1
|
Avila BS, Pemberthy-Mendoza D, Zúñiga-Benítez H, Peñuela GA. Occurrence, distribution, and levels of Polychlorinated Biphenyls (PCB), Polychlorinated Dibenzo-p-Dioxins (PCDD), and Polychlorinated Dibenzofurans (PCDF) in fish from the Antioquia Region, Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:560. [PMID: 40240727 PMCID: PMC12003534 DOI: 10.1007/s10661-025-13956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD), and polychlorinated dibenzofurans (PCDF), are a class of chemical compounds with high persistence that can accumulate in living organisms, mainly in fatty tissues. In addition, exposure to them can cause a wide variety of health problems and adverse effects on humans and wildlife. Therefore, this work aimed to assess the occurrence, distribution, and levels of PCB, PCDD and PCDF in fish samples from the Antioquia region, Colombia. In total, 90 samples of different fish species were evaluated. The levels of the six indicator PCBs were in a range between 26.6 pg · g-1 w.w (1.33 ng · g-1 fat) and 4550 pg · g-1 w.w (236.0 ng⋅g-1 fat), the mean value was 395 pg · g-1 w.w (16.7 ng⋅g-1 fat) and the median was 186 pg · g-1 w.w (8.24 ng⋅g-1 fat). The levels of dioxin-like PCBs were between 3.09 pg · g-1 w.w (0.135 ng⋅g-1 fat) and 567 pg · g-1 w.w (33.9 ng⋅g-1 fat), the mean value was 47.2 pg · g-1 w.w (2.30 ng⋅g-1 fat) and the median was 15.5 pg · g-1 w.w (0.811 ng⋅g-1 fat). The mean and median of the PCB toxic equivalent values were 46.6 fg · TEQ · g-1 w.w and 12.0 fg · TEQ · g-1 w.w, respectively. In all cases, PCDD/PCDF were below the analytical method quantification limits. In summary, PCB and PCDD/PCDF levels in selected fish corresponded to background levels and no hot spots were observed. Finally, this study provided an overview of the current situation regarding the presence of these types of pollutants in the region, which could support future research.
Collapse
Affiliation(s)
- Boris Santiago Avila
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia.
| | - Diana Pemberthy-Mendoza
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
| | - Henry Zúñiga-Benítez
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia - UdeA, Calle 70 # 52-21, 050010, Medellín, Colombia
| | - Gustavo A Peñuela
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
| |
Collapse
|
2
|
Teiba II, El-Bilawy EH, Abouelsaad IA, Shehata AI, Alhoshy M, Habib YJ, Abu-Elala NM, El-Khateeb N, Belal EB, Hussain WAM. The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64419-64452. [PMID: 39547992 DOI: 10.1007/s11356-024-35520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Bacteria assume a pivotal role in mitigating environmental issues associated with heavy metals, microplastics, and pesticides. Within the domain of heavy metals, bacteria exhibit a wide range of processes for bioremediation, encompassing biosorption, bioaccumulation, and biotransformation. Toxigenic metal ions can be effectively sequestered, transformed, and immobilized, hence reducing their adverse environmental effects. Furthermore, bacteria are increasingly recognized as significant contributors to the process of biodegradation of microplastics, which are becoming increasingly prevalent as contaminants in marine environments. These microbial communities play a crucial role in the colonization, depolymerization, and assimilation processes of microplastic polymers, hence contributing to their eventual mineralization. In the realm of pesticides, bacteria play a significant role in the advancement of environmentally sustainable biopesticides and the biodegradation of synthetic pesticides, thereby mitigating their environmentally persistent nature and associated detrimental effects. Gaining a comprehensive understanding of the intricate dynamics between bacteria and anthropogenic contaminants is of paramount importance in the pursuit of technologically advanced and environmentally sustainable management approaches.
