1
|
Reed C, Kalbfleisch JF, Turkett JA, Trombley TA, Nastase AF, Spearing PK, Haymer DH, Sarwar MM, Quitalig M, Dickerson JW, Blobaum AL, Boutaud O, Voehringer P, Schuelert N, Cho HP, Niswender CM, Rook JM, Priepke H, Ursu D, Conn PJ, Melancon BJ, Lindsley CW. Discovery of VU6024578/BI02982816: An mGlu 1 Positive Allosteric Modulator with Efficacy in Preclinical Antipsychotic and Cognition Models. J Med Chem 2024; 67:22291-22312. [PMID: 39665415 PMCID: PMC11684029 DOI: 10.1021/acs.jmedchem.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Herein, we report progress toward a metabotropic glutamate receptor subtype 1 (mGlu1) positive allosteric modulator (PAM) clinical candidate and the discovery of VU6024578/BI02982816. From a weak high-throughput screening hit (VU0538160, EC50 > 10 μM, 71% Glumax), optimization efforts improved functional potency over 185-fold to deliver the selective (inactive on mGlu2-5,7,8) and CNS penetrant (rat Kp = 0.99, Kp,uu = 0.82; MDCK-MDR1 ER = 1.7, Papp = 73 × 10-6 cm/s) mGlu1 PAM (VU6024578/BI02982816, EC50 = 54 nM, 83% Glumax). An excellent rat pharmacokinetic profile allowed the evaluation of VU6024578/BI02982816 in both amphetamine-induced hyperlocomotion (minimum effective dose (MED) = 3 mg/kg, p.o.) and MK-801 induced disruptions of novel object recognition (MED = 10 mg/kg p.o.), thus providing efficacy in preclinical models of psychosis and cognition. However, unanticipated AEs in dog prevented further consideration as a candidate. Thus, VU6024578/BI02982816 can serve as a best-in-class in vivo rodent tool to study selective mGlu1 activation.
Collapse
Affiliation(s)
- Carson
W. Reed
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jacob F. Kalbfleisch
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jeremy A. Turkett
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Trevor A. Trombley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Anthony F. Nastase
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Paul K. Spearing
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Daniel H. Haymer
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Mohammad Moshin Sarwar
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Marc Quitalig
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Annie L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Patrizia Voehringer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Niklas Schuelert
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jerri M. Rook
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Henning Priepke
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Daniel Ursu
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Bruce J. Melancon
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | | |
Collapse
|
2
|
Sugiyama S, Inui K, Ohi K, Shioiri T. The influence of novelty detection on the 40-Hz auditory steady-state response in schizophrenia: A novel hypothesis from meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111096. [PMID: 39029650 DOI: 10.1016/j.pnpbp.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The 40-Hz auditory steady-state response (ASSR) is influenced not only by parameters such as attention, stimulus type, and analysis level but also by stimulus duration and inter-stimulus interval (ISI). In this meta-analysis, we examined these parameters in 33 studies that investigated 40-Hz ASSRs in patients with schizophrenia. The average Hedges' g random effect sizes were - 0.47 and - 0.43 for spectral power and phase-locking, respectively. We also found differences in ASSR measures based on stimulus duration and ISI. In particular, ISI was shown to significantly influence differences in the 40-Hz ASSR between healthy controls and patients with schizophrenia. We proposed a novel hypothesis focusing on the role of novelty detection, dependent on stimulus duration and ISI, as a critical factor in determining these differences. Specifically, longer stimulus durations and shorter ISIs under random presentation, or shorter stimulus durations and longer ISIs under repetitive presentation, decrease the 40-Hz ASSR in healthy controls. Patients with schizophrenia show minimal changes in response to stimulus duration and ISI, thus reducing the difference between controls and patients. This hypothesis can consistently explain most of the studies that have failed to show a reduction in 40-Hz ASSR in patients with schizophrenia. Increased novelty-related activity, reflected as an increase in auditory evoked potential components at stimulus onset, such as the N1, could suppress the 40-Hz ASSR, potentially reducing the peak measures of spectral power and phase-locking. To establish the 40-Hz ASSR as a truly valuable biomarker for schizophrenia, further systematic research using paradigms with various stimulus durations and ISIs is needed.
Collapse
Affiliation(s)
- Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
3
|
Wang J, Li J, Tang Y, Liu X, Qian Z, Zhang T, Xu L, Cui H, Wei Y, Hui L, Wang J. Impaired 40-Hz and intact hierarchical organization mode of auditory steady-state responses among individuals with clinical high-risk for psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111123. [PMID: 39154933 DOI: 10.1016/j.pnpbp.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Impaired gamma band oscillation, specifically 40-Hz auditory steady state response (ASSR) has been robustly found in schizophrenia, while there is relatively little evidence characterizing the ASSR before full-blown psychosis. OBJECTIVE To characterize gamma-band ASSR in populations at clinical high-risk for psychosis (CHR). METHODS One hundred and seven CHR subjects and sixty-five healthy control (HC) subjects were included and completed clinical assessments, the ASSR paradigm of electroencephalography (EEG) and cognitive assessments. Both indices of event-related spectrum perturbation (ERSP) and intertrial coherence (ITC) in response to 20-Hz, 30-Hz and 40-Hz click sounds were respectively qualified and compared between these two groups, as well as the relationship to clinical psychopathology and cognitive function was assessed. RESULTS At 40-Hz click sounds, ERSP in HC group (1.042 ± 0.047) was statistical significantly increased than that in CHR group (0.873 ± 0.036) (p = 0.005);at 30-Hz, ERSP in HC group (0.536 ± 0.024) was increased than that in CHR group (0.483 ± 0.019), but the difference was trend statistical significance (p = 0.083);at 20-Hz, ERSP in HC group (0.452 ± 0.017) was not different significantly from CHR group (0.418 ± 0.013) (p = 0.104). ERSP of the HC group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of the three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.003). Similarly, ERSP of the CHR group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of these three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.002). A statistically significant small positive correlation of 40-Hz ERSP with signal processing speed score was observed in the HC group (ρ = 0.27, p = 0.029). A statistically significant small negative correlation of 40-Hz ERSP with visual learning score was observed in the CHR group (ρ = -0.22, p = 0.023). CONCLUSION Impaired 40-Hz but undamaged hierarchical organization mode of auditory steady state presented in the CHR populations. Abnormal 40 Hz ASSR for CHR might be associated with cognitive functions, such as information processing speed and visual memory.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China.
