality (VR). The aim of this study was to determine which sensory aspect of immersive VR intervention is responsible for the greatest relaxation response. We compared four conditions: auditory and visual combined (audiovisual), auditory only, visual only, and no artificial sensory input. Physiological changes in heart rate, respiration rate, and blood pressure were recorded, while participants reported their preferred condition and awareness of people, noise, and light in the real-world. Over the duration of the stimulation, participants had the lowest heart rate during the audiovisual and visual only conditions. They had the steadiest decrease in respiration rate and the lowest blood pressure during the audiovisual condition, compared to the other conditions, indicating the greatest relaxation. Moreover, ratings of awareness indicated that participants reported being less aware of their surroundings (i.e., people, noise, light, real environment) during the audiovisual condition versus the other conditions (p < 0.001), with a preference for audiovisual inputs. Overall, the use of audiovisual VR stimulation is more effective at inducing a relaxation response compared to no artificial sensory inputs, or the independent inputs.
Collapse
|
42
|
Mendo B, Gonçalves M, Lopes L, Matos LC, Machado J. Can Yoga, Qigong, and Tai Chi Breathing Work Support the Psycho-Immune Homeostasis during and after the COVID-19 Pandemic? A Narrative Review. Healthcare (Basel) 2022; 10:1934. [PMID: 36292380 PMCID: PMC9601556 DOI: 10.3390/healthcare10101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Breathing is crucial in life; nevertheless, the healthcare community often overlooks the health potential of breathing techniques. Conscious manipulation of breathing to achieve specific health goals is found in yoga, Qigong and Tai Chi. This paper reviews the value of breathing exercises as a foremost mechanism for promoting, recuperating and maintaining health. Practices involving breathing techniques are described, and their prophylactic or therapeutic characteristics are explored. The main goals of this review are: (i) to summarize the evidence supporting the hypothesis that breathing practices have a significant beneficial impact on human health; (ii) to provide a deeper understanding of traditional biofeedback practices, particularly yoga, Qigong and Tai Chi, and outline their focus on breathing techniques; (iii) to outline specific immune-related responses, relevant for COVID-19 disorders; and (iv) to call for committed attention and action from the scientific community and health agencies in promoting the implementation of a practical and costless health program based on breathing techniques. This review shows the health potentials of breathing practices and exercises, which, by having a high benefit-cost ratio, could be selected and implemented as a primary standard routine in public health programs.
Collapse
Affiliation(s)
- Bruno Mendo
- ICBAS–Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin–Center of BioSciences in Integrative Health, 4250-105 Porto, Portugal
| | - Mário Gonçalves
- ICBAS–Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin–Center of BioSciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- ICBAS–Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin–Center of BioSciences in Integrative Health, 4250-105 Porto, Portugal
| | - Luís Carlos Matos
- CBSin–Center of BioSciences in Integrative Health, 4250-105 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- CTEC–Centro Transdisciplinar de Estudos da Consciência, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Jorge Machado
- ICBAS–Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin–Center of BioSciences in Integrative Health, 4250-105 Porto, Portugal
- LABIOMEP–Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
43
|
Abreu RMD, Porta A, Rehder-Santos P, Cairo B, Sakaguchi CA, da Silva CD, Signini ÉDF, Milan-Mattos JC, Catai AM. Cardiorespiratory coupling strength in athletes and non-athletes. Respir Physiol Neurobiol 2022; 305:103943. [PMID: 35835289 DOI: 10.1016/j.resp.2022.103943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Despite the relevant presence of nonlinear components on heart period (HP) likely due to cardiorespiratory coupling (CRC), the HP is frequently analyzed in absence of concomitant recordings of respiratory movements (RESP). This study aims to assess the cardiovascular dynamics and CRC during postural challenge in athletes and non-athletes via joint symbolic analysis (JSA). METHODS A cross-sectional study was conducted in 50 men, aged between 20 and 40 yrs, divided into athletes (n = 25) and non-athletes (n = 25) groups. The electrocardiogram, blood pressure and RESP signals were recorded during 15 min in both supine position (REST) and after active postural maneuver (STAND). From the beat-to-beat series of HP, systolic arterial pressure (SAP) and RESP, we computed the time and frequency domain indexes and baroreflex sensitivity. The JSA was based on the definition of symbolic HP and RESP patterns and on the evaluation of the rate of their simultaneous occurrence in both HP and RESP series. RESULTS The JSA analysis was able to identify higher CRC strength at REST in athletes. Moreover, the response of CRC to STAND depended on the time scales of the analysis and was much more evident in athletes than in non-athletes, thus indicating a more reactive autonomic control in athletes. CONCLUSION Assessing CRC in athletes via JSA provides additional information compared to standard linear time and frequency domain tools likely due to the more relevant presence of nonlinearities in HP-RESP variability relationship.