Collapse
Affiliation(s)
- Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
| | - Emad H El-Bilawy
- King Salman International University, South Sinai City, 46618, Egypt
| | | | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nermeen M Abu-Elala
- King Salman International University, South Sinai City, 46618, Egypt
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Elsayed B Belal
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Warda A M Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Arriola A, Al Saify I, Warner NA, Herzke D, Harju M, Amundsen PA, Evenset A, Möckel C, Krogseth IS. Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes. FRONTIERS IN TOXICOLOGY 2024; 6:1298231. [PMID: 38817305 PMCID: PMC11137240 DOI: 10.3389/ftox.2024.1298231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26-115.29 ng/g dw and 66.18-136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4-5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.
Collapse
Affiliation(s)
| | - Insam Al Saify
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, Netherlands
| | - Nicholas A. Warner
- Thermo Fisher Scientific, Bremen, Germany
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Dorte Herzke
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Mikael Harju
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Claudia Möckel
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ingjerd S. Krogseth
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Huang Y, Li Z. Assessing pesticides in the atmosphere: A global study on pollution, human health effects, monitoring network and regulatory performance. ENVIRONMENT INTERNATIONAL 2024; 187:108653. [PMID: 38669719 DOI: 10.1016/j.envint.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Pesticides are widely used in agriculture, but their impact on the environment and human health is a major concern. While much attention has been given to their presence in soil, water, and food, there have been few studies on airborne pesticide pollution on a global scale. This study aimed to assess the extent of atmospheric pesticide pollution in countries worldwide and identify regional differences using a scoring approach. In addition to analyzing the health risks associated with pesticide pollution, we also examined agricultural practices and current air quality standards for pesticides in these countries. The pollution scores varied significantly among the countries, particularly in Europe. Asian and Oceanic countries generally had higher scores compared to those in the Americas, suggesting a relatively higher level of air pollution caused by pesticides in these regions. It is worth noting that the current pollution levels, as assessed theoretically, pose minimal health risks to humans. However, studies in the literature have shown that excessive exposure to pesticides present in the atmosphere has been associated with various health problems, such as cancer, neuropsychiatric disorders, and other chronic diseases. Interestingly, European countries had the highest overall pesticide application intensities, but this did not necessarily correspond to higher atmospheric pesticide pollution scores. Only a few countries have established air quality standards specifically for pesticides. Furthermore, pollution scores across states in the USA were investigated and the global sampling sites were mapped. The findings revealed that the scores varied widely in the USA and the current sampling sites were limited or unevenly distributed in some countries, particularly the Nordic countries. These findings can help global relevant environmental agencies to set up comprehensive monitoring networks. Overall, the present research highlights the need to create a pesticide monitoring system and increase efforts to enhance pesticide regulation, ensure consistency in standards, and promote international cooperation.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
De Silva AO, Young CJ, Spencer C, Muir DCG, Sharp M, Lehnherr I, Criscitiello A. Canadian high arctic ice core records of organophosphate flame retardants and plasticizers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2001-2014. [PMID: 37856255 DOI: 10.1039/d3em00215b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Organophosphate esters (OPEs) have been used as flame retardants, plasticizers, and anti-foaming agents over the past several decades. Of particular interest is the long range transport potential of OPEs given their ubiquitous detection in Arctic marine air. Here we report 19 OPE congeners in ice cores drilled on remote icefields and ice caps in the Canadian high Arctic. A multi-decadal temporal profile was constructed in the sectioned ice cores representing a time scale spanning the 1970s to 2014-16. In the Devon Ice Cap record, the annual total OPE (∑OPEs) depositional flux for all of 2014 was 81 μg m-2, with the profile dominated by triphenylphosphate (TPP, 9.4 μg m-2) and tris(2-chloroisopropyl) phosphate (TCPP, 42 μg m-2). Here, many OPEs displayed an exponentially increasing depositional flux including TCPP which had a doubling time of 4.1 ± 0.44 years. At the more northern site on Mt. Oxford icefield, the OPE fluxes were lower. Here, the annual ∑OPEs flux in 2016 was 5.3 μg m-2, dominated by TCPP (1.5 μg m-2) but also tris(2-butoxyethyl) phosphate (1.5 μg m-2 TBOEP). The temporal trend for halogenated OPEs in the Mt. Oxford icefield is bell-shaped, peaking in the mid-2000s. The observation of OPEs in remote Arctic ice cores demonstrates the cryosphere as a repository for these substances, and supports the potential for long-range transport of OPEs, likely associated with aerosol transport.
