1
|
Hajek AE, Scott KL, Sanchez-Peña SR, Tkaczuk C, Lovett B, Bushley KE. Annotated checklist of arthropod-pathogenic species in the Entomophthoromycotina (Fungi, Zoopagomycota) in North America. MycoKeys 2025; 114:329-366. [PMID: 40084270 PMCID: PMC11905066 DOI: 10.3897/mycokeys.114.139257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 03/16/2025] Open
Abstract
The subphylum Entomophthoromycotina (Phylum Zoopagomycota) includes many arthropod pathogens, some of which are renowned for their abilities to alter host behavior prior to death and cause epizootics that impact host populations. The last checklist of arthropod-pathogenic species in this group was published in 1963 and consisted of 39 species in a single genus. Since then, more species have been named, and their taxonomy has changed extensively. We have constructed an updated checklist for species of Entomophthoromycotina in North America; this checklist includes species in the continental United States, Canada, and Mexico. Data were compiled based on available published literature and metadata available from the ARSEF culture collection, adjusting names based on current taxonomy. In North America, the arthropod-pathogenic Entomophthoromycotina now include 80 species belonging to 14 genera, within two classes, plus one species in a form genus. This checklist provides a current framework for future studies of the biodiversity of this group of fungi.
Collapse
Affiliation(s)
- Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USACornell UniversityIthacaUnited States of America
| | - Kelsey L. Scott
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14853, USAEmerging Pests and Pathogens Research Unit, USDA-ARSIthacaUnited States of America
| | - Sergio R. Sanchez-Peña
- Departmento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315, MexicoUniversidad Autónoma Agraria Antonio NarroSaltilloMexico
| | - Cezary Tkaczuk
- Department of Horticulture and Plant Protection, University of Siedlce, 08-110 Siedlce, PolandUniversity of SiedlceSiedlcePoland
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14853, USAEmerging Pests and Pathogens Research Unit, USDA-ARSIthacaUnited States of America
| | - Kathryn E. Bushley
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14853, USAEmerging Pests and Pathogens Research Unit, USDA-ARSIthacaUnited States of America
| |
Collapse
|
2
|
Edwards S, De Fine Licht HH. Rearing zombie flies: Laboratory culturing of the behaviourally manipulating fungal pathogen Entomophthora muscae. MethodsX 2024; 12:102523. [PMID: 38179068 PMCID: PMC10765058 DOI: 10.1016/j.mex.2023.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Insect pathogenic fungi (IPF) and insects have ubiquitous interactions in nature. The extent of these interkingdom host-pathogen interactions are both complex and diverse. Some IPF, notably of the order Entomophthorales, manipulate their species-specific host before death. The fungus-induced altered insect behaviours are sequential and can accurately be repeatedly characterised temporally, making them a valuable model for understanding the molecular and chemical underpinnings of behaviour and host-pathogen co-evolutionary biology. Here, we present methods for the isolation and laboratory culturing of the emerging behaviourally manipulating model IPF Entomophthora muscae for experimentation.•E. muscae isolation and culturing in vitro.•Establishing and maintaining an E. muscae culture in vivo in houseflies (Musca domestica).•Controlled E. muscae infections for virulence experiments and quantification of conidia discharge per cadaver.
Collapse
Affiliation(s)
- Sam Edwards
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
- Living Systems Institute, Biosciencesv, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Henrik H. De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| |
Collapse
|
3
|
Sacco NE, Hajek AE. Diversity and Breadth of Host Specificity among Arthropod Pathogens in the Entomophthoromycotina. Microorganisms 2023; 11:1658. [PMID: 37512833 PMCID: PMC10386553 DOI: 10.3390/microorganisms11071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A meta-analysis based on the published literature was conducted to evaluate the breadth of host ranges of arthropod pathogens in the fungal subphylum Entomophthoromycotina. The majority of pathogens in this subphylum infect insects, although arachnids (especially mites), collembola, and myriapods are also used as hosts. Most species (76%) have specialized host ranges and only infect arthropods in one host family. The breadth of host ranges in the Entomophthoromycotina is generally greater for species in more basal groups (Conidiobolaceae and Neoconidiobolaceae), where most species are soil-borne saprobes and few are pathogens. The Batkoaceae is a transitionary family in which all species are pathogens and both generalists and specialists occur. Among pathogen-infecting insects, Hemiptera and Diptera are the most commonly infected insect orders. Within the Hemiptera, hosts in the suborder Sternorrhycha were infected by more fungal species than the Auchenorrhyncha and Heteroptera.