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Li Hui
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
4
|
Wannan CMJ, Nelson B, Addington J, Allott K, Anticevic A, Arango C, Baker JT, Bearden CE, Billah T, Bouix S, Broome MR, Buccilli K, Cadenhead KS, Calkins ME, Cannon TD, Cecci G, Chen EYH, Cho KIK, Choi J, Clark SR, Coleman MJ, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Dwyer D, Ebdrup BH, Ellman LM, Fusar-Poli P, Galindo L, Gaspar PA, Gerber C, Glenthøj LB, Glynn R, Harms MP, Horton LE, Kahn RS, Kambeitz J, Kambeitz-Ilankovic L, Kane JM, Kapur T, Keshavan MS, Kim SW, Koutsouleris N, Kubicki M, Kwon JS, Langbein K, Lewandowski KE, Light GA, Mamah D, Marcy PJ, Mathalon DH, McGorry PD, Mittal VA, Nordentoft M, Nunez A, Pasternak O, Pearlson GD, Perez J, Perkins DO, Powers AR, Roalf DR, Sabb FW, Schiffman J, Shah JL, Smesny S, Spark J, Stone WS, Strauss GP, Tamayo Z, Torous J, Upthegrove R, Vangel M, Verma S, Wang J, Rossum IWV, Wolf DH, Wolff P, Wood SJ, Yung AR, Agurto C, Alvarez-Jimenez M, Amminger P, Armando M, Asgari-Targhi A, Cahill J, Carrión RE, Castro E, Cetin-Karayumak S, Mallar Chakravarty M, Cho YT, Cotter D, D’Alfonso S, Ennis M, Fadnavis S, Fonteneau C, Gao C, Gupta T, Gur RE, Gur RC, et alWannan CMJ, Nelson B, Addington J, Allott K, Anticevic A, Arango C, Baker JT, Bearden CE, Billah T, Bouix S, Broome MR, Buccilli K, Cadenhead KS, Calkins ME, Cannon TD, Cecci G, Chen EYH, Cho KIK, Choi J, Clark SR, Coleman MJ, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Dwyer D, Ebdrup BH, Ellman LM, Fusar-Poli P, Galindo L, Gaspar PA, Gerber C, Glenthøj LB, Glynn R, Harms MP, Horton LE, Kahn RS, Kambeitz J, Kambeitz-Ilankovic L, Kane JM, Kapur T, Keshavan MS, Kim SW, Koutsouleris N, Kubicki M, Kwon JS, Langbein K, Lewandowski KE, Light GA, Mamah D, Marcy PJ, Mathalon DH, McGorry PD, Mittal VA, Nordentoft M, Nunez A, Pasternak O, Pearlson GD, Perez J, Perkins DO, Powers AR, Roalf DR, Sabb FW, Schiffman J, Shah JL, Smesny S, Spark J, Stone WS, Strauss GP, Tamayo Z, Torous J, Upthegrove R, Vangel M, Verma S, Wang J, Rossum IWV, Wolf DH, Wolff P, Wood SJ, Yung AR, Agurto C, Alvarez-Jimenez M, Amminger P, Armando M, Asgari-Targhi A, Cahill J, Carrión RE, Castro E, Cetin-Karayumak S, Mallar Chakravarty M, Cho YT, Cotter D, D’Alfonso S, Ennis M, Fadnavis S, Fonteneau C, Gao C, Gupta T, Gur RE, Gur RC, Hamilton HK, Hoftman GD, Jacobs GR, Jarcho J, Ji JL, Kohler CG, Lalousis PA, Lavoie S, Lepage M, Liebenthal E, Mervis J, Murty V, Nicholas SC, Ning L, Penzel N, Poldrack R, Polosecki P, Pratt DN, Rabin R, Rahimi Eichi H, Rathi Y, Reichenberg A, Reinen J, Rogers J, Ruiz-Yu B, Scott I, Seitz-Holland J, Srihari VH, Srivastava A, Thompson A, Turetsky BI, Walsh BC, Whitford T, Wigman JTW, Yao B, Yuen HP, Ahmed U, Byun A(JS, Chung Y, Do K, Hendricks L, Huynh K, Jeffries C, Lane E, Langholm C, Lin E, Mantua V, Santorelli G, Ruparel K, Zoupou E, Adasme T, Addamo L, Adery L, Ali M, Auther A, Aversa S, Baek SH, Bates K, Bathery A, Bayer JMM, Beedham R, Bilgrami Z, Birch S, Bonoldi I, Borders O, Borgatti R, Brown L, Bruna A, Carrington H, Castillo-Passi RI, Chen J, Cheng N, Ching AE, Clifford C, Colton BL, Contreras P, Corral S, Damiani S, Done M, Estradé A, Etuka BA, Formica M, Furlan R, Geljic M, Germano C, Getachew R, Goncalves M, Haidar A, Hartmann J, Jo A, John O, Kerins S, Kerr M, Kesselring I, Kim H, Kim N, Kinney K, Krcmar M, Kotler E, Lafanechere M, Lee C, Llerena J, Markiewicz C, Matnejl P, Maturana A, Mavambu A, Mayol-Troncoso R, McDonnell A, McGowan A, McLaughlin D, McIlhenny R, McQueen B, Mebrahtu Y, Mensi M, Hui CLM, Suen YN, Wong SMY, Morrell N, Omar M, Partridge A, Phassouliotis C, Pichiecchio A, Politi P, Porter C, Provenzani U, Prunier N, Raj J, Ray S, Rayner V, Reyes M, Reynolds K, Rush S, Salinas C, Shetty J, Snowball C, Tod S, Turra-Fariña G, Valle D, Veale S, Whitson S, Wickham A, Youn S, Zamorano F, Zavaglia E, Zinberg J, Woods SW, Shenton ME. Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis. Schizophr Bull 2024; 50:496-512. [PMID: 38451304 PMCID: PMC11059785 DOI: 10.1093/schbul/sbae011] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.
Collapse
Affiliation(s)
- Cassandra M J Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kelly Allott
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Justin T Baker
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Canada
| | - Matthew R Broome
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
- Early Intervention for Psychosis Services, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Kate Buccilli
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Eric Yu Hai Chen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kang Ik K Cho
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jimmy Choi
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Woodville, SA, Australia
| | - Michael J Coleman
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philippe Conus
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP–Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Dominic Dwyer
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR Mental Health Centre, Glostrup, Copenhagen, Denmark
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Liliana Galindo
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Pablo A Gaspar
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Carla Gerber
- Behavioral Health Services, PeaceHealth Medical Group, Eugene, OR, USA
| | - Louise Birkedal Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Robert Glynn
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, MA, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie E Horton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Kambeitz
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tina Kapur
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Korea
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marek Kubicki
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kathryn E Lewandowski
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, CA, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | | | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Mental Health Service 116D, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Angela Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Ofer Pasternak
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | - Jesus Perez
- CAMEO, Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Department of Medicine, Institute of Biomedical Research (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fred W Sabb
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jai L Shah
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jessica Spark
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - John Torous
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Rachel Upthegrove
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Canada
- Birmingham Womens and Childrens, NHS Foundation Trust, Birmingham, UK
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Swapna Verma
- Department of Psychosis, Institute of Mental Health, Singapore
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Inge Winter-van Rossum
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Wolff
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Stephen J Wood
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Alison R Yung
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Carla Agurto
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Mario Alvarez-Jimenez
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Marco Armando
- Youth Early Detection/Intervention in Psychosis Platform (Plateforme ERA), Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and The University of Lausanne, Lausanne, Switzerland
| | | | - John Cahill
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Ricardo E Carrión
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Suheyla Cetin-Karayumak
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - David Cotter
- Department Psychiatry, Beaumont Hospital, Dublin 9, Ireland
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Simon D’Alfonso
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Michaela Ennis
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Shreyas Fadnavis
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Caroline Gao
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Tina Gupta
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly K Hamilton
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gil D Hoftman
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Grace R Jacobs
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Johanna Jarcho
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Christian G Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paris Alexandros Lalousis
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Suzie Lavoie
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Einat Liebenthal
- Program for Specialized Treatment Early in Psychosis (STEP), CMHC, New Haven, CT, USA
| | - Josh Mervis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Vishnu Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Spero C Nicholas
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Lipeng Ning
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nora Penzel
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Russell Poldrack
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Danielle N Pratt
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Rachel Rabin
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | | | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Avraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna Reinen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Jack Rogers
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Bernalyn Ruiz-Yu
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isabelle Scott
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Program for Specialized Treatment Early in Psychosis (STEP), CMHC, New Haven, CT, USA
| | - Agrima Srivastava
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Thompson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Bruce I Turetsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara C Walsh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Thomas Whitford
- Orygen, Parkville, VIC, Australia
- School of Psychology, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Johanna T W Wigman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center,Groningen, Netherlands
| | - Beier Yao
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Hok Pan Yuen
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Andrew (Jin Soo) Byun
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yoonho Chung
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Kim Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King’s College London, London, UK
| | - Larry Hendricks
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kevin Huynh
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Erlend Lane
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Carsten Langholm
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Eric Lin
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
- Medical Informatics Fellowship, Veteran Affairs Boston Healthcare System, Boston, MA, USA
- Food and Drug Administration, Silver Spring, MD, USA
| | - Valentina Mantua
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Gennarina Santorelli
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Kosha Ruparel
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Eirini Zoupou
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Tatiana Adasme
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Lauren Addamo
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Laura Adery
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Munaza Ali
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Andrea Auther
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Samantha Aversa
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | - Seon-Hwa Baek
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Korea
| | - Kelly Bates
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Alyssa Bathery
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna M M Bayer
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Rebecca Beedham
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sonia Birch
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ilaria Bonoldi
- Department of Psychosis Studies, King’s College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Owen Borders
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Lisa Brown
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alejandro Bruna
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Holly Carrington
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rolando I Castillo-Passi
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana—Universidad del Desarrollo, Santiago, Chile
| | - Justine Chen
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas Cheng
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ann Ee Ching
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Chloe Clifford
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Beau-Luke Colton
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Pamela Contreras
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Sebastián Corral
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Monica Done
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrés Estradé
- Early Psychosis Detection and Clinical Intervention (EPIC) Lab, Department of Psychosis Studies, King’s College London, London, UK
| | - Brandon Asika Etuka
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Melanie Formica
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Rachel Furlan
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Mia Geljic
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Carmela Germano
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ruth Getachew
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Anastasia Haidar
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Hartmann
- Department of Public Mental Health, Central Institute of Mental Health, Heidelberg Univeristy, Mannheim, Germany
| | - Anna Jo
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Omar John
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Kerins
- Early Psychosis Detection and Clinical Intervention (EPIC) Lab, Department of Psychosis Studies, King’s College London, London, UK
| | - Melissa Kerr
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Irena Kesselring
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Nicholas Kim
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyle Kinney
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Marija Krcmar
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Elana Kotler
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Melanie Lafanechere
- School of Psychology, University of Birmingham, Edgbaston, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Clarice Lee
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Joshua Llerena
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | | | | | - Aissata Mavambu
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
| | | | - Amelia McDonnell
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Alessia McGowan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rebecca McIlhenny
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brittany McQueen
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Yohannes Mebrahtu
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martina Mensi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | | | - Yi Nam Suen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Neal Morrell
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Mariam Omar
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alice Partridge
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Christina Phassouliotis
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christian Porter
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Umberto Provenzani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Nicholas Prunier
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Raj
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Susan Ray
- Northwell Health, Glen Oaks, NY, USA
| | - Victoria Rayner
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Manuel Reyes
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana—Universidad del Desarrollo, Santiago, Chile
| | - Kate Reynolds
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Sage Rush
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar Salinas
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Jashmina Shetty
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Callum Snowball
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Sophie Tod
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Daniela Valle
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Simone Veale
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Whitson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alana Wickham
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Youn
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Francisco Zamorano
- Unidad de imágenes cuantitativas avanzadas, departamento de imágenes, clínica alemana, universidad del Desarrollo, Santiago, Chile
- Facultad de ciencias para el cuidado de la salud, Universidad San Sebastián, Campus Los Leones, Santiago, Chile
| | - Elissa Zavaglia
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | - Jamie Zinberg
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Swerdlow NR, Gonzalez CE, Raza MU, Gautam D, Miyakoshi M, Clayson PE, Joshi YB, Molina JL, Talledo J, Thomas ML, Light GA, Sivarao DV. Effects of Memantine on the Auditory Steady-State and Harmonic Responses to 40 Hz Stimulation Across Species. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:346-355. [PMID: 37683728 DOI: 10.1016/j.bpsc.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Click trains elicit an auditory steady-state response (ASSR) at the driving frequency (1F) and its integer multiple frequencies (2F, 3F, etc.) called harmonics; we call this harmonic response the steady-state harmonic response (SSHR). We describe the 40 Hz ASSR (1F) and 80 Hz SSHR (2F) in humans and rats and their sensitivity to the uncompetitive NMDA antagonist memantine. METHODS In humans (healthy control participants, n = 25; patients with schizophrenia, n = 28), electroencephalography was recorded after placebo or 20 mg memantine in a within-participant crossover design. ASSR used 1 ms, 85-dB clicks presented in 250 40/s 500-ms trains. In freely moving rats (n = 9), electroencephalography was acquired after memantine (0, 0.3, 1, 3 mg/kg) in a within-participant crossover design; 65-dB click trains used 5-mV monophasic, 1-ms square waves (40/s). RESULTS Across species, ASSR at 1F generated greater evoked power (EP) than the 2F SSHR. 1F > 2F intertrial coherence (ITC) was also detected in humans, but the opposite relationship (ITC: 2F > 1F) was seen in rats. EP and ITC at 1F were deficient in patients and were enhanced by memantine across species. EP and ITC at 2F were deficient in patients. Measures at 2F were generally insensitive to memantine across species, although in humans the ITC harmonic ratio (1F:2F) was modestly enhanced by memantine, and in rats, both the EP and ITC harmonic ratios were significantly enhanced by memantine. CONCLUSIONS ASSR and SSHR are robust, nonredundant electroencephalography signals that are suitable for cross-species analyses that reveal potentially meaningful differences across species, diagnoses, and drugs.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California; VISN 22 Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Health System, La Jolla, California.
