1
|
Waheeb MS, Elkhatib WF, Yassien MA, Hassouna NA. Optimized production and characterization of a thermostable cellulase from Streptomyces thermodiastaticus strain. AMB Express 2024; 14:129. [PMID: 39570480 PMCID: PMC11582227 DOI: 10.1186/s13568-024-01787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
A high cellulase-producing bacterial isolate TS4 was recovered from an Egyptian soil sample and identified using 16S rRNA gene sequencing as Streptomyces thermodiastaticus. One-factor-at-a-time (OFAT) preliminary studies were carried out to determine the key factors affecting cellulase production by S. thermodiastaticus and their optimum ranges. The initial pH of the medium, carboxymethyl cellulose (CMC), tryptone, and NaCl concentrations were further optimized using a response surface Central Composite design. Fermentation under optimized variables of initial pH 6.0, presence of CMC, tryptone, and NaCl at concentrations of 2%, 0.03%, and 0.12%, respectively, resulted in 3.24 fold increase in cellulase productivity (2023 U/L) as compared to that under basal conditions (625 U/L). Cellulase production was also improved with a 4 Kilogray (KGy) dosage of gamma radiation. In comparison to the wild-type strain under basal circumstances, S. thermodiastaticus produced 5.1 fold more cellulase after a combination of model-based optimization and gamma radiation mutation. Cellulase was partially purified using ammonium sulfate precipitation followed by dialysis. The resulting cellulase was 1.74 times purified and its specific activity was 4.21 U/mg. The molecular weight of cellulase is 63 kDa as indicated by SDS-PAGE and zymogram. Its maximum activity was achieved at 60 °C and pH 5.0. In addition, it showed outstanding thermo-tolerance as it could retain its full activity after a 12-h incubation at 90 °C.
Collapse
Affiliation(s)
- Mery S Waheeb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, Egypt.
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, Egypt
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
3
|
Sivasankar P, Poongodi S, Sivakumar K, Al-Qahtani WH, Arokiyaraj S, Jothiramalingam R. Exogenous production of cold-active cellulase from polar Nocardiopsis sp. with increased cellulose hydrolysis efficiency. Arch Microbiol 2022; 204:218. [PMID: 35333982 DOI: 10.1007/s00203-022-02830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland. .,Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Subramaniam Poongodi
- Department of Microbiology, Shri Sakthikailassh Women's College, Salem, 636 003, Tamil Nadu, India
| | - Kannan Sivakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - R Jothiramalingam
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Cordas CM, Nguyen GS, Valério GN, Jønsson M, Söllner K, Aune IH, Wentzel A, Moura JJG. Discovery and characterization of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway. J Inorg Biochem 2021; 226:111651. [PMID: 34740038 DOI: 10.1016/j.jinorgbio.2021.111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
A new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid. The acidic pH optimum (3 to 4) and the low temperature optimum (25 °C) were confirmed using both biochemical and electrochemical assays. Kinetic and thermodynamic parameters associated with the catalytic redox center were attained by electrochemistry.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Giang-Son Nguyen
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway.
| | - Gabriel N Valério
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Malene Jønsson
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Katharina Söllner
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Ingvild H Aune
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Alexander Wentzel
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - José J G Moura
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6001. [PMID: 34204975 PMCID: PMC8199887 DOI: 10.3390/ijerph18116001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
6
|
Blieva R, Kalieva A, Suleimenova Z, Zhakipbekova A, Tapenbayeva I. SCREENING OF ASPERGILLUS FUNGI FOR EXTRA CELLULAR PROTEASE AND COLLAGENASE PRODUCTION. REPORTS 2020. [DOI: 10.32014/2020.2518-1483.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Protease and collagenase are the most important enzymes used for the processing of meat raw materials. In the meat industry, proteolytic enzymes are used to accelerate the maturation of meat and increase its yield. The use of enzyme preparations in meat processing makes it possible to rationally use meat raw materials, intensify technological processes, improve quality and expand the range of products. Collagenase, unlike protease, acts on those connective proteins of meat raw materials that determine its stiffness, breaking down hard-hydrolyzable and non-digestible collagen. The aim of this study was selection of strains of industrially valuable micromycetes from the collection of micromycetes that have the ability to synthesize extracellular protease and collagenase and create a fungal association. A comparative characterization of 7 strains of micromycetes of the genus Aspergillus and Penicillium - potential producers of protease and collagenase enzymes, was carried out. A. awamori 16 and A. awamori 22 showed the highest clearance zones and was used for further studies. The clearance zones of casein of A. awamori 16 on day 5 were 22.8 mm, and collagen 20.8 mm, while the clearance zones of casein of A. awamori 22 were 20.1 mm, and collagen - 19.1 mm.
