1
|
Hernandez BJ, Robertson DM. Exosomes in Corneal Homeostasis and Wound Healing. Curr Eye Res 2025:1-9. [PMID: 39936626 DOI: 10.1080/02713683.2025.2459335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE The cornea is a transparent avascular tissue that serves as the first line of defense against opportunistic pathogens and provides a smooth refractive surface for vision. Due to its external location, the cornea is vulnerable to stress from the outer environment. This can lead to corneal epithelial breakdown and subsequent corneal disease. Extracellular vesicles (EVs) are nano-sized vesicles enclosed within a lipid bilayer that are secreted by all cells in the body and play a key role in cell-to-cell communication. Within the cornea field, EVs and exosomes, the latter of which represents a subpopulation of small EVs, have emerged as potential therapies for treating corneal diseases and have increased our understanding of the mechanisms by which EVs, and more specifically, exosomes released by stressed or unhealthy cells, leads to corneal dysfunction and disease. METHODS We conducted a literature search using PubMed and Google Scholar using keywords relevant to exosomes, extracellular vesicles, and cornea. We reviewed the literature focusing on EV studies on corneal wound healing and therapy. RESULTS This review provides a comprehensive overview of the current state of exosome biology as it relates to corneal disease and wound healing. Studies to date provide compelling data indicating that EVs and exosomes may play an integral role in the maintenance of corneal homeostasis. EVs and exosomes also have exciting potential as therapeutics in corneal wound healing and disease; and their presence in tear fluid may serve as potential diagnostic biomarkers for ocular and systemic diseases. CONCLUSION While corneal exosome biology is still in its infancy state, continued progress in this area will improve our understanding of the functional capacity of these small vesicles in the human cornea and may lead to the development of novel regenerative therapies.
Collapse
Affiliation(s)
- Belinda J Hernandez
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Liu K, Zhang P, Zhou L, Han L, Zhao L, Yu X. Research progress in the construction of animal models of autoimmune thyroiditis. Autoimmunity 2024; 57:2317190. [PMID: 38377122 DOI: 10.1080/08916934.2024.2317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Autoimmune thyroiditis (AIT), also known as Hashimoto's thyroiditis (HT), is an autoimmune disease that is characterised by elevated thyroid-specific antibody titres. The incidence of AIT is increasing year over year, making it urgent to establish a suitable animal model for this condition, in order to better explore its pathogenesis and potential pharmaceutical mechanisms for treatment. Owing to a lack of basic research on this disease, problems such as disparate modelling methods with unclear and varying success rates make it difficult for researchers to obtain effective information on AIT in the short term. This report summarises and analyzes the current literature on AIT and combines actual operability to explain the selection and specific implementation processes behind the uses of different modelling approaches, to provide a better overall understanding of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Ke Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Yu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
4
|
Wang D, Li P, Zhou Z, Jin M, Li B, Li F, Shen H. The association between endothelial function and autoimmune thyroiditis induced by iodine excess. J Trace Elem Med Biol 2024; 83:127413. [PMID: 38387427 DOI: 10.1016/j.jtemb.2024.127413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Iodine excess (IE) intake leads to lymphocyte dysfunction and contributes to autoimmune thyroiditis (AIT). Abnormal thyroid function is associated with adverse cardiovascular events, endothelial dysfunction is often an early pathophysiological feature in most cardiovascular disease. However, the relationship between iodine and the cardiovascular system is currently unclear. Therefore, the aim of this study was to investigate the effects of IE on endothelial function in mouse model. METHODS A total of 24 NOD.H-2h4 mice were randomly divided into different groups. A sodium iodide (NaI) group supplied with 0.05% NaI water for 8 weeks. Serum levels of tumor necrosis factors α (TNFα), interleukin-6 (IL-6) and C-reactive Protein (CRP), as well as endothelin-1 (ET-1), von Willebrand factor (VWF) and thrombomodulin (THBD) were detected by Elisa. In addition, the mRNA and protein expression of these genes were measured by RT-PCR and Western blotting. RESULTS Here, we found the urinary iodine concentration (UIC) was higher in the NaI group compared to the control group. Serum levels of ET-1, VWF, and THBD were also significantly lower in the NaI group, however, CRP serum levels are significantly increased. In aorta, the mRNA and protein expression of ET-1, VWF, THBD were downregulated, however, the expression of IL-6, CRP and TNFα mRNA and protein were upregulated in the NaI group. A correlation analysis showed negative correlation between UIC with ET-1, VWF, and THBD, similarly, negative correlation between CRP with THBD was observed. In addition, positive correlations between UIC with CRP. CONCLUSION Collectively, in the NOD.H-2h4 mice, IE supplementation had a suppressive effect on endothelial function, and this inhibition maybe due to the increase expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Dandan Wang
- School of Public Health, Xuzhou Medical University, People's Republic of China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China
| | - Peng Li
- School of Public Health, Xuzhou Medical University, People's Republic of China
| | - Zheng Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China
| | - Meihui Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China
| | - Baoxiang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China
| | - Fan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto's thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China.