Collapse
Affiliation(s)
- Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg; Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil.
| | - Alberto Porta
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy; IRCCS Policlinico San Donato, Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, San Donato Milanese, Milan, Italy
| | - Patricia Rehder-Santos
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | - Beatrice Cairo
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy
| | - Camila Akemi Sakaguchi
- Appalachian State University, Department of Health, Leisure, and Exercise Science, NC, USA
| | | | - Étore De Favari Signini
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | | | - Aparecida Maria Catai
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| |
Collapse
|
44
|
Koppula A, Barra RR, Sridharan KS. Effects of exercise anticipation on cardiorespiratory coherence. Physiol Rep 2022; 10:e15381. [PMID: 35883224 PMCID: PMC9325975 DOI: 10.14814/phy2.15381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we explored the role of feedforward mechanisms in triggering cardiorespiratory adjustments before the onset of exercise. To isolate the feedforward aspects, we examined the effect of exercise anticipation on cardiorespiratory coherence. Twenty-nine healthy males (age = 18.8 [0.96] years) were subjected to bicycle (BE) and handgrip exercise (H) at two different intensities, viz., low and high. Bicycle exercise was performed in a unilateral (left- and right-sided) or bilateral mode, whereas handgrip was performed only in a unilateral mode. Single-lead ECG and respiratory rhythm, measured in the 5 min of anticipation phase before the onset of exercise, were used for analysis. Coherence was computed between ECG-derived instantaneous heart rate and respiratory signal. Average coherence in the high-frequency band (0.15-0.4 Hz) was used to estimate respiratory sinus arrhythmia (RSA). We found that coherence decreased with the anticipation of exercise relative to baseline (baseline = 0.54 [0.16], BE = 0.41 [0.12], H = 0.39 [0.12], p < 0.001). The decrease was greater for high intensity exercise (low = 0.42 [0.11], high = 0.37 [0.1], p < 0.001). The fall of coherence with intensity was stronger for bicycle exercise (BE: low = 0.44 [0.12], high = 0.37 [0.12], H: low = 0.4 [0.12], high = 0.37 [0.12], p = 0.00433). The expectation of bilateral exercise resulted in lower coherence compared to unilateral exercise (right-sided = 0.45 [0.16], left-sided = 0.4 [0.16], bilateral = 0.36 [0.15], unilateral vs. bilateral: p < 0.001), and the left-sided exercise had lower coherence compared to that of the right (left-sided vs. right-sided: p = 0.00925). Handgrip exercise showed similar trend (right-sided = 0.4 [0.15], left-sided = 0.37 [0.14], p = 0.0056). In conclusion, feedforward RSA adjustments in anticipation of exercise covaried with subsequent exercise-related features like intensity, muscle mass (unilateral vs. bilateral), and the exercise side (left vs. right). The left versus the right difference in coherence indicates autonomic asymmetry. Feedforward changes in RSA are like those seen during actual exercise and might facilitate the rapid phase transition between rest and exercise.
Collapse
Affiliation(s)
- Aditya Koppula
- Department of Biomedical Engineering, Neurotech Lab, Indian Institute of Technology, Hyderabad, India
| | - Ram Reddy Barra
- Department of Physiology, Apollo Institute of Medical Sciences and Research, Hyderabad, India
| | - Kousik Sarathy Sridharan
- Department of Biomedical Engineering, Neurotech Lab, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
45
|
Lavezzi AM, Pusiol T, Paradiso B. Harmful Effect of Intrauterine Smoke Exposure on Neuronal Control of "Fetal Breathing System" in Stillbirths. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074164. [PMID: 35409845 PMCID: PMC8999022 DOI: 10.3390/ijerph19074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
This article is aimed to contribute to the current knowledge on the role of toxic substances such as nicotine on sudden intrauterine unexplained deaths’ (SIUDS’) pathogenetic mechanisms. The in-depth histopathological examination of the autonomic nervous system in wide groups of victims of SIUDS (47 cases) and controls (20 cases), with both smoking and no-smoking mothers, highlighted the frequent presence of the hypodevelopment of brainstem structures checking the vital functions. In particular, the hypoplasia of the pontine parafacial nucleus together with hypoplastic lungs for gestational age were observed in SIUDS cases with mothers who smoked cigarettes, including electronic ones. The results allow us to assume that the products of cigarette smoke during pregnancy can easily cross the placental barrier, thus entering the fetal circulation and damaging the most sensitive organs, such as lungs and brain. In a non-negligible percentage of SIUDS, the mothers did not smoke. Furthermore, based on previous and ongoing studies conducted through analytical procedures and the use of scanning electron microscopy, the authors envisage the involvement of toxic nanoparticles (such as agricultural pesticides and nanomaterials increasingly used in biomedicine, bioscience and biotechnology) in the death pathogenesis, with similar mechanisms to those of nicotine.
