1
|
Chave J. Species abundance, urn models, and neutrality. C R Biol 2024; 347:119-135. [PMID: 39354840 DOI: 10.5802/crbiol.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
The neutral theory of biodiversity and biogeography has stimulated much research in community ecology. Here, exact results are used to apply neutral model predictions to large regional samples. Three complementary neutral models are presented: the Ewens canonical neutral model, a model of subdivided ecological communities, and a “diversity begets diversity” neutral model. For all three models, an exact sampling formula is provided, and a new R package neutr, is presented. This package is used to fit species abundances from regional inventories of tropical forest trees in the Amazon, tropical Africa and Southeast Asia. It is shown that the neutral models fit well empirical data for all but the few most abundant species (from 6 to 40 depending on the continent). When the parameter θ is taken as an index or regional diversity, the Amazonia and Southeast Asia emerge with similar regional diversities (θ = 654 for Amazonia, versus θ = 726 for Southeast Asia), with a less diverse tropical African tree flora (θ = 219). The model infers 10,141 tree species with at least 50 individuals in Amazonia, 3477 in tropical Africa and 9915 in Southeast Asia. The spatially subdivided neutral model provides clear evidence for a spatial substructure in all three regional floras. These results show how neutral models are useful to explore regional patterns of species abundance and to provide insights about regional species pools.
Collapse
|
2
|
Chavarria K, Batista J, Saltonstall K. Widespread occurrence of fecal indicator bacteria in oligotrophic tropical streams. Are common culture-based coliform tests appropriate? PeerJ 2024; 12:e18007. [PMID: 39253603 PMCID: PMC11382651 DOI: 10.7717/peerj.18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Monitoring of stream water quality is a key element of water resource management worldwide, but methods that are commonly used in temperate habitats may not be appropriate in humid tropical systems. We assessed the influence of four land uses on microbial water quality in 21 streams in the Panama Canal Watershed over a one-year period, using a common culture-based fecal indicator test and 16S rDNA metabarcoding. Each stream was located within one of four land uses: mature forest, secondary forest, silvopasture, and traditional cattle pasture. Culturing detected total coliforms and Escherichia coli across all sites but found no significant differences in concentrations between land uses. However, 16S rDNA metabarcoding revealed variability in the abundance of coliforms across land uses and several genera that can cause false positives in culture-based tests. Our results indicate that culture-based fecal indicator bacteria tests targeting coliforms may be poor indicators of fecal contamination in Neotropical oligotrophic streams and suggest that tests targeting members of the Bacteroidales would provide a more reliable indication of fecal contamination.
Collapse
Affiliation(s)
- Karina Chavarria
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Civil and Environmental Engineering, University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Jorge Batista
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
3
|
Burian A, Bruce K, Tovela E, Bakker J, Balcells L, Bennett R, Chordekar S, Costa HM, Crampton-Platt A, de Boer H, Ross-Gillespie V, de Sacramento A, Sidat N, Simbine L, Ready J, Tang C, Mauvisseau Q. Merging two eDNA metabarcoding approaches and citizen-science-based sampling to facilitate fish community monitoring along vast Sub-Saharan coastlines. Mol Ecol Resour 2023; 23:1641-1655. [PMID: 37464467 DOI: 10.1111/1755-0998.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
The coastline of Sub-Saharan Africa hosts highly diverse fish communities of great conservation value, which are also key resources for local livelihoods. However, many costal ecosystems are threatened by overexploitation and their conservation state is frequently unknown due to their vast spatial extent and limited monitoring budgets. Here, we evaluated the potential of citizen science-based eDNA surveys to alleviate such chronic data deficiencies and assessed fish communities in Mozambique using two 12S metabarcoding primer sets. Samples were either collected by scientific personnel or trained community members and results from the two metabarcoding primers were combined using a new