| | - Christopher E Gonzalez
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California; VISN 22 Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Health System, La Jolla, California
| | - Muhammad Ummear Raza
- Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| | - Deepshila Gautam
- Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peter E Clayson
- Department of Psychology, University of South Florida, Tampa, Florida
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California; VISN 22 Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Health System, La Jolla, California
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California; VISN 22 Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Health System, La Jolla, California
| | - Jo Talledo
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, California; VISN 22 Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Health System, La Jolla, California.
| | - Digavalli V Sivarao
- Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
6
|
Mamah D, Mutiso V, Musyimi C, Harms MP, Anokhin AP, Chen S, Torous J, Muyela L, Nashed J, Al-Hosni Y, Odera A, Yarber A, Golosheykin S, Faghankhani M, Sneed M, Ndetei DM. Kenya Psychosis-Risk Outcomes Study (KePROS): Development of an Accelerated Medicine Partnership Schizophrenia-Aligned Project in Africa. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae009. [PMID: 39144113 PMCID: PMC11207935 DOI: 10.1093/schizbullopen/sgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis The Accelerating Medicines Partnership Schizophrenia (AMP SCZ) funds a longitudinal study of 43 research sites across 5 continents to develop tools to stratify developmental trajectories of youth at clinical high risk for psychosis (CHR) and identify homogenous targets for future clinical trials. However, there are no sites in Africa, leaving a critical gap in our knowledge of clinical and biological outcomes among CHR individuals. Study Design We describe the development of the Kenya Psychosis-Risk Outcomes Study (KePROS), a 5-year NIH-funded project in Kenya designed to harmonize with AMP SCZ. The study will recruit over 100 CHR and 50 healthy participants and conduct multiple clinical and biomarker assessments over 2 years. Capacity building is a key component of the study, including the construction of an electroencephalography (EEG) laboratory and the upgrading of a local 3 T magnetic resonance imaging (MRI) machine. We detail community recruitment, study methodologies and protocols, and unique challenges with this pioneering research in Africa. Study Results This paper is descriptive only. Planned future analyses will investigate possible predictors of clinical outcomes and will be compared to results from other global populations. Conclusions KePROS will provide the research community with a rich longitudinal clinical and biomarker dataset from an African country in the developing Global South, which can be used alongside AMP SCZ data to delineate CHR outcome groups for future treatment development. Training in mental health assessment and investment in cutting-edge biomarker assessment and other technologies is needed to facilitate the inclusion of African countries in large-scale research consortia.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Victoria Mutiso
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Christine Musyimi
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Michael P Harms
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - ShingShiun Chen
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center at Harvard Medical School, Boston, MA, USA
| | - Levi Muyela
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Jerome Nashed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Yazen Al-Hosni
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Arthur Odera
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Alaina Yarber
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Semyon Golosheykin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Masoomeh Faghankhani
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Megan Sneed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - David M Ndetei
- African Mental Health Research and Training Foundation, Nairobi, Kenya
- Department of Psychiatry, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
7
|
Zouaoui I, Dumais A, Lavoie ME, Potvin S. Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis. Brain Sci 2023; 13:1722. [PMID: 38137170 PMCID: PMC10741772 DOI: 10.3390/brainsci13121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This meta-analysis investigates auditory steady-state responses (ASSRs) as potential biomarkers of schizophrenia, focusing on previously unexplored clinical populations, frequencies, and variables. We examined 37 studies, encompassing a diverse cohort of 1788 patients with schizophrenia, including 208 patients with first-episode psychosis, 281 at-risk individuals, and 1603 healthy controls. The results indicate moderate reductions in 40 Hz ASSRs in schizophrenia patients, with significantly greater reductions in first-episode psychosis patients and minimal changes in at-risk individuals. These results call into question the expected progression of ASSR alterations across all stages of schizophrenia. The analysis also revealed the sensitivity of ASSR alterations at 40 Hz to various factors, including stimulus type, level of analysis, and attentional focus. In conclusion, our research highlights ASSRs, particularly at 40 Hz, as potential biomarkers of schizophrenia, revealing varied implications across different stages of the disorder. This study enriches our understanding of ASSRs in schizophrenia, highlighting their potential diagnostic and therapeutic relevance, particularly in the early stages of the disease.
Collapse
Affiliation(s)
- Inès Zouaoui
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Dumais
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, QC H1C 1H1, Canada
| | - Marc E. Lavoie
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Département de Sciences Humaines, Lettres et Communication, Université TÉLUQ, Montreal, QC G1K 9H6, Canada
| | - Stéphane Potvin
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Li S, Hu R, Yan H, Chu L, Qiu Y, Gao Y, Li M, Li J. 40-Hz auditory steady-state response deficits are correlated with the severity of persistent auditory verbal hallucination in patients with schizophrenia. Psychiatry Res Neuroimaging 2023; 336:111748. [PMID: 37984158 DOI: 10.1016/j.pscychresns.2023.111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Abnormal 40 Hz auditory steady-state response (ASSR) has been observed in some psychiatric disorders. Nevertheless, the role of 40 Hz ASSR in persistent auditory verbal hallucinations (pAVHs) schizophrenia (SCZ) is still unknown. This study aims to investigate whether the 40 Hz ASSR impairment is related to pAVHs and can detect pAVHs severity. METHODS We analyzed high-density electroencephalography data that from 43 pAVHs patients (pAVH group), 20 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Event-related spectral perturbation and inter-trial phase coherence (ITPC) were calculated to quantify dynamic changes of the 40 Hz ASSR power and ITPC, respectively. RESULTS Frontal-central, the 40 Hz ASSR power, and ITPC were significantly lower in the pAVH group than in the non-AVH group; There was no significant difference between the pAVH and mid-AVH group. The 40 Hz ASSR was significantly negatively correlated with the severity of pAVHs. The 40 Hz ASSR power, and ITPC could be used as a combinational marker to detect SCZ patients with and without pAVHs. CONCLUSION Our findings have shed light on the pathological mechanism of pAVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of pAVHs.
