1
|
Rangra S, Agnihotri P, Biswas S, Aggarwal KK. Phytochemicals from Musa acuminata Colla peel exhibit cathepsin B inhibition and anti-inflammatory activity. Fitoterapia 2025; 183:106540. [PMID: 40222554 DOI: 10.1016/j.fitote.2025.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory illness in which inflammatory mediators and cathepsin B and other proteases play a role in disease progression. The existing treatments may have negative side effects. Therefore, an alternative natural therapy for RA has been considered safe and beneficial. Secondary metabolites from plants have been suggested as one such alternative. In our present study phytochemicals from Musa acuminata (banana) peel have been explored for their anti-cathepsin B and anti-inflammatory potential. The crude phytochemical extract inhibited cathepsin B with an IC50 value of 1.151 mg/ml. One hundred phytochemicals were identified by GC-MS in the extract. Cathepsin B inhibitory potential of each identified phytochemical was assessed using in-silico studies and revealed stigmasterol, campesterol, methyl linolenate, and methyl linoleate possessed more favourable binding energy than positive control (E-64-cathepsin B complex) and inhibited cathepsin B in-vitro. The combinatorial action of compounds resulted in synergistic cathepsin B inhibition where a combination of campesterol, stigmasterol, and methyl linolenate showed maximum inhibition of 97.80 %. Methyl linolenate showed the least inhibition constant among other compounds. Cell line studies with methyl linolenate showed no toxicity to SW982 cells and also downregulated p65 expression at 5 μM in TNF-α induced SW982 human synovial fibroblast cells indicating its anti-inflammation role. Thus, the study has shown that banana peel may serve as a resource for exploring phytochemicals for their anti-inflammatory role in RA as a nutraceutical. Being an edible plant, it may be suggested as a dietary supplement to combat RA and cathepsin B associated pathologies.
Collapse
Affiliation(s)
- Sabita Rangra
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India.
| |
Collapse
|
2
|
El Gendy SN, Elmotayam AK, Samir R, Ezzat MI, Abo-Elfadl MT, El Sayed AM. Biotransformation of quercetin by Bacillus subtilis and anticancer activity evaluation: in vitro and in Silico. AMB Express 2025; 15:58. [PMID: 40175638 PMCID: PMC11965081 DOI: 10.1186/s13568-025-01860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Biotransformation of quercetin by Bacillus subtilis ATCC 23,857 yielded a major metabolite; apigenin-7-O-pentoside (A7P) and 9 other phenolic metabolites. They were elucidated by LC-ESI-TOF-MS/MS analysis. Furthermore, the cytotoxic potential of the biotransformed products was compared to their parent substrate (S) using MTT assay against 2 cancer cell lines; A549 and Caco-2. After 72 h. incubation, the BPs showed concentration-dependent cytotoxic activity against Caco-2 and A549 with IC50 equal to 0.32 and 0.78 mg/ml, respectively. Both BPs and S were safe on the normal human skin fibroblast (hFB) cell line. Molecular docking confirmed the high binding affinity of A7P towards phosphatidyl inositide 3-kinase delta (PI3Kδ) and Cathepsin B protein (CatB) expressed in lung and colorectal cancer cells compared to quercetin suggesting higher anticancer activity. The present findings suggest that the application of biotransformation techniques using bacteria as B. subtilis can enhance the biological activity of flavonoids by generating bioactive metabolites.