Collapse
Affiliation(s)
- Amila O De Silva
- Aquatic Contaminants Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Cora J Young
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - Christine Spencer
- Aquatic Contaminants Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Martin Sharp
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Alison Criscitiello
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
6
|
Wang W, Zheng H, Huang P, Ye J, Liu M, Lin Y, Li Y, Chen M, Ke H, Cai M. Can water dating trace the transport history of HCHs in the ocean? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166227. [PMID: 37574073 DOI: 10.1016/j.scitotenv.2023.166227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Long-range atmospheric and oceanic transport play a crucial role in the accumulation of persistent organic pollutants (POPs), including hexachlorocyclohexanes (HCHs), in the Arctic Ocean. Herein, transient tracers, specifically chlorofluorocarbon-12 and sulfur hexafluoride, were used to determine the ventilation time of HCHs. Results revealed that dissolved HCHs can penetrate to a depth of ~500 m in the western Arctic Ocean, corresponding to water masses with a mean age of 45 ± 14 years. The average long-range transport time for α-HCH from initial atmospheric release to entering the western Arctic Ocean was estimated to be >30 ± 5 years, indicating continued moderate to high ecological risks from HCHs in the Arctic. This study demonstrates that transient tracers serve as effective water dating tools to elucidate the transport history of stable POPs in the ocean, contributing to a better understanding of their environmental characteristics and fate.
Collapse
Affiliation(s)
- Weimin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Ningbo 315000, China
| | - Haowen Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiandong Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifan Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mian Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Xuereb N, Ólafsdóttir K, Samarra F, Svavarsson J, Magnúsdóttir EE. POPs in long-finned pilot whales mass stranded in Iceland as a proxy for their physiological condition. MARINE POLLUTION BULLETIN 2023; 197:115758. [PMID: 37979533 DOI: 10.1016/j.marpolbul.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Long-finned pilot whales (Globicephala melas) are the most frequently stranded cetaceans in the world; however, the predominant drivers of these events are poorly understood. In this study the levels of persistent organic pollutants from pilot whales stranded in North-east Iceland were quantified and compared to historical data and physical parameters to investigate whether contaminant load may have influenced the physiological state of stranded individuals, how these loads fluctuate with sex and age group, and if this is consistent with the literature. Historical comparison was also carried out to discern how pollutant contamination has changed throughout the past few decades. DDE, transnonachlor and PCB-153 were the top three pollutants respectively. The accumulation of POPs was greater on average in immature individuals than adults, whilst among adults, males had higher concentration than females. Moreover, despite an indication of decreasing POP loads throughout the years, knowledge of harmful thresholds remains exceedingly limited.
Collapse
Affiliation(s)
- Nicholai Xuereb
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland.
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland
| | - Filipa Samarra
- University of Iceland's Institute of Research Centers, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| | - Edda Elísabet Magnúsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland; Faculty of Subject Teacher Education, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| |
Collapse
|
8
|
Ayri I, Genisoglu M, Sofuoglu A, Kurt-Karakus PB, Birgul A, Sofuoglu SC. The effect of military conflict zone in the Middle East on atmospheric persistent organic pollutant contamination in its north. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162966. [PMID: 36958550 DOI: 10.1016/j.scitotenv.2023.162966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to investigate long-range atmospheric transport of selected POPs released due to the effects of military conflicts in regions to the south of Turkey's borders. Ten locations were selected to deploy passive air samplers at varying distances to the border on a southeast-west transect of the country, proximity-grouped as close, middle, and far. Sampling campaign included winter and transition months when desert dust transport events occur. Hypothesis of the study was that a decreasing trend would be observed with increasing distance to the border. Group comparisons based on statistical testing showed that PBDE-183, Σ45PCB, and dieldrin in winter; PBDE-28, PBDE-99, PBDE-154, p,p'-DDE, Σ14PBDE, and Σ25OCP in the transition period; and PBDE-28, PBDE-85, PBDE-99, PBDE-154, PBDE-190, PCB-52, Σ45PCB, p,p'-DDE, and Σ25OCP over the whole campaign had a decreasing trend on the transect. An analysis of concentration ratio to the background showed that long-range atmospheric transport impacted the study sites, especially those of close group in comparison to the local sources. Back-trajectory analyses indicated that there was transport from the conflict areas to sites in the close-proximity group, while farther sampling locations mostly received air masses from Europe, Russia, and former Soviet Union countries, followed by North Africa, rather than the military conflict areas. In consequence, decrease in concentrations with distance and its relation to molecular weight through proportions, diagnostic ratios, analysis of concentration ratio to the background, and back-trajectory analyses support the effect of transport from the military-conflict area to its north.