Collapse
Affiliation(s)
- Shaobing Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ruxin Hu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Huiming Yan
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Lijun Chu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
9
|
Duda M, Faghiri A, Belger A, Bustillo JR, Ford JM, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Sui J, Van Erp TGM, Calhoun VD. Alterations in grey matter structure linked to frequency-specific cortico-subcortical connectivity in schizophrenia via multimodal data fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547840. [PMID: 37461731 PMCID: PMC10350020 DOI: 10.1101/2023.07.05.547840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
Collapse
Affiliation(s)
- Marlena Duda
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Du X, Hare S, Summerfelt A, Adhikari BM, Garcia L, Marshall W, Zan P, Kvarta M, Goldwaser E, Bruce H, Gao S, Sampath H, Kochunov P, Simon JZ, Hong LE. Cortical connectomic mediations on gamma band synchronization in schizophrenia. Transl Psychiatry 2023; 13:13. [PMID: 36653335 PMCID: PMC9849210 DOI: 10.1038/s41398-022-02300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Aberrant gamma frequency neural oscillations in schizophrenia have been well demonstrated using auditory steady-state responses (ASSR). However, the neural circuits underlying 40 Hz ASSR deficits in schizophrenia remain poorly understood. Sixty-six patients with schizophrenia spectrum disorders and 85 age- and gender-matched healthy controls completed one electroencephalography session measuring 40 Hz ASSR and one imaging session for resting-state functional connectivity (rsFC) assessments. The associations between the normalized power of 40 Hz ASSR and rsFC were assessed via linear regression and mediation models. We found that rsFC among auditory, precentral, postcentral, and prefrontal cortices were positively associated with 40 Hz ASSR in patients and controls separately and in the combined sample. The mediation analysis further confirmed that the deficit of gamma band ASSR in schizophrenia was nearly fully mediated by three of the rsFC circuits between right superior temporal gyrus-left medial prefrontal cortex (MPFC), left MPFC-left postcentral gyrus (PoG), and left precentral gyrus-right PoG. Gamma-band ASSR deficits in schizophrenia may be associated with deficient circuitry level connectivity to support gamma frequency synchronization. Correcting gamma band deficits in schizophrenia may require corrective interventions to normalize these aberrant networks.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura Garcia
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peng Zan
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Z Simon
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD, USA
- Department of Biology, University of Maryland, College Park, MD, USA
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Onitsuka T, Tsuchimoto R, Oribe N, Spencer KM, Hirano Y. Neuronal imbalance of excitation and inhibition in schizophrenia: a scoping review of gamma-band ASSR findings. Psychiatry Clin Neurosci 2022; 76:610-619. [PMID: 36069299 DOI: 10.1111/pcn.13472] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Recent empirical findings suggest that altered neural synchronization, which is hypothesized to be associated with an imbalance of excitatory (E) and inhibitory (I) neuronal activities, may underlie a core pathophysiological mechanism in patients with schizophrenia. The auditory steady-state response (ASSR) examined by electroencephalography (EEG) and magnetoencephalography (MEG) has been proposed as a potential biomarker for evaluating altered neural synchronization in schizophrenia. For this review, we performed a comprehensive literature search for papers published between 1999 and 2021 examining ASSRs in patients with schizophrenia. Almost all EEG-ASSR studies reported gamma-band ASSR reductions, especially to 40-Hz stimuli both in power and/or phase synchronization in chronic and first-episode schizophrenia. In addition, similar to EEG-ASSR findings, MEG-ASSR deficits to 80-Hz stimuli (high gamma) have been reported in patients with schizophrenia. Moreover, the 40-Hz ASSR is likely to be a predictor of the onset of schizophrenia. Notably, increased spontaneous (or ongoing) broadband (30-100 Hz) gamma power has been reported during ASSR tasks, which resembles the increased spontaneous gamma activity reported in animal models of E/I imbalance. Further research on ASSRs and evoked and spontaneous gamma oscillations is expected to elucidate the pathophysiology of schizophrenia with translational implications.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rikako Tsuchimoto
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| |
Collapse
|
12
|
Başar-Eroğlu C, Küçük KM, Rürup L, Schmiedt-Fehr C, Mathes B. Oscillatory Activities in Multiple Frequency Bands in Patients with Schizophrenia During Motion Perception. Clin EEG Neurosci 2022:15500594221141825. [PMID: 36437602 DOI: 10.1177/15500594221141825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with schizophrenia show impairment in binding stimulus features into coherent objects, which are reflected in disturbed oscillatory activities. This study aimed to identify disturbances in multiple oscillatory bands during perceptual organization of motion perception in patients with schizophrenia. EEG was recorded from healthy controls and patients with schizophrenia during continuous presentation of a motion stimulus which induces reversals between two exogenously generated perceptions. This stimulus was used to investigate differences in motion binding processes between healthy controls and patients with schizophrenia. EEG signals were transformed into frequency components by means of the Morlet wavelet transformation in order to analyse inter-trial coherences (ITC) in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and gamma (28-48 Hz) frequency bands during exogenous motion binding. Patients showed decreased delta-ITC in occipital and theta-ITC in central and parietal areas, while no significant differences were found for neither alpha nor gamma-ITCs. The present study provides one of the first insights on the oscillatory synchronizations related with the motion perception in schizophrenia. The ITC differences revealed alterations in the consistency of large-scale integration and transfer functions in patients with schizophrenia.
Collapse
Affiliation(s)
- C Başar-Eroğlu
- Department of Psychology, 52973İzmir University of Economics, Izmir, Turkey
| | - K M Küçük
- Department of Psychology, 52973İzmir University of Economics, Izmir, Turkey
| | - L Rürup
- 62546Hospital Bremen-East, Bremen, Germany
| | - C Schmiedt-Fehr
- Institute of Psychology, 9168University of Bremen, Bremen, Germany
| | - B Mathes
- Bremen Initiative to Foster Early Childhood Development, 9168University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Quantitative electroencephalography parameters as neurophysiological biomarkers of schizophrenia-related deficits: A Phase II substudy of patients treated with iclepertin (BI 425809). Transl Psychiatry 2022; 12:329. [PMID: 35953474 PMCID: PMC9372178 DOI: 10.1038/s41398-022-02096-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with schizophrenia experience cognitive impairment related to neural network dysfunction and deficits in sensory processing. These deficits are thought to be caused by N-methyl-D-aspartate receptor hypofunction and can be assessed in patient populations using electroencephalography (EEG). This substudy from a Phase II, randomized, double-blind, placebo-controlled, parallel-group study investigating the safety and efficacy of the novel glycine transporter-1 inhibitor, iclepertin (BI 425809), assessed the potential of EEG parameters as clinically relevant biomarkers of schizophrenia and response to iclepertin treatment. Eligible patients were randomized to once-daily add-on iclepertin (2, 5, 10, or 25 mg), or placebo (1:1:1:1:2 ratio) for 12 weeks. EEG data were recorded from a subgroup of patients (n = 79) at baseline and end of treatment (EoT). EEG parameters of interest were mismatch negativity (MMN), auditory steady-state response (ASSR), and resting state gamma power, and their correlations with clinical assessments. At baseline, MMN and ASSR exhibited consistent correlations with clinical assessments, indicating their potential value as neurophysiological biomarkers of schizophrenia-related deficits. ASSR measures were positively correlated to the MATRICS Consensus Cognitive Battery overall and neurocognitive composite scores; MMN amplitude was positively correlated with Positive and Negative Syndrome Scale scores. However, correlations between change from baseline (CfB) at EoT in clinical assessments, and baseline or CfB at EoT for EEG parameters were modest and inconsistent between dose groups, which might indicate low potential of these EEG parameters as predictive and treatment response biomarkers. Further methodological refinement is needed to establish EEG parameters as useful drug development tools for schizophrenia.
Collapse
|
14
|
Coffman BA, Ren X, Longenecker J, Torrence N, Fishel V, Seebold D, Wang Y, Curtis M, Salisbury DF. Aberrant attentional modulation of the auditory steady state response (ASSR) is related to auditory hallucination severity in the first-episode schizophrenia-spectrum. J Psychiatr Res 2022; 151:188-196. [PMID: 35490500 PMCID: PMC9703618 DOI: 10.1016/j.jpsychires.2022.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The 40-Hz auditory steady state response (ASSR) is reduced early in schizophrenia, with differences evident even at the first episode of schizophrenia-spectrum psychosis (FESz). Although robust, there is high variability in effect size across studies, possibly due to differences in experimental control of attention and heterogeneity of symptom profiles across studies, both of which may affect the ASSR. We investigated the relationships among ASSR deficits, attention-mediated sensory gain, and auditory hallucinations in 25 FESz (15 male; 23.3 ± 4.5 years) and 32 matched healthy comparison subjects (HC, 22 male; 24.7 ± 5.8 years). ASSR was measured to 40-Hz click trains at three intensities (75, 80, and 85 dB) while participants attended or ignored stimuli. ASSR evoked power and inter-trial phase coherence (ITPC) were measured using the Morlet wavelet transform. FESz did not show overall ASSR power reduction (p > 0.1), but power was significantly increased with attention in HC (p < 0.01), but not in FESz (p > 0.1). Likewise, FESz did not evince overall ASSR ITPC reduction (p > 0.1), and ITPC was significantly increased with attention in HC (p < 0.01), but not in FESz (p > 0.09). Attention-related change in ASSR correlated with auditory hallucination severity for power (r = -0.49, p < 0.05) and ITPC (r = -0.58, p < 0.01). FESz with auditory hallucinations may have pathologically increased basal excitability of auditory cortex and consequent reduced ability to further increase auditory cortex sensory gain with focused attention. These findings indicate hallucination-related pathophysiology early in schizophrenia and may guide novel intervention strategies aimed to modulate basal activity levels.
