1
|
Doi T, Ishikawa T, Moriguchi M, Itoh Y. Current status of cancer genome medicine for pancreatic ductal adenocarcinoma. Jpn J Clin Oncol 2025; 55:443-452. [PMID: 39893577 DOI: 10.1093/jjco/hyaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis; however, advancements in cancer genome profiling using next-generation sequencing have provided new perspectives. KRAS mutations are the most frequently observed genomic alterations in patients with PDAC. However, until recently, it was not considered a viable therapeutic target. Although KRAS G12C mutations for which targeted therapies are already available are infrequent in PDAC, treatments targeting KRAS G12D and pan-KRAS are still under development. Similarly, new treatment methods for KRAS, such as chimeric antigen receptor T-cell therapy, have been developed. Several other potential therapeutic targets have been identified for KRAS wild-type PDAC. For instance, immune checkpoint inhibitors have demonstrated efficacy in PDAC treatment with microsatellite instability-high/deficient mismatch repair and tumor mutation burden-high profiles. However, for other PDAC cases with low immunogenicity, combination therapies that enhance the effectiveness of immune checkpoint inhibitors are being considered. Additionally, homologous recombination repair deficiencies, including BRCA1/2 mutations, are prevalent in PDAC and serve as important biomarkers for therapies involving poly (adenosine diphosphate-ribose) polymerase inhibitors and platinum-based therapies. Currently, olaparib is available for maintenance therapy of BRCA1/2 mutation-positive PDAC. Further therapeutic developments are ongoing for genetic abnormalities involving BRAF V600E and the fusion genes RET, NTRK, NRG, ALK, FGFR2, and ROS1. Overcoming advanced PDAC remains a formidable challenge; however, this review outlines the latest therapeutic strategies that are expected to lead to significant advancements.
Collapse
Affiliation(s)
- Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Medical Oncology Unit, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Johnson ML, Wolf BB, Wang JS, Philipovskiy A, Shapiro GI, Bockorny B, Guo W, Shen J, Jen KY, LeRose M, Hunter TL, Padval M, Schmidt-Kittler O, Bhatia N, Dubey S, Suchomel J, Bendell JC, Jauhari S, Eng-Wong J, Lin JJ. First Results of Migoprotafib, a Potent and Highly Selective Src Homology-2 Domain-Containing Phosphatase 2 Inhibitor in Patients with Advanced Solid Tumors. Mol Cancer Ther 2025; 24:384-391. [PMID: 39632729 PMCID: PMC11876956 DOI: 10.1158/1535-7163.mct-24-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Src homology-2 domain-containing phosphatase 2 promotes rat sarcoma viral oncogene homolog-MAPK signaling and tumorigenesis and is a promising therapeutic target for multiple solid tumors. Migoprotafib is a potent and highly selective Src homology-2 domain-containing phosphatase 2 inhibitor designed for the treatment of rat sarcoma viral oncogene homolog-MAPK-driven cancers, particularly in combination with other targeted agents. Here, we report first-in-human study results of single-agent migoprotafib in patients with advanced solid tumor. We conducted a phase Ia, open-label, multi-center, dose-escalation and expansion study in adult patients with locally advanced or metastatic solid tumors. The key objectives were to evaluate safety, pharmacokinetics (PK), pharmacodynamics (peripheral blood phosphorylated ERK), and preliminary antitumor activity. Fifty-six heavily pretreated patients were treated with migoprotafib (10-150 mg once daily). Migoprotafib had a rapid absorption rate (∼0.5-2 hours) with dose-dependent increases in exposure and pathway modulation (phosphorylated ERK changes). The maximum tolerated dose was 100 mg, and the recommended phase II dose was 60 mg daily (once daily) based on safety, PK, pharmacodynamics, and antitumor activity. Migoprotafib was generally well tolerated with the most frequent adverse events of diarrhea, peripheral edema, dyspnea, anemia, constipation, fatigue, aspartate aminotransferase increase, and platelet count decrease. Stable disease was observed in 10 patients (18%). Migoprotafib had predictable, dose-dependent PK with an effective half-life that supports once-daily dosing and demonstrated promising safety, tolerability, and clinical activity at the recommended phase II dose. Further clinical testing of migoprotafib in combination with other targeted agents is warranted.