Collapse
Affiliation(s)
- Salsabeel N El Gendy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Amira K Elmotayam
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Mahmoud T Abo-Elfadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, 12622, Egypt
| | - Aly M El Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Park JY, Park KM. Recent discovery of natural substances with cathepsin L-inhibitory activity for cancer metastasis suppression. Eur J Med Chem 2024; 277:116754. [PMID: 39128327 DOI: 10.1016/j.ejmech.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
4
|
Pineda-Suazo D, Escobedo-Hinojosa W, Fabian-Canseco LE, Gallardo P, Moguel-Ojeda C, Caamal-Monsreal C, Sánchez-Arteaga A, Rosas C. Evaluation of Octopus maya enzyme activity of the digestive gland and gastric juice. Biol Open 2024; 13:bio060429. [PMID: 39140156 PMCID: PMC11413930 DOI: 10.1242/bio.060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
As the demand for Octopus maya grows, sustainable farming practices become essential to prevent overexploitation, so that farming can be developed as a sustainable alternative to traditional fishing. Understanding the digestive dynamics of the octopus is essential for devising optimal dietary formulations in aquaculture. Despite the progress in understanding cephalopod digestion, little is known about the specific functioning of the digestive enzymes responsible for breaking down protein substrates. This knowledge gap underscores the need for further research to support sustainable O. maya population management. In this paper, dietary formulations are identified for cephalopods by characterizing O. maya digestive enzymes present in the digestive gland and gastric juice. The investigation revealed that acidic proteases showed a peak activity at higher temperatures than alkaline proteases. Inhibitors confirmed the presence of H, L, and D cathepsins. The lower activation energy of alkaline enzymes compared to acidic ones observed highlights an intriguing aspect of O. maya's digestive physiology. This research provides valuable insights into O. maya digestive enzyme functions, representing a significant advancement in formulating diets crucial for successful octopus farming that may help to fully understand its physiology.
Collapse
Affiliation(s)
- Daisy Pineda-Suazo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucma, Yucatán, C. P. 97356, México
| | - Wendy Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, 97356 Sisal, Yucatán, México
| | - Lenin E. Fabian-Canseco
- Instituto Tecnológico Superior de Tlatlauquitepec, Carretera Federal Amozoc-Nautla Km. 122+600 Almoloni Tlatlauquitepec, Puebla, C. P. 73907, México
| | - Pedro Gallardo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucma, Yucatán, C. P. 97356, México
| | - Cintia Moguel-Ojeda
- Posgrado en Ciencias del Mar y Limnología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, C. P. 97356, México
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucma, Yucatán, C. P. 97356, México
| | - Ariadna Sánchez-Arteaga
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucma, Yucatán, C. P. 97356, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucma, Yucatán, C. P. 97356, México
| |
Collapse
|
5
|
Ajani TA, Magwebu ZE, Chauke CG, Obikeze K. Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development. PATHOPHYSIOLOGY 2024; 31:471-487. [PMID: 39311309 PMCID: PMC11417842 DOI: 10.3390/pathophysiology31030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult to develop inhibitors with specificity for either CatS, CatK, or CatL. The involvement of CatS in various disease pathophysiologies (autoimmune disorders, cardiovascular diseases, cancer, etc.) has made it a very important target in drug development. Efforts have been made since the early 1990s to develop a specific CatS inhibitor without any major success. Following many failed efforts to develop an inhibitor for CatS, it was discovered that interactions with the amino acid residues at the S2 and S3 pockets of CatS are critical for the identification of CatS-specific inhibitors. Amino acid residues at these pockets have been the target of recent research focused on developing a non-covalent, reversible, and specific CatS inhibitor. Methods applied in the identification of CatS inhibitors include molecular modeling, in-vitro screening, and in-vivo studies. The molecular modeling process has proven to be very successful in the identification of CatS-specific inhibitors, with R05459072 (Hoffmann-La Roche) and LY3000328 (Eli Lilly Company) which has completed phase 1 clinical trials. CatS inhibitors identified from 2011 to 2023 with promising prospects are discussed in this article.