Collapse
Affiliation(s)
- Ilknur Ayri
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey
| | - Mesut Genisoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Dept. of Chemical Engineering, Izmir, Turkey
| | | | - Askin Birgul
- Bursa Technical University, Dept. of Environmental Engineering, Bursa, Turkey
| | - Sait C Sofuoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey.
| |
Collapse
|
9
|
Iakovides M, Sciare J, Mihalopoulos N. Simple multi-residue analysis of persistent organic pollutants and molecular tracers in atmospheric samples. MethodsX 2023; 10:102224. [PMID: 37251654 PMCID: PMC10209013 DOI: 10.1016/j.mex.2023.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
We present a simple, selective and sensitive analytical method to quantitatively determine a wide range of halogenated persistent organic pollutants and molecular tracers in atmospheric samples. Identification and quantification was carried out by high-resolution gas chromatography, hyphenated with low-resolution mass spectrometry operating in electron impact (EI) and electron capture negative ionization (ECNI) mode. Optimization on a number of instrumental parameters was conducted to obtain ultra-trace detection limits, in the range of few fg/m3 for organohalogen compounds. Repeatability and reproducibility of the method was thoroughly evaluated. The analysis was validated with standard reference materials and successfully applied to actual atmospheric samples. The proposed multi-residue method provides a precise, affordable and practical procedure of sample analysis for environmental research laboratories with conventional instrumentation on a routine basis.•A simple combination of alumina, florisil and silica gel adsorbents was applied to sufficiently isolate polychlorinated biphenyls, organochlorine pesticides, polycyclic aromatic hydrocarbons, long chain n-alkanes, hopanes and steranes.•Full elution was achieved in two successive fractions, using small volumes of n-hexane and n-hexane/dichloromethane to recover all target substances.•To maximize analytical response, optimization was applied for three operating parameters in ECNI mode: i) ion source temperature; ii) emission current; and iii) electron energy.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Str., Aglantzia 2121, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Str., Aglantzia 2121, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Str., Aglantzia 2121, Cyprus
- Chemistry Department, University of Crete, Heraklion Crete 71003, Greece
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, Athens 15236, Greece
| |
Collapse
|
10
|
Chaudhuri S, Roy M. Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-39. [PMID: 37363020 PMCID: PMC9970857 DOI: 10.1007/s10668-023-03043-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/14/2023] [Indexed: 06/28/2023]
Abstract
Surging incidents of air quality-related public health hazards, and environmental degradation, have prompted the global authorities to seek newer avenues of air quality monitoring, especially in developing economies, where the situation appears most alarming besides difficulties around 'adequate' deployment of air quality sensors. In the present narrative, we adopt a systematic review methodology (PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses) around recent global literature (2002-2022), around moss-based passive biomonitoring approaches which might offer the regulatory authorities a complementary means to fill 'gaps' in existing air quality records. Following the 4-phased search procedure under PRISMA, total of 123 documents were selected for review. A wealth of research demonstrates how passive biomonitoring, with strategic use of mosses, could become an invaluable regulatory (and research) tool to monitor atmospheric deposition patterns and help identifying the main drivers of air quality changes (e.g., anthropogenic and/or natural). Besides individual studies, we briefly reflect on the European Moss Survey, underway since 1990, which aptly showcases mosses as 'naturally occurring' sensors of ambient air quality for a slew of metals (heavy and trace) and persistent organic pollutants, and help assessing spatio-temporal changes therein. To that end, we urge the global research community to conduct targeted research around various pollutant uptake mechanisms by mosses (e.g., species-specific interactions, environmental conditions, land management practices). Of late, mosses have found various environmental applications as well, such as in epidemiological investigations, identification of pollutant sources and transport mechanisms, assessment of air quality in diverse and complex urban ecosystems, and even detecting short-term changes in ambient air quality (e.g., COVID-19 Lockdown), each being critical for the authorities to develop informed and strategic regulatory measures. To that end, we review current literature and highlight to the regulatory authorities how to extend moss-based observations, by integrating them with a wide range of ecological indicators to assess regional environmental vulnerability/risk due to degrading air quality. Overall, an underlying motive behind this narrative was to broaden the current regulatory outlook and purview, to bolster and diversify existing air quality monitoring initiatives, by coupling the moss-based outputs with the traditional, sensor-based datasets, and attain improved spatial representation. However, we also make a strong case of conducting more targeted research to fill in the 'gaps' in our current understanding of moss-based passive biomonitoring details, with increased case studies. Supplementary Information The online version contains supplementary material available at 10.1007/s10668-023-03043-0.