Collapse
Affiliation(s)
- Natalie E Sacco
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Zhang L, Yang T, Su X, Zhang X, Zhou X. Debilitation of Galleria mellonella hemocytes using CytCo a cytolytic-like protein derived from the entomopathogen Conidiobolus obscurus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105418. [PMID: 37247995 DOI: 10.1016/j.pestbp.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Cytolytic (Cyt)-like genes are present in both pathogenic bacteria and fungi. Bacterial Cyt proteins can destroy insect midgut epithelial cells after ingestion by hosts and some of them have been developed as biopesticides; however, few studies have investigated their functions in fungal pathogens. This study investigated the effects of a Cyt-like protein (CytCo) derived from Conidiobolus obscurus (Entomophthoromycotina) on the hemocytes of the greater wax moth Galleria mellonella larvae. The results showed a significant decline in hemocyte viability after treatment with CytCo in vivo or in vitro. The hemocyte density in the hemolymph was reduced by 65.2% and 50.2% after 12 h in vivo and 6 h in vitro treatments, respectively. Apoptosis/necrosis tests using fluorescence microscopy demonstrated that CytCo-treated hemocytes displayed apoptosis, and many of them also showed necrosis after 6 h in vitro treatment. Based on transcriptome analysis, several genes involved in the programmed cell death signaling pathway were upregulated in the CytCo-treated hemocytes. Meanwhile, the differentially expressed genes related to energy production, signal transduction, transcription regulation, and melanization were upregulated, demonstrating activated immune responses; those putatively related to hemocyte adhesion were downregulated, possibly in response to the reduction of hemocytes in hemolymph. In conclusion, CytCo as a virulence factor, could irreversibly incapacitate host hemocytes, playing an important role in debilitating insect immunity. This novel insecticidal protein holds a potential to develop biopesticide for controlling agroforestry pests.
Collapse
Affiliation(s)
- Lvhao Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Tian Yang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiu Su
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xinqi Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiang Zhou
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
5
|
He Y, Zhao C, Huang B, Hu F. A New Cyclopeptide from Basidiobolus meristosporus. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Genome-Wide Study of Conidiation-Related Genes in the Aphid-Obligate Fungal Pathogen Conidiobolus obscurus (Entomophthoromycotina). J Fungi (Basel) 2022; 8:jof8040389. [PMID: 35448620 PMCID: PMC9026835 DOI: 10.3390/jof8040389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 01/24/2023] Open
Abstract
Fungi in the Entomophthorales order can cause insect disease and epizootics in nature, contributing to biological pest control in agriculture and forestry. Most Entomophthorales have narrow host ranges, limited to the arthropod family level; however, rare genomic information about host-specific fungi has been reported. Conidiation is crucial for entomopathogenic fungi to explore insect resources owing to the important roles of conidia in the infection cycle, such as dispersal, adhesion, germination, and penetration into the host hemocoel. In this study, we analyzed the whole genome sequence of the aphid-obligate pathogen Conidiobolus obscurus strain ARSEF 7217 (Entomophthoromycotina), using Nanopore technology from Biomarker Technologies (Beijing, China). The genome size was 37.6 Mb, and encoded 10,262 predicted genes, wherein 21.3% genes were putatively associated to the pathogen–host interaction. In particular, the serine protease repertoire in C. obscurus exhibited expansions in the trypsin and subtilisin classes, which play vital roles in the fungus’ pathogenicity. Differentially expressed transcriptomic patterns were analyzed in three conidiation stages (pre-conidiation, emerging conidiation, and post-conidiation), and 2915 differentially expressed genes were found to be associated with the conidiation process. Furthermore, a weighted gene co-expression network analysis showed that 772 hub genes in conidiation are mainly involved in insect cuticular component degradation, cell wall/membrane biosynthesis, MAPK signaling pathway, and transcription regulation. Our findings of the genomic and transcriptomic features of C. obscurus help reveal the molecular mechanism of the Entomophthorales pathogenicity, which will contribute to improving fungal applications in pest control.