Collapse
Affiliation(s)
- Temitope A. Ajani
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - Zandisiwe E. Magwebu
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Chesa G. Chauke
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Kenechukwu Obikeze
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
6
|
Romano LK, Soares EJ, Alves Amorim A, Geng Vivanco R, Pires-de-Souza FDCP. Effect of natural agents on the bond strength to eroded dentin. J ESTHET RESTOR DENT 2024; 36:770-777. [PMID: 38014602 DOI: 10.1111/jerd.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study evaluated the effect of bromelain and propolis extract on the bond strength (BS) of a universal adhesive system to eroded dentin. MATERIALS AND METHODS Sixty human molars with exposed dentin were halved, with one half protected by composite resin and the other subjected to erosive treatment followed by remineralization. After the erosive treatment, the composite resin was removed, and the teeth were randomly assigned to three groups (n = 20): Adhesive-Control System; Br-10%; Pr-16%. Following the treatments, composite resin blocks were built on the dentin surfaces and sticks of 0.9 mm2 were obtained and stored in distilled water at 37°C for 24 h and 6 months. After these periods, the sticks underwent bond strength testing and the data were analyzed using 2-way ANOVA, Bonferroni test, p < 0.05. Fracture patterns were observed using light microscope and scanning electron microscopy. RESULTS Irrespective of the substrate and aging duration, propolis demonstrated higher BS (p < 0.05) compared to the other treatments. Eroded dentin exhibited greater removal of the smear layer and dentinal tubules with a larger diameter than sound dentin, especially when treated with bromelain, resulting in the formation of resin tags. CONCLUSIONS Propolis consistently promoted the highest bond strength, irrespective of aging or substrate. Eroded dentin treated with propolis, or bromelain exhibited a higher prevalence of non-adhesive fractures and resin tag formation. CLINICAL SIGNIFICANCE Propolis shows promise for enhancing the longevity of adhesive restorations in eroded dentin due to its ability to promote high bond strength.
Collapse
Affiliation(s)
- Laryssa Karla Romano
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo José Soares
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayodele Alves Amorim
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Rocio Geng Vivanco
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
7
|
Zaib S, Rana N, Ali HS, Hussain N, Areeba, Ogaly HA, Al-Zahrani FAM, Khan I. Discovery of druggable potent inhibitors of serine proteases and farnesoid X receptor by ligand-based virtual screening to obstruct SARS-CoV-2. Int J Biol Macromol 2023; 253:127379. [PMID: 37838109 DOI: 10.1016/j.ijbiomac.2023.127379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The coronavirus, a subfamily of the coronavirinae family, is an RNA virus with over 40 variations that can infect humans, non-human mammals and birds. There are seven types of human coronaviruses, including SARS-CoV-2, is responsible for the recent COVID-19 pandemic. The current study is focused on the identification of drug molecules for the treatment of COVID-19 by targeting human proteases like transmembrane serine protease 2 (TMPRSS2), furin, cathepsin B, and a nuclear receptor named farnesoid X receptor (FXR). TMPRSS2 and furin help in cleaving the spike protein of the SARS-CoV-2 virus, while cathepsin B plays a critical role in the entry and pathogenesis. FXR, on the other hand, regulates the expression of ACE2, and its inhibition can reduce SARS-CoV-2 infection. By inhibiting these four protein targets with non-toxic inhibitors, the entry of the infectious agent into host cells and its pathogenesis can be obstructed. We have used the BioSolveIT suite for pharmacophore-based computational drug designing. A total of 1611 ligands from the ligand library were docked with the target proteins to obtain potent inhibitors on the basis of pharmacophore. Following the ADMET analysis and protein ligand interactions, potent and druggable inhibitors of the target proteins were obtained. Additionally, toxic substructures and the less toxic route of administration of the most potent inhibitors in rodents were also determined computationally. Compounds namely N-(diaminomethylene)-2-((3-((1R,3R)-3-(2-(methoxy(methyl)amino)-2-oxoethyl)cyclopentyl)propyl)amino)-2-oxoethan-1-aminium (26), (1R,3R)-3-(((2-ammonioethyl)ammonio)methyl)-1-((4-propyl-1H-imidazol-2-yl)methyl)piperidin-1-ium (29) and (1R,3R)-3-(((2-ammonioethyl)ammonio)methyl)-1-((1-propyl-1H-pyrazol-4-yl)methyl)piperidin-1-ium (30) were found as the potent inhibitors of TMPRSS2, whereas, 