1
|
Delmas CEL, Bancal MO, Leyronas C, Robin MH, Vidal T, Launay M. Monitoring the phenology of plant pathogenic fungi: why and how? Biol Rev Camb Philos Soc 2024; 99:1075-1084. [PMID: 38287495 DOI: 10.1111/brv.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Phenology is a key adaptive trait of organisms, shaping biotic interactions in response to the environment. It has emerged as a critical topic with implications for societal and economic concerns due to the effects of climate change on species' phenological patterns. Fungi play essential roles in ecosystems, and plant pathogenic fungi have significant impacts on global food security. However, the phenology of plant pathogenic fungi, which form a huge and diverse clade of organisms, has received limited attention in the literature. This diversity may have limited the use of a common language for comparisons and the integration of phenological data for these taxonomic groups. Here, we delve into the concept of 'phenology' as applied to plant pathogenic fungi and explore the potential drivers of their phenology, including environmental factors and the host plant. We present the PhenoFun scale, a phenological scoring system suitable for use with all fungi and fungus-like plant pathogens. It offers a standardised and common tool for scientists studying the presence, absence, or predominance of a particular phase, the speed of phenological phase succession, and the synchronism shift between pathogenic fungi and their host plants, across a wide range of environments and ecosystems. The application of the concept of 'phenology' to plant pathogenic fungi and the use of a phenological scoring system involves focusing on the interacting processes between the pathogenic fungi, their hosts, and their biological, physical, and chemical environment, occurring during the life cycle of the pathogen. The goal is to deconstruct the processes involved according to a pattern orchestrated by the fungus's phenology. Such an approach will improve our understanding of the ecology and evolution of such organisms, help to understand and anticipate plant disease epidemics and their future evolution, and make it possible to optimise management models, and to encourage the adoption of cropping practices designed from this phenological perspective.
Collapse
Affiliation(s)
| | - Marie-Odile Bancal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Ecosys, Palaiseau, 91120, France
| | | | - Marie-Hélène Robin
- INRAE, INPT, ENSAT, EI Purpan, University of Toulouse, UMR AGIR, Castanet Tolosan, F-31326, France
| | - Tiphaine Vidal
- Université Paris-Saclay, INRAE, UR Bioger, Palaiseau, 91120, France
| | | |
Collapse
|
2
|
Tortosa A, Giffard B, Sirami C, Larrieu L, Ladet S, Vialatte A. Increasing landscape heterogeneity as a win-win solution to manage trade-offs in biological control of crop and woodland pests. Sci Rep 2023; 13:13573. [PMID: 37604831 PMCID: PMC10442452 DOI: 10.1038/s41598-023-40473-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Agriculture and forestry cover more than 75% of Europe, and invertebrate pests are a costly challenge for these two economic sectors. Landscape management is increasingly promoted as a solution to enhance biological pest control, but little is known on its effects on adjacent crop fields and woodlands. This study aims to explore the effect of the proportion of woodlands and permanent grasslands as well as crop diversity on biological pest control simultaneously in cereals fields and woodland patches, in south-western France. We used different types of sentinel prey as well as bird and carabid community metrics to assess biological pest control potential in these two ecosystems. We first show that land cover variables influence biological pest control both in cereal fields and woodland patches, but have antagonistic effects in the two ecosystems. Although results vary according to the biological control indicator considered, we show that increasing landscape heterogeneity represents a valuable solution to manage trade-offs and promote higher average predation rates across forests and cereal fields. Our study therefore calls for more integrative studies to identify landscape management strategies that enable nature-based solutions across ecosystems.
Collapse
Affiliation(s)
- Axelle Tortosa
- Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France.
| | - Brice Giffard
- Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140, Villenave d'Ornon, France
| | - Clélia Sirami
- Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France
| | - Laurent Larrieu
- Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France
- CNPF-CRPF Occitanie, 7 chemin de la Lacade, 31320, Auzeville Tolosane, France
| | - Sylvie Ladet
- Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France
| | - Aude Vialatte
- Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France
| |
Collapse
|
3
|
Saubin M, Louet C, Bousset L, Fabre F, Frey P, Fudal I, Grognard F, Hamelin F, Mailleret L, Stoeckel S, Touzeau S, Petre B, Halkett F. Improving sustainable crop protection using population genetics concepts. Mol Ecol 2022; 32:2461-2471. [PMID: 35906846 DOI: 10.1111/mec.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Growing genetically resistant plants allows pathogen populations to be controlled and reduces the use of pesticides. However, pathogens can quickly overcome such resistance. In this context, how can we achieve sustainable crop protection? This crucial question has remained largely unanswered despite decades of intense debate and research effort. In this study, we used a bibliographic analysis to show that the research field of resistance durability has evolved into three subfields: (i) 'plant breeding' (generating new genetic material), (ii) 'molecular interactions' (exploring the molecular dialogue governing plant-pathogen interactions) and (iii) 'epidemiology and evolution' (explaining and forecasting of pathogen population dynamics resulting from selection pressure(s) exerted by resistant plants). We argue that this triple split of the field impedes integrated research progress and ultimately compromises the sustainable management of genetic resistance. After identifying a gap among the three subfields, we argue that the theoretical framework of population genetics could bridge this gap. Indeed, population genetics formally explains the evolution of all heritable traits, and allows genetic changes to be tracked along with variation in population dynamics. This provides an integrated view of pathogen adaptation, in particular via evolutionary-epidemiological feedbacks. In this Opinion Note, we detail examples illustrating how such a framework can better inform best practices for developing and managing genetically resistant cultivars.
Collapse
Affiliation(s)
| | - Clémentine Louet
- Université de Lorraine, INRAE, IAM, Nancy, France.,Université Paris Saclay, INRAE, BIOGER, Thiverval-Grignon, France
| | - Lydia Bousset
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, F-33882 Villenave d'Ornon, France
| | - Pascal Frey
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Isabelle Fudal
- Université Paris Saclay, INRAE, BIOGER, Thiverval-Grignon, France
| | - Frédéric Grognard
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| | - Frédéric Hamelin
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
| | - Ludovic Mailleret
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France.,Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
| | - Suzanne Touzeau
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| | | | | |
Collapse
|