Collapse
Affiliation(s)
- Melissa L. Johnson
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, Tennessee
| | - Beni B. Wolf
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - Judy S. Wang
- Sarah Cannon Research Institute at Florida Cancer Specialists, Sarasota, Florida
| | | | | | - Bruno Bockorny
- Beth-Israel Deaconess Medical Center, Boston, Massachusetts
| | - Wei Guo
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - Jinshan Shen
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - Kai Yu Jen
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | - Sarita Dubey
- Genentech, Inc., South San Francisco, California
| | | | - Johanna C. Bendell
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Shekeab Jauhari
- Sarah Cannon Research Institute at Florida Cancer Specialists, Lake Mary, Florida
| | | | - Jessica J. Lin
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Shahnam A, Davis A, Brown LJ, Sullivan I, Lin K, Ng C, Yeo N, Kong BY, Khoo T, Warburton L, Da Silva IP, Mullally W, Xu W, O'Byrne K, Bray V, Pal A, Mersaides A, Itchins M, Arulananda S, Nagrial A, Kao S, Alexander M, Lee CK, Solomon B, John T. Real-World outcomes of Non-Small cell lung cancer patients harbouring KRAS G12C and KRAS G12D mutations. Lung Cancer 2025; 201:108421. [PMID: 39977966 DOI: 10.1016/j.lungcan.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND KRAS G12D and G12C mutations have distinct biological traits influencing treatment response. This study examines real-world demographics, clinical characteristics, and first-line treatment outcomes in metastatic non-small-cell lung cancer (NSCLC) patients with these mutations. METHODS This retrospective, multi-institution observational study used data from the AURORA database. Patients aged 18 years or older, diagnosed with metastatic KRAS G12D or G12C NSCLC between January 1, 2010, and April 30, 2024, were included. Descriptive statistics compared patient characteristics, and time-to-event outcomes were assessed using Cox proportional hazards regression. RESULTS A total of 298 (216 KRAS G12C and 82 KRAS G12D) patients were included. The KRAS G12D group had a higher proportion of never smokers (15 % vs. 1 %, p < 0.01) and PD-L1 < 1 % (36 % vs. 21 %, p = 0.06). No significant differences were observed in overall survival (OS) (HR 1.09, 95 % CI 0.80-1.48, p = 0.60) or real-world progression-free survival (rwPFS) (HR 1.21, 95 % CI 0.92-1.59, p = 0.18) between mutation groups. In KRAS G12C, monotherapy immunotherapy (HR 0.61, 95 % CI 0.39-0.97, p = 0.04) and chemo-immunotherapy (HR 0.59, 95 % CI 0.37-0.94, p = 0.03) improved OS compared to chemotherapy. For KRAS G12D, neither immunotherapy (HR 0.74, 95 % CI 0.29-1.89, p = 0.53) nor chemo-immunotherapy (HR 0.73, 95 % CI 0.34-1.57, p = 0.42) improved OS compared to chemotherapy alone. CONCLUSION KRAS G12C and G12D mutations demonstrate distinct clinical characteristics and treatment responses, with poorer immunotherapy outcomes in KRAS G12D patients. Prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Adel Shahnam
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia.