1-(1-(1-(1H-tetrazol-1-yl)cyclopropane-1‑carbonyl)piperidin-4-yl)azepan-2-one (6), (2R)-4-methyl-1-oxo-1-((7R,11S)-4-oxo-6,7,8,9,10,11-hexahydro-4H-7,11-methanopyrido[1,2-a]azocin-9-yl)pentan-2-aminium (12), 4-((1-(3-(3,5-dimethylisoxazol-4-yl)propanoyl)piperidin-4-yl)methyl)morpholin-4-ium (13), 1-(4,6-dimethylpyrimidin-2-yl)-N-(3-oxocyclohex-1-en-1-yl)piperidine-4-carboxamide (14), 1-(4-(1,5-dimethyl-1H-1,2,4-triazol-3-yl)piperidin-1-yl)-3-(3,5-dimethylisoxazol-4-yl)propan-1-one (25) and N,N-dimethyl-4-oxo-4-((1S,5R)-8-oxo-5,6-dihydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(2H,4H,8H)-yl)butanamide (31) inhibited the FXR preferentially. In case of cathepsin B, N-((5-benzoylthiophen-2-yl)methyl)-2-hydrazineyl-2-oxoacetamide (2) and N-([2,2'-bifuran]-5-ylmethyl)-2-hydrazineyl-2-oxoacetamide (7) were identified as the most druggable inhibitors whereas 1-amino-2,7-diethyl-3,8-dioxo-6-(p-tolyl)-2,3,7,8-tetrahydro-2,7-naphthyridine-4‑carbonitrile (5) and (R)-6-amino-2-(2,3-dihydroxypropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (20) were active against furin.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hafiz Saqib Ali
- INEOS Oxford Institute for Antimicrobial Research and Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, P.O. Box 64141, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, P.O. Box 144534, United Arab Emirates
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatimah A M Al-Zahrani
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
8
|
Li Y, Wang K, Sun H, Wu S, Wang H, Shi Y, Li X, Yan H, Yang G, Wu M, Li Y, Ding X, Si S, Jiang J, Du Y, Li Y, Hong B. Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2. Antiviral Res 2023; 214:105606. [PMID: 37076089 PMCID: PMC10110284 DOI: 10.1016/j.antiviral.2023.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate as a broad-spectrum anti-coronavirus agent that could rapidly respond to emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Yihua Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Du
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Rivera RG, Regidor PJS, Ruamero Jr EC, Allanigue EJV, Salinas MV. A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19. Genomics Inform 2023; 21:e4. [PMID: 37037462 PMCID: PMC10085743 DOI: 10.5808/gi.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/27/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.
Collapse
Affiliation(s)
- Robertson G. Rivera
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Patrick Junard S. Regidor
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Edwin C. Ruamero Jr
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Eric John V. Allanigue
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Melanie V. Salinas
- Safety and Medical Affairs Department, Clinchoice Inc., Fort Washington, PA 19034, USA
| |
Collapse
|
10
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
11
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
12
|
Fé LXSGM, Cipolatti EP, Pinto MCC, Branco S, Nogueira FCS, Ortiz GMD, Pinheiro ADS, Manoel EA. Enzymes in the time of COVID-19: An overview about the effects in the human body, enzyme market, and perspectives for new drugs. Med Res Rev 2022; 42:2126-2167. [PMID: 35762498 PMCID: PMC9350392 DOI: 10.1002/med.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The rising pandemic caused by a coronavirus, resulted in a scientific quest to discover some effective treatments against its etiologic agent, the severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). This research represented a significant scientific landmark and resulted in many medical advances. However, efforts to understand the viral mechanism of action and how the human body machinery is subverted during the infection are still ongoing. Herein, we contributed to this field with this compilation of the roles of both viral and human enzymes in the context of SARS‐CoV‐2 infection. In this sense, this overview reports that proteases are vital for the infection to take place: from SARS‐CoV‐2 perspective, the main protease (Mpro) and papain‐like protease (PLpro) are highlighted; from the human body, angiotensin‐converting enzyme‐2, transmembrane serine protease‐2, and cathepsins (CatB/L) are pointed out. In addition, the influence of the virus on other enzymes is reported as the JAK/STAT pathway and the levels of lipase, enzymes from the cholesterol metabolism pathway, amylase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and glyceraldehyde 3‐phosphate dehydrogenase are also be disturbed in SARS‐CoV‐2 infection. Finally, this paper discusses the importance of detailed enzymatic studies for future treatments against SARS‐CoV‐2, and how some issues related to the syndrome treatment can create opportunities in the biotechnological market of enzymes and the development of new drugs.