Collapse
Affiliation(s)
- R.K. Blieva
- doctor of biological sciences, professor, RPE Co “Antigen”, Almaty, Kazakhstan, https://orcid.org/0000-0003-3924-2915
| | - A.K. Kalieva
- candidate of biological sciences, Aktobe Regional State University named after K. Zhubanov, Kazakhstan, https://orcid.org/0000-0003-1178-0236
| | - Zh.B. Suleimenova
- candidate of biological sciences, RPE Co “Antigen”, Almaty, Kazakhstan
| | - A.S. Zhakipbekova
- MSc in Biotechnology, 1RPE Co “Antigen”, Almaty, Kazakhstan, https://orcid.org/0000-0002-7927-4738
| | - I.E. Tapenbayeva
- MSc in Biotechnology, RPE Co “Antigen”, Almaty, Kazakhstan, https://orcid.org/0000-0003-0672-5849
| |
Collapse
|
7
|
Otto-Hanson LK, Kinkel LL. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats. MICROBIAL ECOLOGY 2020; 79:694-705. [PMID: 31656973 DOI: 10.1007/s00248-019-01443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.
Collapse
Affiliation(s)
- L K Otto-Hanson
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA.
| | - L L Kinkel
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA
| |
Collapse
|
8
|
Cruz AF, Barka GD, Blum LEB, Tanaka T, Ono N, Kanaya S, Reineke A. Evaluation of microbial communities in peels of Brazilian tropical fruits by amplicon sequence analysis. Braz J Microbiol 2019; 50:739-748. [PMID: 31073985 PMCID: PMC6863208 DOI: 10.1007/s42770-019-00088-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/20/2019] [Indexed: 10/26/2022] Open
Abstract
Elucidation of the distinctive microbial taxonomic profiles of tropical fruit peels is the indispensable component of investigations aimed at the detection of microorganisms responsible for the post-harvest loss. The objective of the present work was to dissect the bacterial and fungal community of five tropical fruit peels (banana, guava, mango, papaya, and passion fruit) in wild (non-cultivated) and conventionally produced samples from Brazil. To that end, 16S rRNA-encoding gene and ITS rDNA amplicon analysis of the five tropical fruit peels were performed to discriminate the bacterial and fungal communities, respectively. The result showed that bacterial communities of the five types of fruit peels were by far more diversified than that of fungal communities, independent of the type of production system involved. Among the investigated fruits, non-cultivated papaya peels hosted the most diversified bacterial community while the least bacterial community diversity was found in the conventionally produced papaya fruit peels. The gene amplicon analysis clearly discriminated the bacterial community into their respective classes, while fungal communities were better classified in their phyla, yet with clearer component discrimination of fungal community based on the type of cultivation system practiced. Conventionally produced banana and non-cultivated passion fruit peels were characteristically dominated by fungal and bacterial groups, respectively. Overall, in conventionally produced fruit peels, bacterial community was mainly composed of Proteobacteria, Actinobacteria, and Bacilli. The result provided a broad microbial diversity profile that could be used as an important input for seeking alternative fruit spoilage control and post-harvest treatments.
Collapse
Affiliation(s)
- André Freire Cruz
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Geleta Dugassa Barka
- Applied Biology Department, Adama Science and Technology University, Adama, Oromia, Ethiopia.
| | | | - Tetsushi Tanaka
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Naoaki Ono
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Shigehiko Kanaya
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Annette Reineke
- Department of Crop Protection, Geisenheim University, Geisenheim, Germany
| |
Collapse
|