data merging approach. Irrespective of the background of sampling personnel, a high average fish species richness was recorded (38 ± 20 OTUs per sample). Individual sections of the coastline largely differed in the occurrence of threatened and commercially important species, highlighting the need for regionally differentiated management strategies. A detailed comparison of the two applied primer sets revealed an important trade-off in primer choice with MiFish primers amplifying a higher number of species but Riaz primers performing better in the detection of threatened fish species. This trade-off could be partly resolved by applying our new data-merging approach, which was especially designed to increase the robustness of multiprimer assessments in regions with poor reference libraries. Overall, our study provides encouraging results but also highlights that eDNA-based monitoring will require further improvements of, for example, reference databases and local analytical infrastructure to facilitate routine applications in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Alfred Burian
- Department of Computational Landscape Ecology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Marine Ecology Department, Lurio University, Nampula, Mozambique
| | | | - Erica Tovela
- Natural History Museum, University Eduardo Mondlane, Maputo, Mozambique
| | | | | | | | | | - Hugo M Costa
- Wildlife Conservation Society, Maputo, Mozambique
| | | | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | | | - Luisa Simbine
- Instituto Oceanográfico de Moçambique, Ministério do Mar, Águas Interiores e Pescas, Maputo, Mozambique
| | - Jonathan Ready
- Universidade Federal do Pará, Grupo de Investigação Biológica Integrada, Centro de Estudos Avançados da Biodiversidade, Belem, Brazil
| | | | | |
Collapse
|
4
|
Cantera I, Jézéquel C, Dejean T, Murienne J, Vigouroux R, Valentini A, Brosse S. Deforestation strengthens environmental filtering and competitive exclusion in Neotropical streams and rivers. Proc Biol Sci 2023; 290:20231130. [PMID: 37700645 PMCID: PMC10498049 DOI: 10.1098/rspb.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Understanding how anthropization impacts the assembly of species onto communities is pivotal to go beyond the observation of biodiversity changes and reveal how disturbances affect the environmental and biotic processes shaping biodiversity. Here, we propose a simple framework to measure the assembly processes underpinning functional convergence/divergence patterns. We applied this framework to northern Amazonian fish communities inventoried using environmental DNA in 35 stream sites and 64 river sites. We found that the harsh and unstable environmental conditions characterizing streams conveyed communities towards functional convergence, by filtering traits related to food acquisition and, to a lower extent, dispersal. Such environmental filtering also strengthened competition by excluding species having less competitive food acquisition traits. Instead, random species assembly was more marked in river communities, which may be explained by the downstream position of rivers facilitating the dispersion of species. Although fish assembly rules differed between streams and river fish communities, anthropogenic disturbances reduced functional divergence in both ecosystems, with a reinforcement of both environmental filtering and weaker competitor exclusion. This may explain the substantial biodiversity alterations observed under slight deforestation levels in Neotropical freshwater ecosystems and underlines their vulnerability to anthropic disturbances that not only affect species persistence but also modify community assembly rules.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Céline Jézéquel
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Tony Dejean
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Régis Vigouroux
- HYDRECO, Laboratoire Environnement de Petit Saut, BP 823, 97388 Kourou Cedex, French Guiana
| | - Alice Valentini
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
5
|
Silva AMM, Feiler HP, Lacerda-Júnior GV, Fernandes-Júnior PI, de Tarso Aidar S, de Araújo VAVP, Matteoli FP, de Araújo Pereira AP, de Melo IS, Cardoso EJBN. Arbuscular mycorrhizal fungi associated with the rhizosphere of an endemic terrestrial bromeliad and a grass in the Brazilian neotropical dry forest. Braz J Microbiol 2023; 54:1955-1967. [PMID: 37410249 PMCID: PMC10485230 DOI: 10.1007/s42770-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.