Collapse
Affiliation(s)
- Luana Xavier Soares Gomes Moura Fé
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Pereira Cipolatti
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Martina Costa Cerqueira Pinto
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.,Chemical Engineering Program, Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia (COPPE), Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suema Branco
- Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisela Maria Dellamora Ortiz
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson de Sá Pinheiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelin Andrade Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Mota FAR, Pereira SAP, Araújo ARTS, Gullón B, Passos MLC, Saraiva MLMFS. Automatic Identification of Myeloperoxidase Natural Inhibitors in Plant Extracts. Molecules 2022; 27:molecules27061825. [PMID: 35335191 PMCID: PMC8950977 DOI: 10.3390/molecules27061825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is the development of an automated method for myeloperoxidase activity evaluation and its application in testing the inhibitory action of different plant extracts on the activity of the enzyme. This enzyme has its concentration increased in inflammatory and infectious processes, so it is a possible target to limit these processes. Therefore, an automatic sequential in-jection analysis (SIA) system was optimized and demonstrated that it is possible to obtain results with satisfactory accuracy and precision. With the developed method, plant extracts were studied, as promising candidates for MPO inhibition. In the group of selected plant extracts, IC50 values from 0.029 ± 0.002 mg/mL to 35.4 ± 3.5 mg/mL were obtained. Arbutus unedo L. proved to be the most inhibitory extract for MPO based on its phenolic compound content. The coupling of an automatic SIA method to MPO inhibition assays is a good alternative to other conventional methods, due to its simplicity and speed. This work also supports the pharmacological use of these species that inhibit MPO, and exhibit activity that may be related to the treatment of infection and inflammation.
Collapse
Affiliation(s)
- Fátima A. R. Mota
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
| | - Sarah A. P. Pereira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
| | - André R. T. S. Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No 50, 6300-559 Guarda, Portugal
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Correspondence: (M.L.C.P.); (M.L.M.F.S.S.); Tel.: +351-220428643 (M.L.C.P.); +351-220428674 (M.L.M.F.S.S.)
| | - Maria Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Correspondence: (M.L.C.P.); (M.L.M.F.S.S.); Tel.: +351-220428643 (M.L.C.P.); +351-220428674 (M.L.M.F.S.S.)
| |
Collapse
|
14
|
Bahuguna A, Pal Khaket T, Bajpai VK, Shukla S, Park I, Na M, Suk Huh Y, Han YK, Chul Kang S, Kim M. N-acetyldopamine dimers from Oxya chinensis sinuosa attenuates lipopolysaccharides induced inflammation and inhibits cathepsin C activity. Comput Struct Biotechnol J 2022; 20:1177-1188. [PMID: 35317232 PMCID: PMC8908036 DOI: 10.1016/j.csbj.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/03/2022] Open
|
15
|
Sage J, Renault J, Domain R, Bojarski K, Chazeirat T, Saidi A, Leblanc E, Nizard C, Samsonov S, Kurfurst R, Lalmanach G, Lecaille F. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biol 2022; 107:97-112. [DOI: 10.1016/j.matbio.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
|
16
|
Hansen PE. Structural Studies of β-Diketones and Their Implications on Biological Effects. Pharmaceuticals (Basel) 2021; 14:ph14111189. [PMID: 34832971 PMCID: PMC8622542 DOI: 10.3390/ph14111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The paper briefly summarizes methods to determine the structure of β-diketones with emphasis on NMR methods. Density functional calculations are also briefly treated. Emphasis is on the tautomeric equilibria of β-diketones in relation to biological effects. Relevant physical parameters such as acidity and solubility are treated. A series of biologically active molecules are treated with respect to structure (tautomerism). Characteristic molecules or groups of molecules are usnic acids, tetramic and tetronic acids, o-hydroxydibenzoylmethanes, curcumines, lupulones, and hyperforines.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