Collapse
Affiliation(s)
- Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xi Ren
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Julia Longenecker
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natasha Torrence
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vanessa Fishel
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yiming Wang
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author. Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, PA, 15213, USA. (D.F. Salisbury)
| |
Collapse
|
15
|
Biagianti B, Bigoni D, Maggioni E, Brambilla P. Can neuroimaging-based biomarkers predict response to cognitive remediation in patients with psychosis? A state-of-the-art review. J Affect Disord 2022; 305:196-205. [PMID: 35283181 DOI: 10.1016/j.jad.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive Remediation (CR) is designed to halt the pathological neural systems that characterize major psychotic disorders (MPD), and its main objective is to improve cognitive functioning. The magnitude of CR-induced cognitive gains greatly varies across patients with MPD, with up to 40% of patients not showing gains in global cognitive performance. This is likely due to the high degree of heterogeneity in neural activation patterns underlying cognitive endophenotypes, and to inter-individual differences in neuroplastic potential, cortical organization and interaction between brain systems in response to learning. Here, we review studies that used neuroimaging to investigate which biomarkers could potentially serve as predictors of treatment response to CR in MPD. METHODS This systematic review followed the PRISMA guidelines. An electronic database search (Embase, Elsevier; Scopus, PsycINFO, APA; PubMed, APA) was conducted in March 2021. peer-reviewed, English-language studies were included if they reported data for adults aged 18+ with MPD, reported findings from randomized controlled trials or single-arm trials of CR; and presented neuroimaging data. RESULTS Sixteen studies were included and eight neuroimaging-based biomarkers were identified. Auditory mismatch negativity (3 studies), auditory steady-state response (1), gray matter morphology (3), white matter microstructure (1), and task-based fMRI (7) can predict response to CR. Efference copy corollary/discharge, resting state, and thalamo-cortical connectivity (1) require further research prior to being implemented. CONCLUSIONS Translational research on neuroimaging-based biomarkers can help elucidate the mechanisms by which CR influences the brain's functional architecture, better characterize psychotic subpopulations, and ultimately deliver CR that is optimized and personalized.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Davide Bigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Jiao X, Hu Q, Tang Y, Qian Z, Tong S, Wang J, Sun J. Test-retest reliability of mismatch negativity and gamma-band auditory steady-state response in patients with schizophrenia. Schizophr Res 2022; 240:165-174. [PMID: 35030446 DOI: 10.1016/j.schres.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
Patients with schizophrenia show widespread impairments in clinical, cognitive and psychosocial functioning. Mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are two neurophysiological biomarkers widely used to inform diagnosis, guide treatments and track response to interventions in schizophrenia. However, evidence for the test-retest reliability of these indices across multiple sessions in schizophrenia patients remains scarce. In the present study, we included 34 schizophrenia patients (17 females) and obtained duration MMN (dMMN), frequency MMN (fMMN) and 40-Hz ASSR data across three sessions with intervals of 2 days. Event-related spectrum perturbation (ERSP) and inter-trial coherence (ITC) were calculated following Morlet wavelet time-frequency decomposition of ASSR data. The intra-class correlation coefficient (ICC) was used to quantify the reliability of MMN and ASSR measures among the three sessions. We found fair to good reliability for dMMN amplitudes but poor reliability for fMMN amplitudes. For the ASSR measures, ERSP showed good to excellent test-retest reliability while ITC had poor to fair test-retest reliability. In addition, the average of dMMN amplitudes was significantly correlated with that of ERSP across the three sessions. In summary, we established for the first time the short-term test-retest reliability of MMN and ASSR measures in schizophrenia patients. These findings demonstrate that dMMN amplitudes and ERSP of ASSR are reliable indices which may be used in longitudinal observational studies.
Collapse
Affiliation(s)
- Xiong Jiao
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shanbao Tong
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200031, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
17
|
Ahmed S, Lepock JR, Mizrahi R, Bagby RM, Gerritsen CJ, Korostil M, Light GA, Kiang M. Decreased Gamma Auditory Steady-State Response Is Associated With Impaired Real-World Functioning in Unmedicated Patients at Clinical High Risk for Psychosis. Clin EEG Neurosci 2021; 52:400-405. [PMID: 33356513 DOI: 10.1177/1550059420982706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Deficits in synchronous, gamma-frequency neural oscillations may contribute to schizophrenia patients' real-world functional impairment and can be measured electroencephalographically using the auditory steady-state response (ASSR). Gamma ASSR deficits have been reported in schizophrenia patients and individuals at clinical high risk (CHR) for developing psychosis. We hypothesized that, in CHR patients, gamma ASSR would correlate with real-world functioning, consistent with a role for gamma synchrony deficits in functional impairment. METHODS A total of 35 CHR patients rated on Global Functioning: Social and Role scales had EEG recorded while listening to 1-ms, 93-dB clicks presented at 40 Hz in 500-ms trains, in response to which 40-Hz evoked power and intertrial phase-locking factor (PLF) were measured. RESULTS In CHR patients, lower 40-Hz PLF correlated with lower social functioning. CONCLUSIONS Gamma synchrony deficits may be a biomarker of real-world impairment at early stages of the schizophrenia disease trajectory.
Collapse
Affiliation(s)
- Sarah Ahmed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jennifer R Lepock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - R Michael Bagby
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michele Korostil
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Sultana R, Brooks CB, Shrestha A, Ogundele OM, Lee CC. Perineuronal Nets in the Prefrontal Cortex of a Schizophrenia Mouse Model: Assessment of Neuroanatomical, Electrophysiological, and Behavioral Contributions. Int J Mol Sci 2021; 22:11140. [PMID: 34681799 PMCID: PMC8538055 DOI: 10.3390/ijms222011140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder whose etiopathogenesis includes changes in cellular as well as extracellular structures. Perineuronal nets (PNNs) associated with parvalbumin-positive interneurons (PVs) in the prefrontal cortex (PFC) are dysregulated in schizophrenia. However, the postnatal development of these structures along with their associated neurons in the PFC is unexplored, as is their effects on behavior and neural activity. Therefore, in this study, we employed a DISC1 (Disruption in Schizophrenia) mutation mouse model of schizophrenia to assess these developmental changes and tested whether enzymatic digestion of PNNs in the PFC affected schizophrenia-like behaviors and neural activity. Developmentally, we found that the normal formation of PNNs, PVs, and colocalization of these two in the PFC, peaked around PND 22 (postnatal day 22). However, in DISC1, mutation animals from PND 0 to PND 60, both PNNs and PVs were significantly reduced. After enzymatic digestion of PNNs with chondroitinase in adult animals, the behavioral pattern of control animals mimicked that of DISC1 mutation animals, exhibiting reduced sociability, novelty and increased ultrasonic vocalizations, while there was very little change in other behaviors, such as working memory (Y-maze task involving medial temporal lobe) or depression-like behavior (tail-suspension test involving processing via the hypothalamic pituitary adrenal (HPA) axis). Moreover, following chondroitinase treatment, electrophysiological recordings from the PFC exhibited a reduced proportion of spontaneous, high-frequency firing neurons, and an increased proportion of irregularly firing neurons, with increased spike count and reduced inter-spike intervals in control animals. These results support the proposition that the aberrant development of PNNs and PVs affects normal neural operations in the PFC and contributes to the emergence of some of the behavioral phenotypes observed in the DISC1 mutation model of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| | | | | | | | - Charles Chulsoo Lee
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| |
Collapse
|
19
|
Quon RJ, Leslie GA, Camp EJ, Meisenhelter S, Steimel SA, Song Y, Ettinger AB, Bujarski KA, Casey MA, Jobst BC. 40-Hz auditory stimulation for intracranial interictal activity: A pilot study. Acta Neurol Scand 2021; 144:192-201. [PMID: 33893999 DOI: 10.1111/ane.13437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To study the effects of auditory stimuli on interictal epileptiform discharge (IED) rates evident with intracranial monitoring. MATERIALS AND METHODS Eight subjects undergoing intracranial EEG monitoring for refractory epilepsy participated in this study. Auditory stimuli consisted of a 40-Hz tone, a 440-Hz tone modulated by a 40-Hz sinusoid, Mozart's Sonata for Two Pianos in D Major (K448), and K448 modulated by a 40-Hz sinusoid (modK448). Subjects were stratified into high- and low-IED rate groups defined by baseline IED rates. Subject-level analyses identified individual responses to auditory stimuli, discerned specific brain regions with significant reductions in IED rates, and examined the influence auditory stimuli had on whole-brain sigma power (12-16 Hz). RESULTS All subjects in the high baseline IED group had a significant 35.25% average reduction in IEDs during the 40-Hz tone; subject-level reductions localized to mesial and lateral temporal regions. Exposure to Mozart K448 showed significant yet less homogeneous responses. A post hoc analysis demonstrated two of the four subjects with positive IED responses had increased whole-brain power at the sigma frequency band during 40-Hz stimulation. CONCLUSIONS Our study is the first to evaluate the relationship between 40-Hz auditory stimulation and IED rates in refractory epilepsy. We reveal that 40-Hz auditory stimuli may be a noninvasive adjunctive intervention to reduce IED burden. Our pilot study supports the future examination of 40-Hz auditory stimuli in a larger population of subjects with high baseline IED rates.