Collapse
Affiliation(s)
- Antonio Marcos Miranda Silva
- “Luiz de Queiroz” College of Agriculture, Soil Science Department, University of São Paulo, Piracicaba, São Paulo 13418-900 Brazil
| | | | | | | | - Saulo de Tarso Aidar
- Brazilian Agricultural Research Corporation, Embrapa Semiárido, Petrolina, , Pernambuco 56302-970 Brazil
| | | | - Filipe Pereira Matteoli
- Faculty of Sciences, Department of Biological Sciences, Laboratory of Microbial Bioinformatics, São Paulo State University, Bauru, 17033-360 Brazil
| | | | - Itamar Soares de Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, São Paulo 13918-110 Brazil
| | | |
Collapse
|
6
|
Zhang H, Mächler E, Morsdorf F, Niklaus PA, Schaepman ME, Altermatt F. A spatial fingerprint of land-water linkage of biodiversity uncovered by remote sensing and environmental DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161365. [PMID: 36634788 DOI: 10.1016/j.scitotenv.2022.161365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Aquatic and terrestrial ecosystems are tightly connected via spatial flows of organisms and resources. Such land-water linkages integrate biodiversity across ecosystems and suggest a spatial association of aquatic and terrestrial biodiversity. However, knowledge about the extent of this spatial association is limited. By combining satellite remote sensing (RS) and environmental DNA (eDNA) extraction from river water across a 740-km2 mountainous catchment, we identify a characteristic spatial land-water fingerprint. Specifically, we find a spatial association of riverine eDNA diversity with RS spectral diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still detectable up to a 2.0 km radius. Our findings show that biodiversity patterns in rivers can be linked to the functional diversity of surrounding terrestrial ecosystems and provide a dominant scale at which these linkages are strongest. Such spatially explicit information is necessary for a functional understanding of land-water linkages.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| | - Elvira Mächler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Felix Morsdorf
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael E Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
7
|
Gámez S, Harris NC. Conceptualizing the 3D niche and vertical space use. Trends Ecol Evol 2022; 37:953-962. [PMID: 35872027 DOI: 10.1016/j.tree.2022.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Spatial partitioning in ecological communities has predominantly been described in two dimensions, yet habitat is complex and 3D. Complex space use mediates community structure and interaction strength by expanding spatial, temporal, and dietary dimensions. Vertical stratification of resources provides opportunities for novel specializations, creating a 3D niche. Competition and predation are mediated by 3D space use, as individuals use the vertical axis to access prey, flee predators, or avoid competitors. The 3D niche is important for long-term conservation strategies as species must navigate tradeoffs in habitat use between strata-specific threats and suboptimal habitat patches. Ultimately, elucidating the 3D niche has implications for protected area management and corridor design that directly influence species persistence and ecosystem function in a rapidly changing world.
Collapse
Affiliation(s)
- Siria Gámez
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University 195 Prospect Street, New Haven, CT 06511, USA.
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University 195 Prospect Street, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Monitoring fish communities through environmental DNA metabarcoding in the fish pass system of the second largest hydropower plant in the world. Sci Rep 2021; 11:23167. [PMID: 34848787 PMCID: PMC8632987 DOI: 10.1038/s41598-021-02593-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The Itaipu Hydroelectric Power Plant is the second largest in the world in power generation. The artificial barrier created by its dam imposes an obstacle for fish migration. Thus, in 2002, a fish pass system, named Piracema Channel, was built to allow fish to access areas upstream of the reservoir. We tested the potential of environmental DNA metabarcoding to monitor the impact of both the dam and associated fish pass system in the Paraná River fish communities and to compare it with traditional monitoring methods. Using a fragment of the 12S gene, we characterized richness and community composition based on amplicon sequence variants, operational taxonomic units, and zero-radius OTUs. We combined GenBank and in-house data for taxonomic assignment. We found that different bioinformatics approaches showed similar results. Also, we found a decrease in fish diversity from 2019 to 2020 probably due to the recent extreme drought experienced in southeastern Brazil. The highest alpha diversity was recorded in the mouth of the fish pass system, located in a protected valley with the highest environmental heterogeneity. Despite the clear indication that the reference databases need to be continuously improved, our results demonstrate the analytical efficiency of the metabarcoding to monitor fish species.
Collapse
|
9
|
Donald J, Murienne J, Chave J, Iribar A, Louisanna E, Manzi S, Roy M, Tao S, Orivel J, Schimann H, Zinger L. Multi-taxa environmental DNA inventories reveal distinct taxonomic and functional diversity in urban tropical forest fragments. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Polanco F. A, Mutis Martinezguerra M, Marques V, Villa‐Navarro F, Borrero Pérez GH, Cheutin M, Dejean T, Hocdé R, Juhel J, Maire E, Manel S, Spescha M, Valentini A, Mouillot D, Albouy C, Pellissier L. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 2021. [DOI: 10.1111/btp.13009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Polanco F.