Collapse
|
7
|
Robinson K, Yang Q, Stewart S, Whitmore MA, Zhang G. Biogeography, succession, and origin of the chicken intestinal mycobiome. MICROBIOME 2022; 10:55. [PMID: 35365230 PMCID: PMC8976367 DOI: 10.1186/s40168-022-01252-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Extensive work has been accomplished to characterize the intestinal bacterial community, known as the microbiota, and its association with host health and disease. However, very little is known about the spatiotemporal development and the origin of a minor intestinal fungal community, known as the mycobiota, in humans and animals, particularly in avian species. RESULTS In this study, we comprehensively characterized the biogeography and succession of the gastrointestinal (GI) mycobiota of broiler chickens and further revealed the fungal sources that are responsible for initial and long-term establishment of the mycobiota in the GI tract. Using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes, we detected significant spatial and temporal differences in the mycobiota along the GI tract. In contrary to the microbiota, the mycobiota was more diverse in the upper than the lower GI tract with no apparent trend of succession up to 42 days of age. The intestinal mycobiota was dominated by the phyla Ascomycota and Basidiomycota with Gibberella, Aspergillus, and Candida being the most abundant genera. Although the chicken mycobiota was highly dynamic, Fusarium pseudonygamai was dominant throughout the GI tract regardless of age in this study. The core chicken mycobiome consisted of 26 fungal taxa accounting for greater than 85% of the fungal population in each GI location. However, we observed high variations of the intestinal mycobiota among different studies. We also showed that the total fungal population varied greatly from 1.0 × 104 to 1.1 × 106 /g digesta along the GI tract and only accounted for less than 0.06% of the bacteria in day-42 broilers. Finally, we revealed that the mycobiota from the hatchery environment was responsible for initial colonization in the GI tract of newly hatched chickens, but was quickly replaced by the fungi in the diet within 3 days. CONCLUSIONS Relative to the intestinal microbiota that consists of trillions of bacteria in hundreds of different species and becomes relatively stabilized as animals age, the chicken intestinal mycobiota is a minor microbial community that is temporally dynamic with limited diversity and no obvious pattern of successive changes. However, similar to the microbiota, the chicken mycobiota is spatially different along the GI tract, although it is more diverse in the upper than the lower GI tract. Dietary fungi are the major source of the intestinal mycobiota in growing chickens. Video abstract.
Collapse
Affiliation(s)
- Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
- Present Address: Poultry Research Unit, USDA–Agricultural Research Service, Mississippi State, MS USA
| | - Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| | - Sydney Stewart
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
- Present Address: Safety and Security Division, Institute for Public Research, CNA, Arlington, VA USA
| | - Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| |
Collapse
|
8
|
Möckel L, Meusemann K, Misof B, Schwartze VU, De Fine Licht HH, Voigt K, Stielow B, de Hoog S, Beutel RG, Buellesbach J. Phylogenetic Revision and Patterns of Host Specificity in the Fungal Subphylum Entomophthoromycotina. Microorganisms 2022; 10:256. [PMID: 35208711 PMCID: PMC8879804 DOI: 10.3390/microorganisms10020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The Entomophthoromycotina, a subphylum close to the root of terrestrial fungi with a bias toward insects as their primary hosts, has been notoriously difficult to categorize taxonomically for decades. Here, we reassess the phylogeny of this group based on conserved genes encoding ribosomal RNA and RNA polymerase II subunits, confirming their general monophyly, but challenging previously assumed taxonomic relationships within and between particular clades. Furthermore, for the prominent, partially human-pathogenic taxon Conidiobolus, a new type species C. coronatus is proposed in order to compensate for the unclear, presumably lost previous type species C. utriculosus Brefeld 1884. We also performed an exhaustive survey of the broad host spectrum of the Entomophthoromycotina, which is not restricted to insects alone, and investigated potential patterns of co-evolution across their megadiverse host range. Our results suggest multiple independent origins of parasitism within this subphylum and no apparent co-evolutionary events with any particular host lineage. However, Pterygota (i.e., winged insects) clearly constitute the most dominantly parasitized superordinate host group. This appears to be in accordance with an increased dispersal capacity mediated by the radiation of the Pterygota during insect evolution, which has likely greatly facilitated the spread, infection opportunities, and evolutionary divergence of the Entomophthoromycotina as well.