Collapse
Affiliation(s)
- Anna M. Lavezzi
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- Correspondence:
| | - Teresa Pusiol
- Institute of Anatomic Pathology, APSS, 38122 Trento, Italy;
| | - Beatrice Paradiso
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- General Pathology Unit, Dolo Hospital, 30031 Dolo, Italy
| |
Collapse
|
46
|
Grishin VG, Grishin OV, Nikultsev VS, Gultyaeva VV, Zinchenko MI, Uryumtsev DY. Frequency Analysis of Oscillations of External Respiration Parameters and Heart Rate in the VLF Range. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Grund M, Al E, Pabst M, Dabbagh A, Stephani T, Nierhaus T, Gaebler M, Villringer A. Respiration, Heartbeat, and Conscious Tactile Perception. J Neurosci 2022; 42:643-656. [PMID: 34853084 PMCID: PMC8805629 DOI: 10.1523/jneurosci.0592-21.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that timing of sensory stimulation during the cardiac cycle interacts with perception. Given the natural coupling of respiration and cardiac activity, we investigated here their joint effects on tactile perception. Forty-one healthy female and male human participants reported conscious perception of finger near-threshold electrical pulses (33% null trials) and decision confidence while electrocardiography, respiratory activity, and finger photoplethysmography were recorded. Participants adapted their respiratory cycle to expected stimulus onsets to preferentially occur during late inspiration/early expiration. This closely matched heart rate variation (sinus arrhythmia) across the respiratory cycle such that most frequent stimulation onsets occurred during the period of highest heart rate probably indicating highest alertness and cortical excitability. Tactile detection rate was highest during the first quadrant after expiration onset. Interindividually, stronger respiratory phase-locking to the task was associated with higher detection rates. Regarding the cardiac cycle, we confirmed previous findings that tactile detection rate was higher during diastole than systole and newly specified its minimum at 250-300 ms after the R-peak corresponding to the pulse wave arrival in the finger. Expectation of stimulation induced a transient heart deceleration which was more pronounced for unconfident decision ratings. Interindividually, stronger poststimulus modulations of heart rate were linked to higher detection rates. In summary, we demonstrate how tuning to the respiratory cycle and integration of respiratory-cardiac signals are used to optimize performance of a tactile detection task.SIGNIFICANCE STATEMENT Mechanistic studies on perception and cognition tend to focus on the brain neglecting contributions of the body. Here, we investigated how respiration and heartbeat influence tactile perception: respiration phase-locking to expected stimulus onsets corresponds to highest heart rate (and presumably alertness/cortical excitability) and correlates with detection performance. Tactile detection varies across the heart cycle with a minimum when the pulse reaches the finger and a maximum in diastole. Taken together with our previous finding of unchanged early event-related potentials across the cardiac cycle, we conclude that these effects are not a peripheral physiological artifact but a result of cognitive processes that model our body's internal state, make predictions to guide behavior, and might also tune respiration to serve the task.