Collapse
Affiliation(s)
- Sriroop Chaudhuri
- Jindal School of Liberal Arts and Humanities; Center for Environment, Sustainability and Human Development (CESH), O.P. Jindal Global University, Sonipat, Haryana 131001 India
| | - Mimi Roy
- Jindal School of Liberal Arts and Humanities; Center for Environment, Sustainability and Human Development (CESH), O.P. Jindal Global University, Sonipat, Haryana 131001 India
| |
Collapse
|
11
|
Deng Y, Xu W, Zeng Q, Sun F, Wang F, Li Y. Effects of temperature and relative humidity on soil-air partition coefficients of organophosphate flame retardants and polybrominated diphenyl ethers. CHEMOSPHERE 2022; 291:132716. [PMID: 34718008 DOI: 10.1016/j.chemosphere.2021.132716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The soil-air partition coefficients (KSA) of polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (OPFRs) is important for determining their fate in soil and air media. However, KSA values of OPFRs and PBDEs are not available from the current literature, and the effects of environmental factors such as temperature and relative humidity (RH) on KSA values are not clear. In this study, a solid-phase fugacity meter was used to measure the KSA values of PBDEs and OPFRs at different temperatures (25, 30, 35, 40, and 45 °C) and relative humidity (RH) conditions (<3 and 100% RH), the relationships between KSA and octanol-air partition coefficients (KOA) for OPFRs and PBDEs were analyzed. The results showed that an increase in temperature and RH resulted in a decrease of all KSA values for PBDEs and OPFRs. Furthermore, the effects of RH on the soil-air partitioning behavior of PBDEs were larger than that of OPFRs. In addition, a significant correlation (p < 0.0001) was observed between log KSA and log KOA. The experimental KSA values of OPFRs and PBDEs were quite different from the predicted KSA, when calculated with their KOA values. Overall, this study provides a better understanding for predicting the behavior and fate of OPFRs and PBDEs in soil-air systems.
Collapse
Affiliation(s)
- Yun Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Qinghuai Zeng
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
12
|
Chen K, Huang T, Zhang X, Liu X, Huang Y, Wang L, Zhao Y, Gao H, Tao S, Liu J, Jian X, Gusev A, Ma J. The footprint of dioxins in globally traded pork meat. iScience 2021; 24:103255. [PMID: 34755094 PMCID: PMC8564055 DOI: 10.1016/j.isci.2021.103255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The bioaccumulation of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), known as dioxins, in fatty meat is one of primary pathways of entry into the human body, but levels of human exposure to dioxins in fatty meat subject to global trade are unknown. We show high dioxin estimated dietary intake (EDI) via pork consumption in Europe, the United States, and China, owing to stronger dioxin environmental contamination and high pork consumption in these countries. The dioxin risk transfer embodied in pork trade is mostly significant in high-latitude countries and regions of Canada, Russia, and Greenland because these regions with low dioxin environmental levels import large amounts of pork meat from more severely dioxin-contaminated Europe and the United States. We demonstrate that global pig feed trading decreases the exposure of pork consumers to dioxins via the import of feed from countries with low dioxin environmental contamination by pig breeding countries.