Collapse
Affiliation(s)
- Lars Möckel
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany; (L.M.); (V.U.S.); (K.V.)
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Karen Meusemann
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany; (K.M.); (B.M.)
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany; (K.M.); (B.M.)
| | - Volker U. Schwartze
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany; (L.M.); (V.U.S.); (K.V.)
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Henrik H. De Fine Licht
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany; (L.M.); (V.U.S.); (K.V.)
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Benjamin Stielow
- Center of Expertise in Mycology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (B.S.); (S.d.H.)
- Westerdijk Fungal Biodiversity Institute—KNAW, 3584 CT Utrecht, The Netherlands
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (B.S.); (S.d.H.)
- Westerdijk Fungal Biodiversity Institute—KNAW, 3584 CT Utrecht, The Netherlands
| | - Rolf G. Beutel
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Elya C, De Fine Licht HH. The genus Entomophthora: bringing the insect destroyers into the twenty-first century. IMA Fungus 2021; 12:34. [PMID: 34763728 PMCID: PMC8588673 DOI: 10.1186/s43008-021-00084-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
The fungal genus Entomophthora consists of highly host-specific pathogens that cause deadly epizootics in their various insect hosts. The most well-known among these is the "zombie fly" fungus E. muscae, which, like other Entomophthora species, elicits a series of dramatic behaviors in infected hosts to promote optimal spore dispersal. Despite having been first described more than 160 years ago, there are still many open questions about Entomophthora biology, including the molecular underpinnings of host behavior manipulation and host specificity. This review provides a comprehensive overview of our current understanding of the biology of Entomophthora fungi and enumerates the most pressing outstanding questions that should be addressed in the field. We briefly review the discovery of Entomophthora and provide a summary of the 21 recognized Entomophthora species, including their type hosts, methods of transmission (ejection of spores after or before host death), and for which molecular data are available. Further, we argue that this genus is globally distributed, based on a compilation of Entomophthora records in the literature and in online naturalist databases, and likely to contain additional species. Evidence for strain-level specificity of hosts is summarized and directly compared to phylogenies of Entomophthora and the class Insecta. A detailed description of Entomophthora's life-cycle and observed manipulated behaviors is provided and used to summarize a consensus for ideal growth conditions. We discuss evidence for Entomophthora's adaptation to growth exclusively inside insects, such as producing wall-less hyphal bodies and a unique set of subtilisin-like proteases to penetrate the insect cuticle. However, we are only starting to understand the functions of unusual molecular and genomic characteristics, such as having large > 1 Gb genomes full of repetitive elements and potential functional diploidy. We argue that the high host-specificity and obligate life-style of most Entomophthora species provides ample scope for having been shaped by close coevolution with insects despite the current general lack of such evidence. Finally, we propose six major directions for future Entomophthora research and in doing so hope to provide a foundation for future studies of these fungi and their interaction with insects.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| |
Collapse
|
10
|
Yang Q, Liu J, Robinson KJ, Whitmore MA, Stewart SN, Zhang G. Perturbations of the ileal mycobiota by necrotic enteritis in broiler chickens. J Anim Sci Biotechnol 2021; 12:107. [PMID: 34625122 PMCID: PMC8501549 DOI: 10.1186/s40104-021-00628-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Background Intestinal microbiota is critical for maintaining animal health and homeostasis. However, involvement of the fungal community, also known as the mycobiota, in animal health and disease is poorly understood. This study was aimed to examine the association between the intestinal mycobiota and the severity of necrotic enteritis (NE), an economically significant poultry disease. Methods A total of 90 day-of-hatch Cobb broilers were infected with Eimeria maxima on d 10, followed by an oral challenge with C. perfringens on d 14 to induce NE, while another 10 broilers were served as mock-infected controls. On d 17, the lesions in the jejunum were scored, and the ileal digesta were subjected to DNA isolation and real-time PCR quantification of total bacterial and fungi populations. Internal transcribed spacer 2 (ITS2) amplicon sequencing was also performed to profile the ileal mycobiota composition. Changes in the ileal mycobiota in response to NE were investigated. Spearman correlation analysis was further conducted to identify the correlations between relative abundances of individual ileal fungi and the severity of NE. Results While the total bacterial population in the ileum was increased by 2- to 3-fold in NE chickens, the total fungal population was progressively declined in more exacerbated NE, with the most severely infected chickens showing a nearly 50-fold reduction relative to mock-infected controls. Richness of the ileal mycobiota also tended to reduce in chickens with NE (P = 0.06). Compositionally, among 30 most abundant fungal amplicon sequence variants (ASVs), 11 were diminished and 7 were enriched (P < 0.05), while 12 remained largely unchanged in NE-afflicted chickens (P > 0.05). Multiple Wallemia and Aspergillus species were markedly diminished in NE (P < 0.05) and also showed a significant negative correlation with NE severity (P < 0.05). Conclusions Dysbiosis of the ileal mycobiota is induced evidently by NE and the extent of the dysbiosis is positively correlated with disease severity. These findings suggest a possible role of the intestinal mycobiota in NE pathogenesis and highlight the mycobiota as a new potential target for NE mitigation in poultry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00628-5.