Collapse
Affiliation(s)
- Martin Grund
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Esra Al
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin 10099, Germany
- DFG Research Training Group 2386 Extrospection, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Marc Pabst
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Alice Dabbagh
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Pain Perception Group, Leipzig 04103, Germany
| | - Tilman Stephani
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- International Max Planck Research School NeuroCom, Leipzig 04103, Germany
| | - Till Nierhaus
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
48
|
Risueno-Segovia C, Koç O, Champéroux P, Hage SR. Cardiovascular mechanisms underlying vocal behavior in freely moving macaque monkeys. iScience 2022; 25:103688. [PMID: 35036873 PMCID: PMC8749184 DOI: 10.1016/j.isci.2021.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Communication is a keystone of animal behavior. However, the physiological states underlying natural vocal signaling are still largely unknown. In this study, we investigated the correlation of affective vocal utterances with concomitant cardiorespiratory mechanisms. We telemetrically recorded electrocardiography, blood pressure, and physical activity in six freely moving and interacting cynomolgus monkeys (Macaca fascicularis). Our results demonstrate that vocal onsets are strengthened during states of sympathetic activation, and are phase locked to a slower Mayer wave and a faster heart rate signal at ∼2.5 Hz. Vocalizations are coupled with a distinct peri-vocal physiological signature based on which we were able to predict the onset of vocal output using three machine learning classification models. These findings emphasize the role of cardiorespiratory mechanisms correlated with vocal onsets to optimize arousal levels and minimize energy expenditure during natural vocal production. Cardiovascular signals are measured telemetrically in freely moving macaques A distinct cardiovascular physiological signature is present before vocal onset Vocal onsets are phase locked to the Mayer wave and heart rate signals Vocal onsets prediction is performed using machine learning classification models
Collapse
Affiliation(s)
- Cristina Risueno-Segovia
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences-International Max Planck Research School, University of Tübingen, Österberg-Street 3, 72074 Tübingen, Germany
| | - Okan Koç
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| | - Pascal Champéroux
- European Research Biology Center, ERBC, Chemin de Montifault, 18800 Baugy, France
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| |
Collapse
|
49
|
Lu M, Penzel T, Thomas RJ. Cardiopulmonary Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:185-204. [PMID: 36217085 DOI: 10.1007/978-3-031-06413-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiopulmonary coupling (CPC) is a technique that generates sleep spectrogram by calculating the cross-spectral power and coherence of heart rate variability and respiratory tidal volume fluctuations. There are several forms of CPC in the sleep spectrogram, which may provide information about normal sleep physiology and pathological sleep states. Since CPC can be calculated from any signal recording containing heart rate and respiration information, such as photoplethysmography (PPG) or blood pressure, it can be widely used in various applications, including wearables and non-contact devices. When derived from PPG, an automatic apnea-hypopnea index can be calculated from CPC-oximetry as PPG can be obtained from oximetry alone. CPC-based sleep profiling reveals the effects of stable and unstable sleep on sleep apnea, insomnia, cardiovascular regulation, and metabolic disorders. Here, we introduce, with examples, the current knowledge and understanding of the CPC technique, especially the physiological basis, analytical methods, and its clinical applications.
Collapse
Affiliation(s)
- Mi Lu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Interdisciplinary Center of Sleep Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Thomas Penzel
- Interdisciplinary Center of Sleep Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert J Thomas
- Division of Pulmonary and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
50
|
Al Ashry HS, Ni Y, Thomas RJ. Cardiopulmonary Sleep Spectrograms Open a Novel Window Into Sleep Biology-Implications for Health and Disease. Front Neurosci 2021; 15:755464. [PMID: 34867165 PMCID: PMC8633537 DOI: 10.3389/fnins.2021.755464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
The interactions of heart rate variability and respiratory rate and tidal volume fluctuations provide key information about normal and abnormal sleep. A set of metrics can be computed by analysis of coupling and coherence of these signals, cardiopulmonary coupling (CPC). There are several forms of CPC, which may provide information about normal sleep physiology, and pathological sleep states ranging from insomnia to sleep apnea and hypertension. As CPC may be computed from reduced or limited signals such as the electrocardiogram or photoplethysmogram (PPG) vs. full polysomnography, wide application including in wearable and non-contact devices is possible. When computed from PPG, which may be acquired from oximetry alone, an automated apnea hypopnea index derived from CPC-oximetry can be calculated. Sleep profiling using CPC demonstrates the impact of stable and unstable sleep on insomnia (exaggerated variability), hypertension (unstable sleep as risk factor), improved glucose handling (associated with stable sleep), drug effects (benzodiazepines increase sleep stability), sleep apnea phenotypes (obstructive vs. central sleep apnea), sleep fragmentations due to psychiatric disorders (increased unstable sleep in depression).
Collapse
Affiliation(s)
- Haitham S Al Ashry
- Division of Pulmonary and Sleep Medicine, Elliot Health System, Manchester, NH, United States
| | - Yuenan Ni
- Division of Pulmonary, Critical Care and Sleep Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Robert J Thomas
- Division of Pulmonary and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|