| | - Alexander Davis
- Department of Medical Oncology, Chris O'brien Lifehouse, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal Northshore Hospital, Sydney, New South Wales, Australia
| | - Lauren Julia Brown
- Department of Medical Oncology, Crown Princess Mary Cancer Center, Sydney, New South Wales, Australia; Department of Medical Oncology, Blacktown Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Isaac Sullivan
- Department of Medical Oncology, Monash Hospital, Melbourne, Victoria, Australia
| | - Kevin Lin
- Department of Medical Oncology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Chien Ng
- Department of Medical Oncology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Nicholas Yeo
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Benjamin Y Kong
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia; Clinical Medicine, University of New South Wales, Sydney, New South Australia, Australia
| | - Trisha Khoo
- Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Lydia Warburton
- Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Inês Pires Da Silva
- Department of Medical Oncology, Blacktown Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - William Mullally
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wen Xu
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Faculty of Medicine and Health, University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Victoria Bray
- Department of Medical Oncology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Abhijit Pal
- Department of Medical Oncology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Antony Mersaides
- Department of Medical Oncology, Northen Beaches Hospital, Sydney, New South Wales, Australia
| | - Malinda Itchins
- Department of Medical Oncology, Chris O'brien Lifehouse, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal Northshore Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Monash Hospital, Melbourne, Victoria, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Crown Princess Mary Cancer Center, Sydney, New South Wales, Australia; Department of Medical Oncology, Blacktown Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Steven Kao
- Department of Medical Oncology, Chris O'brien Lifehouse, Sydney, New South Wales, Australia
| | - Marliese Alexander
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chee Khoon Lee
- Department of Medical Oncology, St George Hospital, Sydney, New South Wales, Australia
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas John
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Zhu C, Li L, Yu Y, Wang X, Shi Y, Gao Y, Chen K, Liu X, Cui Y, Zhang T, Yu Z. Optimization of SHP2 allosteric inhibitors with novel tail heterocycles and their potential as antitumor therapeutics. Eur J Med Chem 2025; 282:117078. [PMID: 39571459 DOI: 10.1016/j.ejmech.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
SHP2, a non-receptor protein tyrosine phosphatase involved in cancers, plays a pivotal role in numerous cellular signaling cascades, including the MAPK and PD-L1/PD-1 pathways. Although several SHP2 allosteric inhibitors have already entered clinical trials, none have been approved to date. Therefore, the development of new SHP2 allosteric inhibitors with improved efficacy is urgently required. Herein, we report the optimization of tail heterocycles in SHP2 allosteric inhibitors using a structure-based drug design strategy. Four series of compounds with different tail skeletons were synthesized, among which D13 showed notable inhibitory activity (IC50 = 1.2 μM) against SHP2. Molecular docking and binding studies indicated that the newly synthesized compounds exerted enzymatic inhibitory effects by directly binding to SHP2 with relatively slow dissociation rates. At the cellular level, Huh7 cells demonstrated heightened sensitivity to the novel SHP2 inhibitors, and D13 exhibited superior antiproliferative activity (IC50 = 38 μM) by arresting G0/G1 cell cycle, facilitating cell apoptosis and suppressing the MAPK signaling pathway. In the in vivo study, D13 displayed significant antitumor activity in a Huh7 xenograft model and possessed favorable druggability with acceptable oral bioavailability (F = 54 %) and half-life (t1/2 = 10.57 h). Collectively, this study lays a robust foundation for further optimization of the tail heterocycle skeleton in SHP2 allosteric inhibitors.
Collapse
Affiliation(s)
- Chengchun Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Leilei Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yan Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Ying Shi
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yiping Gao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Kai Chen
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan, 250000, PR China
| | - Xiaoyu Liu
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan, 250000, PR China
| | - Yuqian Cui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 250012, PR China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Zhiyi Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
5
|
Hoffman M, Krum D, Wittrup KD. Bivalent target-binding bioPROTACs induce potent degradation of oncogenic SHP2. J Biol Chem 2024; 300:107616. [PMID: 39089586 PMCID: PMC11387696 DOI: 10.1016/j.jbc.2024.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Targeted protein degradation is an emergent and rapidly evolving therapeutic strategy. In particular, biologics-based targeted degradation modalities (bioPROTACs) are relatively under explored compared to small molecules. Here, we investigate how target affinity, cellular localization, and valency of bioPROTACs impact efficacy of targeted degradation of the oncogenic phosphatase src-homology 2 containing protein tyrosine phosphatase-2 (SHP2). We identify bivalent recruitment of SHP2 by bioPROTACs as a broadly applicable strategy to improve potency. Moreover, we demonstrate that SHP2-targeted bioPROTACs can effectively counteract gain-of-function SHP2 mutants present in cancer, which are otherwise challenging to selectively target with small molecule constructs. Overall, this study demonstrates the utility of bioPROTACs for challenging targets, and further explicates design principles for therapeutic bioPROTACs.