Collapse
Affiliation(s)
- Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kelsy J Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.,Present address: Poultry Production and Product Safety Research Unit, USDA-Agricultural Research Service, Fayetteville, AR, USA
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Sydney N Stewart
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.,Present address: Safety and Security Division, Institute for Public Research, CNA, Arlington, VA, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
11
|
Ye G, Zhang L, Zhou X. Long noncoding RNAs are potentially involved in the degeneration of virulence in an aphid-obligate pathogen, Conidiobolus obscurus (Entomophthoromycotina). Virulence 2021; 12:1705-1716. [PMID: 34167451 PMCID: PMC8237998 DOI: 10.1080/21505594.2021.1938806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Virulence attenuation frequently occurs in in vitro culturing of pathogenic microbes. In this study, we investigated the total putative long noncoding RNAs (lncRNAs) in an aphid-obligate pathogen, Conidiobolus obscurus, and screened the differentially expressed (DE) lncRNAs and protein-coding genes involved in the virulence decline. The virulence was significantly attenuated after eight subculturing events, in which the median lethal concentration of the conidia ejected from mycelial mats relative to the bamboo aphid, Takecallis taiwanus, increased from 36.1 to 126.1 conidia mm–2, four days after inoculation. In total, 1,252 lncRNAs were identified based on the genome-wide transcriptional analysis. By characterizing their molecular structures and expression patterns, we found that the lncRNAs possessed shorter transcripts, lower expression, and fewer exons than did protein-coding genes in C. obscurus. A total of 410 DE genes of 329 protein-coding genes and 81 lncRNAs were identified. The functional enrichment analysis showed the DE genes were enriched in peptidase activity, protein folding, autophagy, and metabolism. Moreover, target prediction analysis of the 81 lncRNAs revealed 3,111 cis-regulated and 23 trans-regulated mRNAs, while 121 DE lncRNA-mRNA pairs were possibly involved in virulence decline. Moreover, the DE lncRNA-regulated target genes mainly encoded small heat shock proteins, secretory proteins, transporters, autophagy proteins, and other stress response-related proteins. This implies that the decline in virulence regulated by lncRNAs was likely associated with the environmental stress response of C. obscurus. Hence, these findings can provide insights into the lncRNA molecules of Entomophthoromycotina, with regards to virulence regulators of entomopathogens.
Collapse
Affiliation(s)
- Guofang Ye
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Lvhao Zhang
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiang Zhou
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Basidiosins A and B: Cyclopentapeptides from the entomophthoralean fungus Basidiobolus meristosporus. Fitoterapia 2020; 146:104671. [PMID: 32565347 DOI: 10.1016/j.fitote.2020.104671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/21/2023]
Abstract
Two new cyclopentapeptides, basidiosins A and B (1 and 2) were isolated from the mycelia extracts of entomophthoralean fungus Basidiobolus meristosporus RCEF 4516. The structures were determined based on spectroscopic methods, and the absolute config urations were assigned by Marfey's method on their acid hydrolyzates. Compounds 1 and 2 were identified as cyclo(L-Thr-L-Leu- L-Ile-D-Tyr-D-Thr) and cyclo(L-Thr-L-Leu-L-Val-D-Val-D-Ser), respectively. They were evaluated for the biological activities including antibacterial, antifungal and antioxidative activities. Furthermore, the biosynthetic pathway of 1 was proposed by bioinformatic analysis. This is the first study on the isolation of natural products from Basidiobolus fungus.