| |
Collapse
|
6
|
Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023; 12:918. [PMID: 36980259 PMCID: PMC10047067 DOI: 10.3390/cells12060918] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The most common cause of acquired thyroid dysfunction is autoimmune thyroid disease, which is an organ-specific autoimmune disease with two presentation phenotypes: hyperthyroidism (Graves-Basedow disease) and hypothyroidism (Hashimoto's thyroiditis). Hashimoto's thyroiditis is distinguished by the presence of autoantibodies against thyroid peroxidase and thyroglobulin. Meanwhile, autoantibodies against the TSH receptor have been found in Graves-Basedow disease. Numerous susceptibility genes, as well as epigenetic and environmental factors, contribute to the pathogenesis of both diseases. This review summarizes the most common genetic, epigenetic, and environmental mechanisms involved in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Carrera 6 Nº 13N-50, Popayán 190001, Colombia
| |
Collapse
|
7
|
McLachlan SM, Rapoport B. Discoveries in Thyroid Autoimmunity in the Past Century. Thyroid 2023; 33:278-286. [PMID: 35765927 DOI: 10.1089/thy.2022.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review on the 100th anniversary of the American Thyroid Association summarizes the remarkable progress attained during the past century regarding the pathogenesis and treatment of thyroid autoimmune diseases. Indeed, the general concept of autoimmune diseases in humans was established 70 years ago by thyroid investigators. Graves' disease is a paradigm for the rare occurrence of how autoimmunity can cause disease by stimulating rather than destroying an organ system. Therapeutic advances in the mid 20th century involving administration of thyroid hormones, thionamide drugs, and radioiodine have been hugely beneficial for human health. However, these approaches can only treat, but not cure, thyroid autoimmunity. Investigation of these diseases is facilitated by the identification of a limited number of specific autoantigens, whose molecular cloning has provided much information on their structure. This knowledge has led to highly sensitive and specific diagnostic tests, provided insight into novel aspects regarding the pathogenesis of thyroid autoimmunity, and has opened avenues for the development of new therapeutic agents. Immunotherapy for a cure as opposed to therapy of Graves' disease and Hashimoto's thyroiditis remains the holy grail for the 21st century.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Basil Rapoport
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Jung SM, Baek IW, Park KS, Kim KJ. De novo molecular subtyping of salivary gland tissue in the context of Sjögren's syndrome heterogeneity. Clin Immunol 2022; 245:109171. [DOI: 10.1016/j.clim.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
9
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
10
|
Li L, Jasmer KJ, Camden JM, Woods LT, Martin AL, Yang Y, Layton M, Petris MJ, Baker OJ, Weisman GA, Petris CK. Early Dry Eye Disease Onset in a NOD.H-2h4 Mouse Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35727180 PMCID: PMC9233292 DOI: 10.1167/iovs.63.6.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ−/−,CD28−/− (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.