Collapse
Affiliation(s)
- Robert J. Quon
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
| | - Grace A. Leslie
- Department of Music Georgia Institute of Technology Atlanta GA USA
| | - Edward J. Camp
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | | | - Sarah A. Steimel
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
| | - Yinchen Song
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | | | - Krzysztof A. Bujarski
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | - Michael A. Casey
- Department of Music at Dartmouth College Hanover NH USA
- Department of Computer Science at Dartmouth College Hanover NH USA
| | - Barbara C. Jobst
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| |
Collapse
|
20
|
Côté V, Knoth IS, Agbogba K, Vannasing P, Côté L, Major P, Michaud JL, Barlaam F, Lippé S. Differential auditory brain response abnormalities in two intellectual disability conditions: SYNGAP1 mutations and Down syndrome. Clin Neurophysiol 2021; 132:1802-1812. [PMID: 34130248 DOI: 10.1016/j.clinph.2021.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/06/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Altered sensory processing is common in intellectual disability (ID). Here, we study electroencephalographic responses to auditory stimulation in human subjects presenting a rare condition (mutations in SYNGAP1) which causes ID, epilepsy and autism. METHODS Auditory evoked potentials, time-frequency and inter-trial coherence analyses were used to compare subjects with SYNGAP1 mutations with Down syndrome (DS) and neurotypical (NT) participants (N = 61 ranging from three to 19 years of age). RESULTS Altered synchronization in the brain responses to sound were found in both ID groups. The SYNGAP1 mutations group showed less phase-locking in early time windows and lower frequency bands compared to NT, and in later time windows compared to NT and DS. Time-frequency analysis showed more power in beta-gamma in the SYNGAP1 group compared to NT participants. CONCLUSIONS This study indicated reduced synchronization as well as more high frequencies power in SYNGAP1 mutations, while maintained synchronization was found in the DS group. These results might reflect dysfunctional sensory information processing caused by excitation/inhibition imbalance, or an imperfect compensatory mechanism in SYNGAP1 mutations individuals. SIGNIFICANCE Our study is the first to reveal brain response abnormalities in auditory sensory processing in SYNGAP1 mutations individuals, that are distinct from DS, another ID condition.
Collapse
Affiliation(s)
- Valérie Côté
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Inga S Knoth
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | | | - Lucie Côté
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Philippe Major
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Fanny Barlaam
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Barros C, Silva CA, Pinheiro AP. Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls. Artif Intell Med 2021; 114:102039. [PMID: 33875158 DOI: 10.1016/j.artmed.2021.102039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
Collapse
Affiliation(s)
- Carla Barros
- Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Carlos A Silva
- Center for Microelectromechanical Systems (CMEMS), School of Engineering, University of Minho, Guimarães, Portugal
| | - Ana P Pinheiro
- Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal; CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
22
|
Zanin M, Güntekin B, Aktürk T, Hanoğlu L, Papo D. Time Irreversibility of Resting-State Activity in the Healthy Brain and Pathology. Front Physiol 2020; 10:1619. [PMID: 32038297 PMCID: PMC6987076 DOI: 10.3389/fphys.2019.01619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Characterizing brain activity at rest is of paramount importance to our understanding both of general principles of brain functioning and of the way brain dynamics is affected in the presence of neurological or psychiatric pathologies. We measured the time-reversal symmetry of spontaneous electroencephalographic brain activity recorded from three groups of patients and their respective control group under two experimental conditions (eyes open and closed). We evaluated differences in time irreversibility in terms of possible underlying physical generating mechanisms. The results showed that resting brain activity is generically time-irreversible at sufficiently long time scales, and that brain pathology is generally associated with a reduction in time-asymmetry, albeit with pathology-specific patterns. The significance of these results and their possible dynamical etiology are discussed. Some implications of the differential modulation of time asymmetry by pathology and experimental condition are examined.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - David Papo
- Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
23
|
Roach BJ, D'Souza DC, Ford JM, Mathalon DH. Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. Neuroimage Clin 2019; 23:101878. [PMID: 31228795 PMCID: PMC6587022 DOI: 10.1016/j.nicl.2019.101878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Auditory steady-state response (ASSR) paradigms have consistently demonstrated gamma band abnormalities in schizophrenia at a 40-Hz driving frequency with both electroencephalography (EEG) and magnetoencephalography (MEG). Various time-frequency measures have been used to assess the 40-Hz ASSR, including evoked power, single trial total power, phase-locking factor (PLF), and phase-locking angle (PLA). While both EEG and MEG studies have shown power and PLF ASSR measures to exhibit excellent test-retest reliability in healthy adults, the reliability of these measures in patients with schizophrenia has not been determined. METHODS ASSRs were obtained by recording EEG data during presentation of repeated 20-Hz, 30-Hz and 40-Hz auditory click trains from nine schizophrenia patients (SZ) and nine healthy controls (HC) tested on two occasions. Similar ASSR data were collected from a separate group of 30 HC on two to three test occasions. A subset of these HC subjects had EEG recordings during two tasks, passively listening and actively attending to click train stimuli. Evoked power, total power, PLF, and PLA were calculated following Morlet wavelet time-frequency decomposition of EEG data and test-retest generalizability (G) coefficients were calculated for each ASSR condition, time-frequency measure, and subject group. RESULTS G-coefficients ranged from good to excellent (> 0.6) for most 40-Hz time-frequency measures and participant groups, whereas 20-Hz G-coefficients were much more variable. Importantly, test-retest reliability was excellent for the various 40-Hz ASSR measures in SZ, similar to reliabilities in HC. Active attention to click train stimuli modestly reduced G-coefficients in HC relative to the passive listening condition. DISCUSSION The excellent test-retest reliability of 40-Hz ASSR measures replicates previous EEG and MEG studies. PLA, a relatively new time-frequency measure, was shown for the first time to have excellent reliability, comparable to power and PLF measures. Excellent reliability of 40 Hz ASSR measures in SZ supports their use in clinical trials and longitudinal observational studies.
Collapse
Affiliation(s)
- Brian J Roach
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA
| | - Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Judith M Ford
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA.
| |
Collapse
|
24
|
Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, Lee SH. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NEUROIMAGE-CLINICAL 2019; 22:101732. [PMID: 30851675 PMCID: PMC6407311 DOI: 10.1016/j.nicl.2019.101732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
Background Abnormalities in the 40-Hz auditory steady-state response (ASSR) of the gamma range have been reported in schizophrenia (SZ) and are regarded as important pathophysiological features. Many of the previous studies reported diminished gamma oscillations in SZ, although some studies reported increased spontaneous gamma oscillations. Furthermore, brain morphological correlates of the gamma band ASSR deficits have rarely examined. We investigated different measures of the 40-Hz ASSR and their association with brain volumes and psychological measures of SZ. Methods The 40-Hz ASSR was measured for 80 dB click sounds (1 ms, 500-ms trains at 40-Hz, with 3050 to 3500 inter-train interval) using electroencephalography with 64 electrodes in 33 patients with SZ (male: 16, female: 17 (age range: 21–60)) and 30 healthy controls (HCs) (male: 13, female: 17 (age range: 23–64)). Four gamma oscillation measures (evoked power, spontaneous oscillations (baseline and total power), and inter-trial phase coherence (ITC)) were assessed. The source activities of the ASSR were also analyzed. Brain volumes were assessed using high-resolution magnetic resonance imaging and voxel-based morphometry and superior temporal gyrus (STG) volume measures were obtained. Results Patients with SZ had larger total and evoked powers and higher ITC than HCs. Both groups showed significantly different association between mean evoked power and right STG volume. In HCs but not SZ, mean evoked power showed significant positive correlation with right STG volume. In addition, the two groups showed significantly different association between verbal fluency and mean evoked power. High evoked power was significantly correlated with poor verbal fluency in SZ. Conclusions The current study found increased gamma oscillation in SZ and suggests significant involvement of the STG in gamma oscillations. SZ had larger total and evoked powers and higher ITC than HCs. Evoked power positively correlated with right STG volume in HCs. High evoked power correlated with poor verbal fluency in SZ.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seon-Kyeong Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
25
|
Zhou TH, Mueller NE, Spencer KM, Mallya SG, Lewandowski KE, Norris LA, Levy DL, Cohen BM, Öngür D, Hall MH. Auditory steady state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorder. Schizophr Res 2018; 201:278-286. [PMID: 29807805 PMCID: PMC7003536 DOI: 10.1016/j.schres.2018.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Gamma oscillation is important for cortico-cortical coordination and the integration of information across neural networks. The 40 Hz auditory steady-state response (ASSR), which reflects neural synchrony in the gamma band (30-100 Hz), is abnormal in patients with schizophrenia (SZ). The present study used the ASSR at multiple frequencies to examine (1) gamma dysfunction in patients with SZ, schizoaffective (SA), and bipolar disorder (BD) compared with controls, (2) the relationship between ASSR measures and clinical symptom severity, and (3) the relationship between ASSR measures and real-life community functioning. METHODS EEG was recorded from 75 controls, 52 SZ, 55 SA, and 89 BD patients during 20-30-40-Hz binaural click trains. ANCOVA was used to compare ASSR measures between groups controlling for age, sex, and education. Associations between ASSR measures, symptom severity, and community functioning were examined using linear regression and Pearson partial correlations. RESULTS ASSR deficits at gamma frequency were observed in all patient groups. SA patients showed additional specific deficit in the 20 Hz ASSR. Severity of manic, depressive, and anxiety symptoms mediated ASSR deficits. Severity of hallucinatory symptom and community functioning, particularly independent living/meaningful activity, were significantly and independently associated with the 40 Hz ASSR. CONCLUSIONS SZ, SA and BD patients are likely to share the same abnormalities in neural processes that generate gamma oscillations. 40 Hz ASSR are associated with community functioning across patients and may serve as a biomarker for predicting functional outcome.