Collapse
Affiliation(s)
- Megan Hoffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David Krum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Zhu C, Zhao H, Yang W, Chen K, Liu X, Yu Y, Li R, Tan R, Yu Z. Design, Synthesis and Antitumor Activity of a Novel Class of SHP2 Allosteric Inhibitors with a Furanyl Amide-Based Scaffold. J Med Chem 2024. [PMID: 39066713 DOI: 10.1021/acs.jmedchem.4c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SHP2 plays a critical role in modulating tumor growth and PD-1-related signaling pathway, thereby serving as an attractive antitumor target. To date, no antitumor drugs targeting SHP2 have been approved, and hence, the search of SHP2 inhibitors with new chemical scaffolds is urgently needed. Herein, we developed a novel SHP2 allosteric inhibitor SDUY038 with a furanyl amide scaffold, demonstrating potent binding affinity (KD = 0.29 μM), enzymatic activity (IC50 = 1.2 μM) and similar binding interactions to SHP099. At the cellular level, SDUY038 exhibited pan-antitumor activity (IC50 = 7-24 μM) by suppressing pERK expression. Furthermore, SDUY038 significantly inhibited tumor growth in both xenograft and organoid models. Additionally, SDUY038 displayed acceptable bioavailability (F = 14%) and half-life time (t1/2 = 3.95 h). Conclusively, this study introduces the furanyl amide scaffold as a novel class of SHP2 allosteric inhibitors, offering promising lead compounds for further development of new antitumor therapies targeting SHP2.
Collapse
Affiliation(s)
- Chengchun Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Haiyang Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Mianyang 621010, P.R. China
- Center for Organoids and Translational Pharmacology, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P.R. China
| | - Wenting Yang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Kai Chen
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, P.R. China
| | - Xiaoyu Liu
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, P.R. China
| | - Yan Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Rui Li
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu 610041, P.R. China
| | - Ruirong Tan
- Center for Organoids and Translational Pharmacology, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P.R. China
| | - Zhiyi Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| |
Collapse
|
7
|
Liu Y, Jang H, Nussinov R. SHP2-EGFR States in Dephosphorylation Can Inform Selective SHP2 Inhibitors, Dampening RasGAP Action. J Phys Chem B 2024; 128:5175-5187. [PMID: 38747619 DOI: 10.1021/acs.jpcb.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Salmond RJ. Targeting Protein Tyrosine Phosphatases to Improve Cancer Immunotherapies. Cells 2024; 13:231. [PMID: 38334623 PMCID: PMC10854786 DOI: 10.3390/cells13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
9
|
Liu Y, Zhang W, Jang H, Nussinov R. SHP2 clinical phenotype, cancer, or RASopathies, can be predicted by mutant conformational propensities. Cell Mol Life Sci 2023; 81:5. [PMID: 38085330 PMCID: PMC11072105 DOI: 10.1007/s00018-023-05052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
10
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
11
|
Bajia D, Derwich K. An In Silico Study Investigating Camptothecin-Analog Interaction with Human Protein Tyrosine Phosphatase, SHP2 (PTPN11). Pharmaceuticals (Basel) 2023; 16:926. [PMID: 37513838 PMCID: PMC10386118 DOI: 10.3390/ph16070926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The human PTPN11 gene encodes for the src tyrosine phosphatase protein (SHP2) is now gaining much attention in many disorders, particularly its oncogenic involvement in many types of cancer. Efforts in developing molecules targeting SHP2 with high efficacy are the future of drug discovery and chemotherapy. However, the interaction of a new camptothecin analog with the catalytic domain of SHP2 protein remains unknown. Therefore, this study aims to provide in silico rationale for the recognition and binding of FL118 and irinotecan with the catalytic domain of human protein tyrosine phosphatase-SHP2 (PTPc-SH2-SHP2, chain A). The docking interaction of the human SHP2 protein's catalytic domain as well as Y279C and R465G mutants with FL118 and irinotecan ligands were calculated and analyzed using the Autodock 4.2 programme, setting the docking grid to target the protein's active site. The camptothecin analog FL118 had the best lowest negative affinity energies with PTPc-SHP2 