Collapse
Affiliation(s)
- Lili Li
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Visual Science and Optometry Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Adam L Martin
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Yong Yang
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Maria Layton
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States
| | - Olga J Baker
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, United States
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Carisa K Petris
- Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
11
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Gao S, Wang Y, Li Y, Xiao D, Lin Y, Chen Y, Cai X. Tetrahedral Framework Nucleic Acids Reestablish Immune Tolerance and Restore Saliva Secretion in a Sjögren's Syndrome Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42543-42553. [PMID: 34477358 DOI: 10.1021/acsami.1c14861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As one of the most frequent autoimmune diseases, Sjogren's syndrome (SS) is characterized by overactive lymphocytic infiltration in the exocrine glands, with ensuing dry mouth and dry eyes. Unfortunately, so far, there are no appropriate therapies without causing overall immunosuppression. Tetrahedral framework nucleic acids (tFNAs) were regarded as promising nanoscale materials whose immunomodulatory capabilities have already been verified. Herein, we reveal, for the first time, that tFNAs were utilized to treat SS in female nonobese diabetic (NOD) mice, the animal model used for SS. We proved a 250 nM tFNA treatment was successful in suppressing inflammation and stimulating saliva secretion in NOD mice. Specialised proteins for the secretory function and structure of acinar cells in submandibular glands (SMGs) were restored. It has been the permanent goal for SS treatment to establish immune tolerance and stop disease development. Surprisingly, tFNA treatment guided T cells toward regulatory T cells (Tregs), while suppressing T helper (Th) cell responses. Th cells include Th1, Th17, and follicular helper T (Tfh) cells. Tregs are highly significant in immune tolerance. Inducing Tregs is a promising approach to reestablish immune tolerance. Comparable results were also observed in B cell responses. Reductions in the percentage of germinal center (GC) B cells and plasma cells were detected, and a marked increase in the percentage of regulatory B cells (Bregs) was also noticed. The mechanisms of inducing Tregs may associated with cytokine changes. Changes of T cell subsets, especially changes of Tfh, may influence the differentiation of B cells accordingly. Collectively, our results demonstrated the immunomodulatory capacities of tFNAs once again, which may provide a novel, safe, and effective option for the treatment of SS and other autoimmune diseases.
Collapse
Affiliation(s)
- Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Zhao N, Wang Z, Cui X, Wang S, Fan C, Li Y, Shan Z, Teng W. In Vivo Inhibition of MicroRNA-326 in a NOD.H-2 h4 Mouse Model of Autoimmune Thyroiditis. Front Immunol 2021; 12:620916. [PMID: 34140947 PMCID: PMC8205278 DOI: 10.3389/fimmu.2021.620916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Background Previous studies reported that various miRNAs participate in autoimmune diseases, but the potential regulatory mechanism of miRNAs in autoimmune thyroiditis (AIT) needs further exploration. Objective This study aimed to further verify that miR-326 contributes to AIT by regulating Th17/Treg balance through Ets-1 using lentiviral gene delivery through tail vein and thyroid injection in NOD.H-2h4 mice. Materials and Methods Five-week-old NOD.H-2h4 mice were divided randomly into tail vein and thyroid injection groups, and each received either mmu-miR-326 sponge (LV-sponge) or lentiviral vector control. Mice were divided for tail vein injection: the therapeutic LV-ctrl, therapeutic LV-sponge, prophylactic