Collapse
Affiliation(s)
- Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinrui Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yufei Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Linfei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaohu Jian
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Alexey Gusev
- Meteorological Synthesizing Centre-East, Convention on Long-Range Transboundary Air Pollution, Moscow, Russia
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.,Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Fuoco R, Giannarelli S. Integrity of aquatic ecosystems: An overview of a message from the South Pole on the level of persistent organic pollutants (POPs). Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Olk DC, Bloom PR, Perdue EM, McKnight DM, Chen Y, Farenhorst A, Senesi N, Chin YP, Schmitt-Kopplin P, Hertkorn N, Harir M. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:217-232. [PMID: 30951132 DOI: 10.2134/jeq2019.02.0041] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To study the structure and function of soil organic matter, soil scientists have performed alkali extractions for soil humic acid (HA) and fulvic acid (FA) fractions for more than 200 years. Over the last few decades aquatic scientists have used similar fractions of dissolved organic matter, extracted by resin adsorption followed by alkali desorption. Critics have claimed that alkali-extractable fractions are laboratory artifacts, hence unsuitable for studying natural organic matter structure and function in field conditions. In response, this review first addresses specific conceptual concerns about humic fractions. Then we discuss several case studies in which HA and FA were extracted from soils, waters, and organic materials to address meaningful problems across diverse research settings. Specifically, one case study demonstrated the importance of humic substances for understanding transport and bioavailability of persistent organic pollutants. An understanding of metal binding sites in FA and HA proved essential to accurately model metal ion behavior in soil and water. In landscape-based studies, pesticides were preferentially bound to HA, reducing their mobility. Compost maturity and acceptability of other organic waste for land application were well evaluated by properties of HA extracted from these materials. A young humic fraction helped understand N cycling in paddy rice ( L.) soils, leading to improved rice management. The HA and FA fractions accurately represent natural organic matter across multiple environments, source materials, and research objectives. Studying them can help resolve important scientific and practical issues.
Collapse
|
15
|
Kosek K, Polkowska Ż, Żyszka B, Lipok J. Phytoplankton communities of polar regions--Diversity depending on environmental conditions and chemical anthropopressure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 171:243-259. [PMID: 26846983 DOI: 10.1016/j.jenvman.2016.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The polar regions (Arctic and Antarctic) constitute up to 14% of the biosphere and offer some of the coldest and most arid Earth's environments. Nevertheless several oxygenic phototrophs including some higher plants, mosses, lichens, various algal groups and cyanobacteria, survive that harsh climate and create the base of the trophic relationships in fragile ecosystems of polar environments. Ecosystems in polar regions are characterized by low primary productivity and slow growth rates, therefore they are more vulnerable to disturbance, than those in temperate regions. From this reason, chemical contaminants influencing the growth of photoautotrophic producers might induce serious disorders in the integrity of polar ecosystems. However, for a long time these areas were believed to be free of chemical contamination, and relatively protected from widespread anthropogenic pressure, due their remoteness and extreme climate conditions. Nowadays, there is a growing amount of data that prove that xenobiotics are transported thousands of kilometers by the air and ocean currents and then they are deposed in colder regions and accumulate in many environments, including the habitats of marine and freshwater cyanobacteria. Cyanobacteria (blue green algae), as a natural part of phytoplankton assemblages, are globally distributed, but in high polar ecosystems they represent the dominant primary producers. These microorganisms are continuously exposed to various concentration levels of the compounds that are present in their habitats and act as nourishment or the factors influencing the growth and development of cyanobacteria in other way. The most common group of contaminants in Arctic and Antarctic are persistent organic pollutants (POPs), characterized by durability and resistance to degradation. It is important to determine their concentrations in all phytoplankton species cells and in their environment to get to know the possibility of contaminants to transfer to higher trophic levels, considering however that some strains of microalgae are capable of metabolizing xenobiotics, make them less toxic or even remove them from the environment.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Beata Żyszka
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Oleska 48 St., Opole 45-052, Poland.
| | - Jacek Lipok
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Oleska 48 St., Opole 45-052, Poland.
| |
Collapse
|