Collapse
Affiliation(s)
- Tian-Hang Zhou
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA,Department of Global Health and Social Medicine, Harvard Medical School, Boston, USA
| | - Nora E. Mueller
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA,Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Kevin M. Spencer
- Veterans Affairs Boston Healthcare System, Harvard Medical School, Jamaica Plain, USA
| | - Sonal G. Mallya
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Kathryn Eve Lewandowski
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Lesley A. Norris
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Deborah L. Levy
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Bruce M. Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, USA.
| |
Collapse
|
26
|
Roach BJ, Ford JM, Mathalon DH. Gamma Band Phase Delay in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:131-139. [PMID: 30314905 DOI: 10.1016/j.bpsc.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND In 1999, Kwon et al. reported several electroencephalographic gamma band auditory steady-state response (ASSR) abnormalities in schizophrenia, spawning approximately 100 subsequent studies. While many studies replicated the finding of reduced 40-Hz ASSR power in schizophrenia and extended this by showing that 40-Hz phase synchrony (phase-locking factor [PLF]) was also reduced, none attempted to replicate the original phase delay finding of Kwon et al. Accordingly, we measured the 40-Hz ASSR phase-locking angle (PLA) to assess phase delay and examined its differential sensitivity to schizophrenia, relative to power and PLF measures. METHODS To obtain ASSRs, electroencephalography data were recorded from 28 patients with schizophrenia and 25 healthy control subjects listening to repeated 40-Hz 500-ms click trains. Evoked power, total power, PLF, and PLA were calculated after Morlet wavelet time-frequency decomposition of single trial data from electrode Fz. RESULTS In patients with schizophrenia, 40-Hz PLA was significantly reduced (i.e., phase delayed) (p < .0001) and was unrelated to reductions in their 40-Hz power or PLF. PLA discriminated patients from healthy control subjects with 85% accuracy compared with 67% for power and 65% for PLF. CONCLUSIONS Consistent with the original Kwon et al. study, 40-Hz click train-driven gamma oscillations were phase delayed in schizophrenia. Importantly, this phase delay abnormality was substantially larger than the gamma power and phase synchrony abnormalities that have been the focus of prior 40-Hz ASSR studies in schizophrenia. PLA provides a unique neurobiological measure of gamma band abnormalities in schizophrenia, likely reflecting a distinct pathophysiological mechanism from those underlying PLF and power abnormalities.
Collapse
Affiliation(s)
- Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California; Northern California Institute for Research and Education, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California; Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California; Department of Psychiatry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
27
|
Wang J, Tang Y, Curtin A, Chan RCK, Wang Y, Li H, Zhang T, Qian Z, Guo Q, Li Y, Liu X, Tang X, Wang J. Abnormal auditory-evoked gamma band oscillations in first-episode schizophrenia during both eye open and eye close states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:279-286. [PMID: 29705712 DOI: 10.1016/j.pnpbp.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
Abnormal auditory steady state response (ASSR) is a typical finding among schizophrenia patients, which is thought to directly reflect deficient gamma band oscillations in the brain. However, whether these ASSR alterations are state dependent, e.g. during eye-open or eye-closed conditions, has not yet been carefully elucidated in schizophrenia. Our study aimed to explore whether the abnormality of ASSR in patients with first-episode schizophrenia (FEP) is altered under eye-open (EO) and eye-closed (EC) states. ASSR was elicited using 40 Hz click trains under EO and EC states. Twenty-eight healthy control subjects (HC) and thirty-three FEP individuals, 17 of whom were medication-naïve, were recruited. The event-related spectrum perturbation (ERSP) and intertrial coherence (ITC) in response to 40 Hz click sounds were quantified. Compared to HC group, FEP group showed a lower ITC and ERSP during EO state, as well as a decreased ITC during EC state. Our results suggest that abnormalities in gamma band oscillations among first-episode schizophrenia patients are present under both eye open and eye close states. Although differences in gamma band oscillations between EO and EC states within the FEP group were not observed, exploratory results suggest that state-sensitivity may be contingent on medication use.
Collapse
Affiliation(s)
- Junjie Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China.
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA 19104, USA; Med-X Institute, Shanghai Jiaotong University University, Shanghai 200300, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yu Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Xu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
28
|
Reilly TJ, Nottage JF, Studerus E, Rutigliano G, Micheli AID, Fusar-Poli P, McGuire P. Gamma band oscillations in the early phase of psychosis: A systematic review. Neurosci Biobehav Rev 2018; 90:381-399. [PMID: 29656029 DOI: 10.1016/j.neubiorev.2018.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Abnormal gamma oscillations, measured by electroencephalography (EEG), have been associated with chronic psychotic disorders, but their prevalence in the early phase of psychosis is less clear. We sought to address this by systematically reviewing the relevant literature. We searched for EEG studies of gamma band oscillations in subjects at high risk for psychosis and in patients with first episode psychosis. The following measures of gamma oscillations were extracted: resting power, evoked power, induced power, connectivity and peak frequency. Forty-five studies with a total of 3099 participants were included. There were potential sources of bias in the study designs and potential artefacts. Although there were few consistent findings, several studies reported decreased evoked or induced power in both high risk subjects and first episode patients. Studies using larger samples with serial EEG measurements, and designs that minimise artefacts that occur at the gamma frequency may advance work in this area.
Collapse
Affiliation(s)
- Thomas J Reilly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Judith F Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Erich Studerus
- Center for Gender Research and Early Detection, University of Basel Psychiatric Clinics, Basel, Switzerland
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea I De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
29
|
Missonnier P, Curtis L, Ventura J, Herrmann FR, Merlo MCG. Differences of temporal dynamics and signal complexity of gamma band oscillations in first-episode psychosis during a working memory task. J Neural Transm (Vienna) 2017; 124:853-862. [PMID: 28466380 DOI: 10.1007/s00702-017-1728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Gamma band oscillations participate in the temporal binding needed to synchronize cortical networks, involved in early sensory and short term memory processes. In earlier studies, alterations of these neurophysiological parameters have been found in psychotic disorders. To date no study has explored the temporal dynamics and signal complexity of gamma band oscillations in first episode psychosis (FEP). To address this issue, gamma band analysis was performed in 15 FEP patients and 18 healthy controls who successfully performed an adapted 2-back working memory task. Multiple linear and logistic regression models were computed to explore the relationship between the cognitive status and gamma oscillation changes over time. Based on regression model results, phase diagrams were constructed and their complexity was estimated using fractal dimension, a mathematical tool that describes shapes as numeric values. When adjusted for gamma values at time lags -3 to -4 ms and -15 to -16 ms, FEP patients displayed significantly higher time-dependent changes than controls, independently of the nature of the task. The present results are consistent with a discoordination of the activity of cortical generators engaged by the stimulus apparition in FEP patients, leading to a global binding deficit. In addition, fractal analysis showing higher complexity of gamma signal, confirmed this deficit. Our results provide evidence for recruitment of supplementary cortical generators as compensating mechanisms and yield further understanding for the pathophysiology cognitive impairments in FEP.
Collapse
Affiliation(s)
- Pascal Missonnier
- Unit of Psychiatric Neuroscience and Psychotherapy, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, L'Hôpital 140, Case postale 90, 1633, Marsens, Switzerland.
| | - Logos Curtis
- Young Adult Psychiatry Unit, Division of Specialized Psychiatry, Department of Mental Health and Psychiatry, Faculty of Medicine of the University of Geneva, University Hospitals of Geneva, Rue de Lausanne 67, Genève, 1202, Geneva, Switzerland
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, UCLA Department of Psychiatry, 300 Medical Plaza, Room 2243, Los Angeles, CA, 90095-6968, USA
| | - François R Herrmann
- Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals of Geneva, 3 chemin Pont-Bochet, Thônex, 1226, Geneva, Switzerland
| | - Marco C G Merlo
- Unit of Psychiatric Neuroscience and Psychotherapy, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
30
|
Legget KT, Hild AK, Steinmetz SE, Simon ST, Rojas DC. MEG and EEG demonstrate similar test-retest reliability of the 40Hz auditory steady-state response. Int J Psychophysiol 2017; 114:16-23. [PMID: 28161286 PMCID: PMC5348916 DOI: 10.1016/j.ijpsycho.2017.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
The auditory steady-state response (ASSR) is increasingly being used as a biomarker in neuropsychiatric disorders, but research investigating the test-retest reliability of this measure is needed. We previously reported ASSR reliability, measured by electroencephalography (EEG), to 40Hz amplitude-modulated white noise and click train stimuli. The purpose of the current study was to (a) assess the reliability of the MEG-measured ASSR to 40Hz amplitude-modulated white noise and click train stimuli, and (b) compare test-retest reliability between MEG and EEG measures of ASSR, which has not previously been investigated. Additionally, impact of stimulus parameter choice on reliability was assessed, by comparing responses to white noise and click train stimuli. Test-retest reliability, across sessions approximately one week apart, was assessed in 17 healthy adults. On each study day, participants completed two passive listening tasks (white noise and click train stimuli) during separate MEG and EEG recordings. Between-session correlations for evoked power and inter-trial phase coherence (ITPC) were assessed following source-space projection. Overall, the MEG-measured ASSR was significantly correlated between sessions (p<0.05, FDR corrected), suggesting acceptable test-retest reliability. Results suggest greater response reproducibility for ITPC compared to evoked responses and for click train compared to white noise stimuli, although further study is warranted. No significant differences in reliability were observed between MEG and EEG measures, suggesting they are similarly reliable. This work supports use of the ASSR as a biomarker in clinical interventions with repeated measures.