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Virginie Marques
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | - Francisco Villa‐Navarro
- Grupo de Investigación en Zoología Facultad de Ciencias Universidad del Tolima Ibagué Colombia
| | - Giomar Helena Borrero Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Marie‐Charlotte Cheutin
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | | | - Régis Hocdé
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
| | | | - Eva Maire
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Stéphanie Manel
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | - Manuel Spescha
- Landscape Ecology Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
| | | | - David Mouillot
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
| | - Camille Albouy
- IFREMER Unité Écologie et Modèles pour l’Halieutique Nantes cedex 3 France
| | - Loïc Pellissier
- Landscape Ecology Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
- Unit of Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| |
Collapse
|
11
|
Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. THE NEW PHYTOLOGIST 2021; 231:1195-1209. [PMID: 33605460 DOI: 10.1111/nph.17288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Céline Leroy
- AMAP, CIRAD, CNRS, INRAE, IRD, Univ Montpellier, Montpellier, 34000, France
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | | - Eliane Louisanna
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Heidy Schimann
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | |
Collapse
|
12
|
eDNA sampled from stream networks correlates with camera trap detection rates of terrestrial mammals. Sci Rep 2021; 11:11362. [PMID: 34131168 PMCID: PMC8206079 DOI: 10.1038/s41598-021-90598-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022] Open
Abstract
Biodiversity monitoring delivers vital information to those making conservation decisions. Comprehensively measuring terrestrial biodiversity usually requires costly methods that can rarely be deployed at large spatial scales over multiple time periods, limiting conservation efficiency. Here we investigated the capacity of environmental DNA (eDNA) from stream water samples to survey terrestrial mammal diversity at multiple spatial scales within a large catchment. We compared biodiversity information recovered using an eDNA metabarcoding approach with data from a dense camera trap survey, as well as the sampling costs of both methods. Via the sampling of large volumes of water from the two largest streams that drained the study area, eDNA metabarcoding provided information on the presence and detection probabilities of 35 mammal taxa, 25% more than camera traps and for half the cost. While eDNA metabarcoding had limited capacity to detect felid species and provide individual-level demographic information, it is a cost-efficient method for large-scale monitoring of terrestrial mammals that can offer sufficient information to solve many conservation problems.
Collapse
|
13
|
Coutant O, Richard-Hansen C, de Thoisy B, Decotte JB, Valentini A, Dejean T, Vigouroux R, Murienne J, Brosse S. Amazonian mammal monitoring using aquatic environmental DNA. Mol Ecol Resour 2021; 21:1875-1888. [PMID: 33787010 DOI: 10.1111/1755-0998.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Environmental DNA (eDNA) metabarcoding has emerged as one of the most efficient methods to assess aquatic species presence. While the method can in theory be used to investigate nonaquatic fauna, its development for inventorying semi-aquatic and terrestrial fauna is still at an early stage. Here we investigated the potential of aquatic eDNA metabarcoding for inventorying mammals in Neotropical environments, be they aquatic, semi-aquatic or terrestrial. We collected aquatic eDNA in 96 sites distributed along three Guianese watersheds and compared our inventories to expected species distributions and field observations derived from line transects located throughout French Guiana. Species occurrences and emblematic mammalian fauna richness patterns were consistent with the expected distribution of fauna and our results revealed that aquatic eDNA metabarcoding brings additional data to line transect samples for diurnal nonaquatic (terrestrial and arboreal) species. Aquatic eDNA also provided data on species not detectable in line transect surveys such as semi-aquatic, aquatic and nocturnal terrestrial and arboreal species. Although the application of eDNA to inventory mammals still needs some developments to optimize sampling efficiency, it can now be used as a complement to traditional surveys.