LV-ctrl, and prophylactic LV-sponge groups. The control group was fed high-iodine water without vein injection. The thyroid infiltration of lymphocytes and serum TgAb value were investigated by thyroid hematoxylin and eosin (HE) staining and ELISA, respectively. Ets-1 and lymphocyte counts were measured by RT-PCR, western blotting, and flow cytometry. The thyroid CD4+IL-17a+ cells and CD4+Ets-1+ cells were detected by immunofluorescence, and the serum cytokines were tested by ELISA. Results In the tail vein injection groups, the thyroid inflammatory score and serum TgAb titer were significantly lower in the LV-sponge groups than in the control and LV-ctrl groups while Ets-1 protein expression in mouse spleens was increased in the LV-sponge groups. Moreover, Th17/Treg ratio declined in the LV-sponge group and decreased significantly in the prophylactic LV-sponge group (P = 0.036) tested by flow cytometry. Immunofluorescence showed that, in LV-sponge groups, CD4+IL-17a+ cells were decreased significantly (P = 0.001), while CD4+Ets-1+ cells were increased significantly in the LV-sponge group (P = 0.029). The serum IL-17/IL-10 was decreased significantly in the LV-sponge group (P < 0.05). In the thyroid injection groups, the thyroid inflammatory score and serum TgAb titer in the LV-sponge group decreased significantly compared with those in the LV-ctrl group (P < 0.05). In addition, in LV-sponge groups, CD4+IL-17a+ cells were decreased, while CD4+Ets-1+ cells were increased significantly in the inhibition group evaluated by immunofluorescence. Moreover, tail vein injection of LV-sponge resulted in much lower TgAb levels in thyroiditis compared with thyroid injection. Conclusion MiR-326 targeted therapy may be a promising approach for AIT. In addition, tail vein injection may achieve a better intervention effect than thyroid injection.
Collapse
Affiliation(s)
- Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejiao Cui
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Sáez Moya M, Gutiérrez-Cózar R, Puñet-Ortiz J, Rodríguez de la Concepción ML, Blanco J, Carrillo J, Engel P. Autoimmune B Cell Repertoire in a Mouse Model of Sjögren's Syndrome. Front Immunol 2021; 12:666545. [PMID: 33968069 PMCID: PMC8103202 DOI: 10.3389/fimmu.2021.666545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
In genetically prone individuals, chronic immune activation may lead to expansion of autoreactive lymphocyte clones that can induce organ damage developing autoimmune disorders. Sjögren’s Syndrome (SjS) is a systemic chronic autoimmune disease that primarily affects exocrine glands. Despite the accumulated evidences of profound B-cell alterations of humoral immunity, the repertoire and development of B-cell autoreactivity in SjS remains to be determined. We hypothesize that SjS mice will have an increased frequency of self-reactive B cells with a progressive evolution to antigen-driven oligoclonality. Here, we study the B cell repertoire of NOD.H-2h4 mice, a mouse model of spontaneous autoimmunity mimicking SjS without developing diabetes. A library of 168 hybridomas from NOD.H-2h4 mice and 186 C57BL/6J splenocytes at different ages was created. The presence of mono or polyreactive autoantibodies to several antigens was evaluated by ELISA, and their staining patterns and cellular reactivity were tested by IFA and FACS. We observed a higher frequency of autoreactivity among B-cell clones from NOD.H-2h4 mice as compared to wild-type mice. The presence of polyreactive and autoreactive IgG clones increased with mice age. Strikingly, all anti-Ro52 autoantibodies were polyreactive. No loss of polyreactivity was observed upon antibody class switching to IgG. There was a progression to oligoclonality in IgG B cells with mice aging. Our results indicate that in the NOD.H-2h4 mouse model of SjS, IgG+ B cells are mainly polyreactive and might expand following an unknown antigen-driven positive selection process.