Collapse
Affiliation(s)
- Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
| | - Allison K Hild
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah E Steinmetz
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Steven T Simon
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Donald C Rojas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
31
|
40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors. Neuropsychopharmacology 2016; 41:2232-40. [PMID: 26837462 PMCID: PMC4946051 DOI: 10.1038/npp.2016.17] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 01/24/2023]
Abstract
Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented.
Collapse
|
32
|
Griskova-Bulanova I, Hubl D, van Swam C, Dierks T, Koenig T. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: Does hallucination status matter? Clin Neurophysiol 2016; 127:2214-21. [PMID: 27072092 DOI: 10.1016/j.clinph.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Auditory steady-state responses are larger in patients experiencing auditory verbal hallucinations (AVH) than in never hallucinating subjects (NH) when recorded with open eyes. Compensatory effects were shown for schizophrenic patients when recorded with closed eyes. This effect has not been evaluated in respect to hallucination status. METHODS Gamma responses to 40Hz stimulation were recorded in 15AVH patients, 25 healthy controls and 11NH patients with closed eyes. Mean and peak evoked amplitude and phase-locking index, peak time and maximal frequency were extracted for early- and late-latency responses and compared between groups. RESULTS Phase-locking of early, but not late-latency gamma was diminished in schizophrenic patients independently on hallucination status. Peak entrainment time was delayed in hallucinating patients. Magnitude and frequency of early-latency response correlated to negative symptoms. CONCLUSIONS In AVH patients, entrainment at gamma frequency was "normal" when eyes were closed. In contrast to never hallucinating subjects, entrainment to stimulation was delayed in AVH. The early-latency gamma response, standing for early sensory stimulus processing, on the contrary, was impaired in SZ irrespective of prevalence of hallucinations and was not modulated by subjects' general state; however its magnitude might be related to the expression of negative symptomatology. SIGNIFICANCE Evaluation of auditory entrainment in both open eyes and closed eyes conditions is informative. Frequency and timing information of both early-latency and late-latency responses helps to uncover different aspects of impairment in schizophrenia patients.
Collapse
Affiliation(s)
- Inga Griskova-Bulanova
- Department of Neurobiology and Biophysics, Vilnius University, Vilnius, Lithuania; Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Claudia van Swam
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| |
Collapse
|
33
|
Duffy FH, D'Angelo E, Rotenberg A, Gonzalez-Heydrich J. Neurophysiological differences between patients clinically at high risk for schizophrenia and neurotypical controls--first steps in development of a biomarker. BMC Med 2015; 13:276. [PMID: 26525736 PMCID: PMC4630963 DOI: 10.1186/s12916-015-0516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. METHODS This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. RESULTS Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CONCLUSIONS CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.
Collapse
Affiliation(s)
- Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
34
|
Leicht G, Andreou C, Polomac N, Lanig C, Schöttle D, Lambert M, Mulert C. Reduced auditory evoked gamma band response and cognitive processing deficits in first episode schizophrenia. World J Biol Psychiatry 2015; 16:387-397. [PMID: 25774562 DOI: 10.3109/15622975.2015.1017605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Gamma-band oscillations (e.g., the early auditory evoked gamma-band response, aeGBR) have been suggested to mediate cognitive and perceptual processes by driving the synchronization of local neuronal populations. Reduced aeGBR is a consistent finding in patients with schizophrenia and high-risk subjects, and has been proposed to represent an endophenotype for the illness. However, it is still unclear whether this reduction represents a deficit in sensory or cognitive processes, or a combination of the two. The present study investigated this question by manipulating the difficulty of an auditory reaction task in patients with first-episode schizophrenia and healthy controls. METHODS A 64-channel EEG was recorded in 23 patients with first-episode schizophrenia and 22 healthy controls during two conditions of an auditory reaction task: an easy condition that merely required low-level vigilance, and a difficult condition that placed significant demands on attention and working memory. RESULTS In contrast to healthy controls, patients failed to increase aeGBR power and phase-locking in the difficult condition. In patients, aeGBR power and phase-locking indices were associated with working memory deficits. CONCLUSIONS The observed results confirm the applicability of aeGBR disturbances as a stable endophenotype of schizophrenia, and suggest a cognitive, rather than sensory, deficit at their origin.
Collapse
Affiliation(s)
- Gregor Leicht
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christina Andreou
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Nenad Polomac
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Clarissa Lanig
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Daniel Schöttle
- b Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Martin Lambert
- b Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christoph Mulert
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
35
|
Leishman E, O’Donnell BF, Millward JB, Vohs JL, Rass O, Krishnan GP, Bolbecker AR, Morzorati SL. Phencyclidine Disrupts the Auditory Steady State Response in Rats. PLoS One 2015; 10:e0134979. [PMID: 26258486 PMCID: PMC4530939 DOI: 10.1371/journal.pone.0134979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
- * E-mail:
| | - James B. Millward
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jenifer L. Vohs
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Olga Rass
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Giri P. Krishnan
- University of California Riverside, Riverside, CA, United States of America
| | - Amanda R. Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Sandra L. Morzorati
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
36
|
Cortes-Briones J, Skosnik PD, Mathalon D, Cahill J, Pittman B, Williams A, Sewell RA, Ranganathan M, Roach B, Ford J, D'Souza DC. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans. Neuropsychopharmacology 2015; 40:2124-34. [PMID: 25709097 PMCID: PMC4613601 DOI: 10.1038/npp.2015.53] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 11/09/2022]
Abstract
Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.
Collapse
Affiliation(s)
- Jose Cortes-Briones
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Daniel Mathalon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - John Cahill
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ashley Williams
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - R Andrew Sewell
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Brian Roach
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Judith Ford
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA,Psychiatry Service 116A, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA, Tel: +1 203 932 5711 (2594), Fax: +1 203 937 4860, E-mail:
| |
Collapse
|
37
|
Hall MH, Chen CY, Cohen BM, Spencer KM, Levy DL, Öngür D, Smoller JW. Genomewide association analyses of electrophysiological endophenotypes for schizophrenia and psychotic bipolar disorders: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:151-61. [PMID: 25740047 PMCID: PMC4458348 DOI: 10.1002/ajmg.b.32298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023]
Abstract
Several event-related potentials (ERP), including P3, sensory gating (P50), and gamma oscillation, are robustly impaired in patients with schizophrenia (SCZ) and bipolar disorder (BIP). Although these ERPs are known to be heritable, little is known about the specific genetic loci involved and the degree to which they overlap with loci influencing mood and psychotic disorders. In the present study, we conducted GWAS to a) identify common variants associated with ERP endophenotypes, and b) construct polygenic risk scores (PRS) to examine overlap between genetic components of ERPs and mood and psychotic disorders. The sample consisted of 271 patients with SCZ or psychotic BIP diagnosis and 128 controls for whom ERP and genomewide data were available. GWAS were conducted using the full sample. PRS, derived from the Psychiatric Genomics Consortium (PGC) analyses of SCZ, BIP, and major depressive disorder were applied to each ERP phenotype. We identified a region on chromosome 14 that was significantly associated with sensory gating (peak SNP rs10132223, P = 1.27 × 10(-9) ). This locus has not been previously associated with psychotic illness in PGC-GWAS. In the PRS analyses, patients with a higher load of SCZ risk alleles had reduced gamma response whereas patients with a higher load of BIP risk alleles had smaller P3 amplitude. We observed a genomewide significant locus on chromosome 14 for P50. This locus may influence P50 but not psychotic illness. Among patients with psychotic illness, PRS results indicated genetic overlap between SCZ loci and gamma oscillation and between BIP loci and P3 amplitude.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruce M. Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin M. Spencer
- VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Deborah L. Levy
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts
| |
Collapse
|
38
|
Sivarao DV. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function. Ann N Y Acad Sci 2015; 1344:27-36. [DOI: 10.1111/nyas.12739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Early auditory gamma-band responses in patients at clinical high risk for schizophrenia. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:147-62. [DOI: 10.1016/b978-0-7020-5307-8.00010-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|