17
|
Hansen PE. NMR of Natural Products as Potential Drugs. Molecules 2021; 26:3763. [PMID: 34205539 PMCID: PMC8235798 DOI: 10.3390/molecules26123763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/21/2023] Open
Abstract
This review outlines methods to investigate the structure of natural products with emphasis on intramolecular hydrogen bonding, tautomerism and ionic structures using NMR techniques. The focus is on 1H chemical shifts, isotope effects on chemical shifts and diffusion ordered spectroscopy. In addition, density functional theory calculations are performed to support NMR results. The review demonstrates how hydrogen bonding may lead to specific structures and how chemical equilibria, as well as tautomeric equilibria and ionic structures, can be detected. All these features are important for biological activity and a prerequisite for correct docking experiments and future use as drugs.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
18
|
Damayanti S, Fabelle NR, Yooin W, Insanu M, Jiranusornkul S, Wongrattanakamon P. Molecular modeling for potential cathepsin L inhibitor identification as new anti-photoaging agents from tropical medicinal plants. J Bioenerg Biomembr 2021; 53:259-274. [PMID: 33818669 DOI: 10.1007/s10863-021-09893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Ultraviolet exposure can cause photoaging toward the human skin which is begun by the inflammation on the exposure area, also resulting in activation of a degradative enzyme cathepsin L. This enzyme is one of the interesting novel therapeutic targets for antiaging agents. Three plants, named Kleinhovia hospita, Aleurites moluccana, and Centella asiatica, are well-known in the tropical region as anti-inflammatory herbs. The aims of this study were to predict the antiaging activity of the 31 compounds from these plants via inhibition of cathepsin L. All compounds were minimized their energies and then used in molecular docking. After that, molecular dynamics (MD) simulation was employed for the 5 candidate ligands and the positive control; schinol. Interaction analysis results of the pre-MD and post-MD simulation structures were obtained. Furthermore, a toxicity test was performed using ADMET Predictor 7.1. Based on the molecular docking and the MD simulation results, kleinhospitine A, β-amyrin, and castiliferol exhibited lower binding free energy than schinol (-27.0925, -28.6813, -26.0037 kcal/mol) and also had interactions with the S´ region binding site. The toxicity test indicated that β-amyrin is the most potential candidate since it exhibited the lowest binding energy and the high safety level.
Collapse
Affiliation(s)
- Sophi Damayanti
- Pharmacochemistry Research Group, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesa 10, Bandung, 40132, Indonesia
- University Center of Excellence on Artificial Intelligence for Vision, Natural Language Processing & Big Data Analytics (U-CoE AI-VLB), Jalan Ganesa 10, Bandung, 40132, Indonesia
| | - Nabilla Rizkia Fabelle
- Pharmacochemistry Research Group, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesa 10, Bandung, 40132, Indonesia
| | - Wipawadee Yooin
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Muhamad Insanu
- Pharmaceutical Biology Research Group, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesa 10, Bandung, 40132, Indonesia
| | - Supat Jiranusornkul
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.
| | - Pathomwat Wongrattanakamon
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2021; 84:161-182. [PMID: 33352046 PMCID: PMC7771248 DOI: 10.1021/acs.jnatprod.0c00968] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 05/03/2023]
Abstract
Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.