Collapse
|
13
|
Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, Kasson MT. Behavioral betrayal: How select fungal parasites enlist living insects to do their bidding. PLoS Pathog 2020; 16:e1008598. [PMID: 32555716 PMCID: PMC7302443 DOI: 10.1371/journal.ppat.1008598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Brian Lovett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Angie Macias
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - John Cooley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, Connecticut, United States of America
| | - Jørgen Eilenberg
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik H. de Fine Licht
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wang J, Lovett B, St. Leger RJ. The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Early Diverging Insect-Pathogenic Fungi of the Order Entomophthorales Possess Diverse and Unique Subtilisin-Like Serine Proteases. G3-GENES GENOMES GENETICS 2018; 8:3311-3319. [PMID: 30111619 PMCID: PMC6169396 DOI: 10.1534/g3.118.200656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species. The extent to which insect-pathogenic fungi in the order Entomophthorales rely on SLSPs is unknown. Here we take advantage of recently available transcriptomic and genomic datasets from four genera within Entomophthoromycotina: the saprobic or opportunistic pathogens Basidiobolus meristosporus, Conidiobolus coronatus, C. thromboides, C. incongruus, and the host-specific insect pathogens Entomophthora muscae and Pandora formicae, specific pathogens of house flies (Muscae domestica) and wood ants (Formica polyctena), respectively. In total 154 SLSP from six fungi in the subphylum Entomophthoromycotina were identified: E. muscae (n = 22), P. formicae (n = 6), B. meristosporus (n = 60), C. thromboides (n = 18), C. coronatus (n = 36), and C. incongruus (n = 12). A unique group of 11 SLSPs was discovered in the genomes of the obligate biotrophic fungi E. muscae, P. formicae and the saprobic human pathogen C. incongruus that loosely resembles bacillopeptidase F-like SLSPs. Phylogenetics and protein domain analysis show this class represents a unique group of SLSPs so far only observed among Bacteria, Oomycetes and early diverging fungi such as Cryptomycota, Microsporidia, and Entomophthoromycotina. This group of SLSPs is missing in the sister fungal lineages of Kickxellomycotina and the fungal phyla Mucoromyocta, Ascomycota and Basidiomycota fungi suggesting interesting gene loss patterns.
Collapse
|
16
|
Abstract
The pathogenic entomophthoralean fungi cause infection in insects and mammalian hosts. Basidiobolus and Conidiobolus species can be found in soil and insect, reptile, and amphibian droppings in tropical and subtropical areas. The life cycles of these fungi occur in these environments where infecting sticky conidia are developed. The infection is acquired by insect bite or contact with contaminated environments through open skin. Conidiobolus coronatus typically causes chronic rhinofacial disease in immunocompetent hosts, whereas some Conidiobolus species can be found in immunocompromised patients. Basidiobolus ranarum infection is restricted to subcutaneous tissues but may be involved in intestinal and disseminated infections. Its early diagnosis remains challenging due to clinical similarities to other intestinal diseases. Infected tissues characteristically display eosinophilic granulomas with the Splendore-Höeppli phenomenon. However, in immunocompromised patients, the above-mentioned inflammatory reaction is absent. Laboratory diagnosis includes wet mount, culture serological assays, and molecular methodologies. The management of entomophthoralean fungi relies on traditional antifungal therapies, such as potassium iodide (KI), amphotericin B, itraconazole, and ketoconazole, and surgery. These species are intrinsically resistant to some antifungals, prompting physicians to experiment with combinations of therapies. Research is needed to investigate the immunology of entomophthoralean fungi in infected hosts. The absence of an animal model and lack of funding severely limit research on these fungi.