wildtype and SHP2-Y279C mutant model (-7.54 Kcal/mol and -6.94 Kcal/mol, respectively). Moreover, the protein-ligand complexes revealed several hydrogen bond interactions reflecting the degree of stability that each structure possesses, with the FL118-SHP2-wildtype forming the most stable complex among the structures. In addition, the FL118-SHP2 wildtype complex was validated for RMSD, RMSF, hydrogen bonds, and salt bridges. This revealed that the complex generated became stable over time. This in silico rationale identifies the novel FL118 camptothecin analog as a potent selective inhibitor of PTPc-SH2 domain of SHP2 protein, paving way for further in vitro investigations into the interactions and binding activity of analogs with SHP2 for potential therapeutic applications in PTPN11-associated disorders.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| |
Collapse
|
12
|
Sisler DJ, Hinz TK, Le AT, Kleczko EK, Nemenoff RA, Heasley LE. Evaluation of KRAS G12C inhibitor responses in novel murine KRAS G12C lung cancer cell line models. Front Oncol 2023; 13:1094123. [PMID: 36845684 PMCID: PMC9945252 DOI: 10.3389/fonc.2023.1094123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The KRAS(G12C) mutation is the most common genetic mutation in North American lung adenocarcinoma patients. Recently, direct inhibitors of the KRASG12C protein have been developed and demonstrate clinical response rates of 37-43%. Importantly, these agents fail to generate durable therapeutic responses with median progression-free survival of ~6.5 months. Methods To provide models for further preclinical improvement of these inhibitors, we generated three novel murine KRASG12C-driven lung cancer cell lines. The co-occurring NRASQ61L mutation in KRASG12C-positive LLC cells was deleted and the KRASG12V allele in CMT167 cells was edited to KRASG12C with CRISPR/Cas9 methods. Also, a novel murine KRASG12C line, mKRC.1, was established from a tumor generated in a genetically-engineered mouse model. Results The three lines exhibit similar in vitro sensitivities to KRASG12C inhibitors (MRTX-1257, MRTX-849, AMG-510), but distinct in vivo responses to MRTX-849 ranging from progressive growth with orthotopic LLC-NRAS KO tumors to modest shrinkage with mKRC.1 tumors. All three cell lines exhibited synergistic in vitro growth inhibition with combinations of MRTX-1257 and the SHP2/PTPN11 inhibitor, RMC-4550. Moreover, treatment with a MRTX-849/RMC-4550 combination yielded transient tumor shrinkage in orthotopic LLC-NRAS KO tumors propagated in syngeneic mice and durable shrinkage of mKRC.1 tumors. Notably, single-agent MRTX-849 activity in mKRC.1 tumors and the combination response in LLC-NRAS KO tumors was lost when the experiments were performed in athymic nu/nu mice, supporting a growing literature demonstrating a role for adaptive immunity in the response to this class of drugs. Discussion These new models of murine KRASG12C mutant lung cancer should prove valuable for identifying improved therapeutic combination strategies with KRASG12C inhibitors.
Collapse
Affiliation(s)
- Daniel J. Sisler
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Trista K. Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Anh T. Le
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily K. Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States,*Correspondence: Lynn E. Heasley,
| |
Collapse
|
13
|
Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 2022; 109:102433. [PMID: 35905558 DOI: 10.1016/j.ctrv.2022.102433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
RAS genes are the most frequently mutated oncogenes in cancer. These mutations occur in roughly half of the patients with colorectal cancer (CRC). RAS mutant tumors are resistant to therapy with anti-EGFR monoclonal antibodies. Therefore, patients with RAS mutant CRC currently have few effective therapy options. RAS mutations lead to constitutively active RAS GTPases, involved in multiple downstream signaling pathways. These alterations are associated with a tumor microenvironment (TME) that drives immune evasion and disease progression by mechanisms that remain incompletely understood. In this review, we focus on the available evidence in the literature explaining the potential effects of RAS mutations on the CRC microenvironment. Ongoing efforts to influence the TME by targeting mutant RAS and thereby sensitizing these tumors to immunotherapy will be discussed as well.
Collapse
|