Collapse
Affiliation(s)
- Mitchell P. Christy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Yoshinori Uekusa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Geng Vivanco R, Tonani-Torrieri R, Souza ABS, Marquele-Oliveira F, Pires-de-Souza FDCP. Effect of natural primer associated to bioactive glass-ceramic on adhesive/dentin interface. J Dent 2021; 106:103585. [PMID: 33465450 DOI: 10.1016/j.jdent.2021.103585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES This study evaluated the effect of propolis associated with Biosilicate on the bond strength (BS) and gelatinolytic activity at the adhesive/dentin interface. METHODS Occlusal cavities were prepared in 320 human molars. Half of them were submitted to cariogenic challenge. All the teeth were separated into eight groups (n = 20): Control - Adhesive System (Single Bond Universal, 3 MESPE); CHX - 0.12 % Chlorhexidine; Bio - 10 % Biosilicate; P16 - Propolis with low levels of polyphenols; P45 - Propolis with high levels of polyphenols; CHX Bio - CHX + Bio; P16 Bio - P16+Bio; P45 Bio - P45+Bio. The adhesive was applied (self-etch mode) after treatments. Restorations (Filtek Z350, 3 MESPE) were performed and samples sectioned into sticks, separated and stored in distilled water at 37 °C for 24 h, 6 months and 1 year. Microtensile BS (0.5 mm/min) was tested and analyzed (2-way ANOVA, Bonferroni's Test, p < .05 and Weibull analysis). Fracture patterns (VH-M100, Keyence) and adhesive interfaces (SEM, EVO-MA10, ZEISS and TEM, JEM-1010, JEOL) were observed; and biodegradation and in situ zymography performed. RESULTS P16 presented the highest BS values on sound dentin after 6 months. In caries-affected dentin (CAD), the association of treatments promoted the highest BS after 24 h. Sound dentin obtained significantly higher Weibull modulus than CAD. SEM displayed resin tags in P16, P45 and association of treatments. TEM showed good interaction between adhesive and dentin. According to the in situ zymography and biodegradation assay all natural primers reduced the gelatinolytic activity. P45 presented the lowest biodegradation and enzymatic activity. CONCLUSIONS Propolis and the association of treatments promoted the highest bond strength results and preserved the dentin. All the experimental groups exhibited low gelatinolytic activity. CLINICAL SIGNIFICANCE Propolis and the association of treatments with Biosilicate could preserve the dentin substrate and improve the longevity of composite restorations.
Collapse
Affiliation(s)
- Rocio Geng Vivanco
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| | - Rafaella Tonani-Torrieri
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| | - Ana Beatriz Silva Souza
- University of Ribeirao Preto, Av. Costábile Romano, 2201 - Nova Ribeirânia, Ribeirão Preto, Sao Paulo, 14096-900, Brazil.
| | - Franciane Marquele-Oliveira
- Eleve Science Research and Development, Av. Dra. Nadir Águiar, 1805 - Jd. Dr. Paulo Gomes Romeo, Ribeirão Preto, SP, 14056-680, Brazil.
| | - Fernanda de Carvalho Panzeri Pires-de-Souza
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| |
Collapse
|
21
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
22
|
de Novais LMR, de Arueira CCO, Ferreira LF, Ribeiro TAN, Sousa PT, Jacinto MJ, de Carvalho MG, Judice WAS, Jesus LOP, de Souza AA, Torquato HFV, Paredes-Gamero EJ, Silva VC. 4'-Hydroxy-6,7-methylenedioxy-3-methoxyflavone: A novel flavonoid from Dulacia egleri with potential inhibitory activity against cathepsins B and L. Fitoterapia 2018; 132:26-29. [PMID: 30114470 DOI: 10.1016/j.fitote.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 11/27/2022]
Abstract
A new flavone, 4'-hydroxy-6,7-methylenedioxy-3-methoxyflavone 1, and two other nucleosides, ribavirin 2 and adenosine 3, were isolated from the leaves of Dulacia egleri. The nucleosides were identified by spectroscopic techniques (1D, 2D-NMR) while the structure of the flavonoid was established by 1D, 2D-NMR analysis, including HRESIMS data. The results obtained in the biological assays showed that the compound 1 was able to inhibit cathepsins B and L with IC50 of 14.88 ± 0.18 μM and 3.19 ± 0.07 μM, respectively. The mechanism of inhibition for both enzymes were determined showing to be competitive at cathepsin B with Ki = 12.8 ± 0.6 μM and non-linear non-competitive with positive cooperativity inhibition at cathepsin L with Ki = 322 ± 33 μM, αKi = 133 ± 15 μM, βKi = 5.14 ± 0.41 μM and γKi = 13.2 ± 13 μM.
Collapse
Affiliation(s)
- Leice M R de Novais
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | | | - Luiz F Ferreira
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Tereza A N Ribeiro
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Paulo T Sousa
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Marcos J Jacinto
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Mário G de Carvalho
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Wagner A S Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.
| | - Larissa O P Jesus
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Aline A de Souza
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Virginia C Silva
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|