Collapse
Affiliation(s)
- Opale Coutant
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD, UPS, (UMR5174) - Université de Toulouse, Toulouse, France
| | | | | | | | | | - Tony Dejean
- VIGILIFE, Le Bourget-du-Lac, France.,SPYGEN, Le Bourget-du-Lac, France
| | - Régis Vigouroux
- Laboratoire Environnement de Petit Saut, HYDRECO, Kourou Cedex, French Guiana
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD, UPS, (UMR5174) - Université de Toulouse, Toulouse, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD, UPS, (UMR5174) - Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, deWaard JR, Elbrecht V, Ficetola GF, Goberna M, Kennedy S, Krehenwinkel H, Leese F, Novotny V, Ronquist F, Yu DW, Zinger L, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Vogler AP, Papadopoulou A, Emerson BC. Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol 2021; 30:1120-1135. [PMID: 33432777 PMCID: PMC7986105 DOI: 10.1111/mec.15797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonUK
- Comparative Plant and Fungal BiologyRoyal Botanic GardensLondonUK
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Éric Coissac
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Jeremy R. deWaard
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
- School of Environmental SciencesUniversity of GuelphGuelphCanada
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM)Zoological Research Museum Alexander KoenigBonnGermany
| | - Gentile F. Ficetola
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
- Department of Environmental Sciences and PolicyUniversity of MilanoMilanoItaly
| | - Marta Goberna
- Department of Environment and AgronomyINIAMadridSpain
| | - Susan Kennedy
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of BiogeographyTrier UniversityTrierGermany
| | | | - Florian Leese
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU) EssenUniversity of Duisburg‐EssenEssenGermany
| | - Vojtech Novotny
- Biology Centre, Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Fredrik Ronquist
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Lucie Zinger
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | | | | | | | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Alfried P. Vogler
- Department of Life SciencesImperial College LondonLondonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
15
|
Choudhary P, Singh BN, Chakdar H, Saxena AK. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 2021; 37:54. [PMID: 33604719 DOI: 10.1007/s11274-021-03019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.
Collapse
Affiliation(s)
- Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Bansh Narayan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| |
Collapse
|
16
|
Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D'Amico V, Trammell TLE, Setubal JC, Wommack KE. Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 2021; 11:1629. [PMID: 33452291 PMCID: PMC7811025 DOI: 10.1038/s41598-020-80602-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zachary S Ladin
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA.
| | - Barbra Ferrell
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Jacob T Dums
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ryan M Moore
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Delphis F Levia
- Department of Entomology and Wildlife Ecology, University of Delaware, 250 Townsend Hall, Newark, DE, 19716, USA
| | - W Gregory Shriver
- Departments of Geography and Spatial Sciences and Plant and Soil Sciences, University of Delaware, 216C Pearson Hall, Newark, DE, 19716, USA
| | - Vincent D'Amico
- US Forest Service, Northern Research Station, Newark, DE, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| | - João Carlos Setubal
- Instituto de Química, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| |
Collapse
|
17
|
Lopes CM, Baêta D, Valentini A, Lyra ML, Sabbag AF, Gasparini JL, Dejean T, Haddad CFB, Zamudio KR. Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Mol Ecol 2020; 30:3289-3298. [PMID: 32786119 DOI: 10.1111/mec.15594] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Declines and extinctions are increasing globally and challenge conservationists to keep pace with biodiversity monitoring. Organisms leave DNA traces in the environment, e.g., in soil, water, and air. These DNA traces are referred to as environmental DNA (eDNA). The analysis of eDNA is a highly sensitive method with the potential to rapidly assess local diversity and the status of threatened species. We searched for DNA traces of 30 target amphibian species of conservation concern, at different levels of threat, using an environmental DNA metabarcoding approach, together with an extensive sequence reference database to analyse water samples from six montane sites in the Atlantic Coastal Forest and adjacent Cerrado grasslands of Brazil. We successfully detected DNA traces of four declined species (Hylodes ornatus, Hylodes regius, Crossodactylus timbuhy, and Vitreorana eurygnatha); two locally disappeared (Phasmahyla exilis and Phasmahyla guttata); and one species that has not been seen since 1968 (putatively assigned to Megaelosia bocainensis). We confirm the presence of species undetected by traditional methods, underscoring the efficacy of eDNA metabarcoding for biodiversity monitoring at low population densities, especially in megadiverse tropical sites. Our results support the potential application of eDNA in conservation biology, to evaluate persistence and distribution of threatened species in surveyed habitats or sites, and improve accuracy of red lists, especially for species undetected over long periods.
Collapse
Affiliation(s)
- Carla Martins Lopes
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Délio Baêta
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | | | - Mariana Lúcio Lyra
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Ariadne Fares Sabbag
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - João Luiz Gasparini
- Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | | | - Célio Fernando Baptista Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Kelly Raquel Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Thakur IS, Roy D. Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases. Int J Mol Sci 2020; 21:ijms21144879. [PMID: 32664313 PMCID: PMC7402316 DOI: 10.3390/ijms21144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| |
Collapse
|
19
|
Preface. ADV ECOL RES 2020. [DOI: 10.1016/s0065-2504(20)30020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|