Collapse
Affiliation(s)
- Raquel Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leonel Mendoza
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Lovett B, St Leger RJ. Genetically engineering better fungal biopesticides. PEST MANAGEMENT SCIENCE 2018; 74:781-789. [PMID: 28905488 DOI: 10.1002/ps.4734] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Microbial insect pathogens offer an alternative means of pest control with the potential to wean us off our heavy reliance on chemical pesticides. Insect pathogenic fungi play an important natural role in controlling disease vectors and agricultural pests. Most commercial products employ Ascomycetes in the genera Metarhizium and Beauveria. However, their utilization has been limited by inconsistent field results as a consequence of sensitivity to abiotic stresses and naturally low virulence. Other naturally occurring biocontrol agents also face these hurdles to successful application, but the availability of complete genomes and recombinant DNA technologies have facilitated design of multiple fungal pathogens with enhanced virulence and stress resistance. Many natural and synthetic genes have been inserted into entomopathogen genomes. Some of the biggest gains in virulence have been obtained using genes encoding neurotoxic peptides, peptides that manipulate host physiology and proteases and chitinases that degrade the insect cuticle. Prokaryotes, particularly extremophiles, are useful sources of genes for improving entomopathogen resistance to ultraviolet (UV) radiation. These biological insecticides are environmentally friendly and cost-effective insect pest control options. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
18
|
Zhang S, Chen C, Xie T, Ye S. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages. PLoS One 2017; 12:e0179930. [PMID: 28672012 PMCID: PMC5495205 DOI: 10.1371/journal.pone.0179930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/06/2017] [Indexed: 12/18/2022] Open
Abstract
The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis–an obligate aphid pathogenic fungus—the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.
Collapse
Affiliation(s)
- Shutao Zhang
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
| | - Chun Chen
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
- * E-mail:
| | - Tingna Xie
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| |
Collapse
|
19
|
Gryganskyi AP, Mullens BA, Gajdeczka MT, Rehner SA, Vilgalys R, Hajek AE. Hijacked: Co-option of host behavior by entomophthoralean fungi. PLoS Pathog 2017; 13:e1006274. [PMID: 28472199 PMCID: PMC5417710 DOI: 10.1371/journal.ppat.1006274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrii P. Gryganskyi
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Bradley A. Mullens
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Michael T. Gajdeczka
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Stephen A. Rehner
- Systematic Mycology and Microbiology Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
20
|
Abstract
Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742
| |
Collapse
|
21
|
De Fine Licht HH, Jensen AB, Eilenberg J. Comparative transcriptomics reveal host-specific nucleotide variation in entomophthoralean fungi. Mol Ecol 2016; 26:2092-2110. [PMID: 27717247 DOI: 10.1111/mec.13863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
Abstract
Obligate parasites are under strong selection to increase exploitation of their host to survive while evading detection by host immune defences. This has often led to elaborate pathogen adaptations and extreme host specificity. Specialization on one host, however, often incurs a trade-off influencing the capacity to infect alternate hosts. Here, we investigate host adaptation in two morphologically indistinguishable and closely related obligate specialist insect-pathogenic fungi from the phylum Entomophthoromycota, Entomophthora muscae sensu stricto and E. muscae sensu lato, pathogens of houseflies (Musca domestica) and cabbage flies (Delia radicum), respectively. We compared single nucleotide polymorphisms within and between these two E. muscae species using 12 RNA-seq transcriptomes from five biological samples. All five isolates contained intra-isolate polymorphisms that segregate in 50:50 ratios, indicative of genetic duplication events or functional diploidy. Comparative analysis of dN/dS ratios between the multinucleate E. muscae s.str. and E. muscae s.l. revealed molecular signatures of positive selection in transcripts related to utilization of host lipids and the potential secretion of toxins that interfere with the host immune response. Phylogenetic comparison with the nonobligate generalist insect-pathogenic fungus Conidiobolus coronatus revealed a gene-family expansion of trehalase enzymes in E. muscae. The main sugar in insect haemolymph is trehalose, and efficient sugar utilization was probably important for the evolutionary transition to obligate insect pathogenicity in E. muscae. These results support the hypothesis that genetically based host specialization in specialist pathogens evolves in response to the challenge of using resources and dealing with the immune system of different hosts.
Collapse
Affiliation(s)
- Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Annette B Jensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jørgen Eilenberg
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
22
|
Wang JB, St Leger RJ, Wang C. Advances in Genomics of Entomopathogenic Fungi. ADVANCES IN GENETICS 2016; 94:67-105. [PMID: 27131323 DOI: 10.1016/bs.adgen.2016.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors.
Collapse
Affiliation(s)
- J B Wang
- University of Maryland, College Park, MD, United States
| | - R J St Leger
- University of Maryland, College Park, MD, United States
| | - C Wang
- Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|