Collapse
Affiliation(s)
- Manuel Sáez Moya
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain, Germans Trias i Pujol Research Institute (IGTP), Catalonia, Spain.,AIDS and Related Diseases Chair, Universitat de Vic-Central de Catalunya (UVIC-UCC), Vic, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain, Germans Trias i Pujol Research Institute (IGTP), Catalonia, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
15
|
Masli S, Dartt DA. Mouse Models of Sjögren's Syndrome with Ocular Surface Disease. Int J Mol Sci 2020; 21:ijms21239112. [PMID: 33266081 PMCID: PMC7730359 DOI: 10.3390/ijms21239112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis. Therapeutic management of SS requires both topical and systemic treatments. Several mouse models of SS have contributed to our current understanding of immunopathologic mechanisms underlying the disease. This information also helps develop novel therapeutic interventions. Although these models address glandular aspects of SS pathology, their impact on ocular surface tissues is addressed only in a few models such as thrombospondin (TSP)-1 deficient, C57BL/6.NOD.Aec1Aec2, NOD.H2b, NOD.Aire KO, and IL-2Rα (CD25) KO mice. While corneal and/or conjunctival damage is reported in most of these models, the characteristic SS specific autoantibodies are only reported in the TSP-1 deficient mouse model, which is also validated as a preclinical model. This review summarizes valuable insights provided by investigations on the ocular spectrum of the SS pathology in these models.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| |
Collapse
|
16
|
Ruggeri RM, CampennÌ A, Giuffrida G, Casciaro M, Barbalace MC, Hrelia S, Trimarchi F, CannavÒ S, Gangemi S. Oxidative stress as a key feature of autoimmune thyroiditis: an update. MINERVA ENDOCRINOL 2020; 45:326-344. [PMID: 32969631 DOI: 10.23736/s0391-1977.20.03268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Oxidative stress has been proposed as one of the factors concurring in the pathophysiology of autoimmune thyroid diseases. Reactive oxygen species are the main expression of oxidative stress in biological systems, and their production can overcome antioxidant defenses ultimately leading to cell damage, apoptosis, and death. The present review was aimed at describing the state of the art of the relationships between oxidative stress and autoimmune thyroiditis. The most used biomarkers of oxidative stress and their correlation with thyroid function are reported. EVIDENCE ACQUISITION We conducted a search of the literature in the English language starting from 2000, using the following search terms: "Hashimoto thyroiditis," "autoimmune thyroiditis," "hypothyroidism," "hyperthyroidism," "oxidative stress," "oxidants," "antioxidant," "advanced glycation end products." Both clinical studies and animal models were evaluated. EVIDENCE SYNTHESIS Data form clinical studies clearly indicate that the balance between oxidants and antioxidants is shifted towards the oxidative side in patients with autoimmune thyroiditis, suggesting that oxidative stress may be a key event in the pathophysiology of the disease, irrespective of thyroid function. Studies in animal models, such as the NOD.H2h4 mouse, confirm that thyroidal accumulation of ROS plays a role in the initiation and progression of autoimmune thyroiditis. CONCLUSIONS Oxidant/antioxidant imbalance represent a key feature of thyroid autoimmunity. Oxidative stress parameters could be used as biochemical markers of chronic inflammation, to better predict the disease evolution along its natural history. Dietary habits and antioxidant supplements may provide protection from autoimmunity, opening new perspectives in the development of more tailored therapies.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Department of Clinical and Experimental Medicine, Gaetano Martino University Hospital, University of Messina, Messina, Italy - .,Unit of Endocrinology, University Hospital of Messina, Messina, Italy -
| | - Alfredo CampennÌ
- Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Giuseppe Giuffrida
- Department of Clinical and Experimental Medicine, Gaetano Martino University Hospital, University of Messina, Messina, Italy.,Unit of Endocrinology, University Hospital of Messina, Messina, Italy
| | - Marco Casciaro
- Unit of Allergology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria C Barbalace
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | | | - Salvatore CannavÒ
- Unit of Endocrinology, University Hospital of Messina, Messina, Italy.,Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- Unit of Allergology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Ricci D, Brancatella A, Marinò M, Rotondi M, Chiovato L, Vitti P, Latrofa F. The Detection of Serum IgMs to Thyroglobulin in Subacute Thyroiditis Suggests a Protective Role of IgMs in Thyroid Autoimmunity. J Clin Endocrinol Metab 2020; 105:5717681. [PMID: 31996918 DOI: 10.1210/clinem/dgaa038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022]
Abstract
CONTEXT The role of serum immunoglobulin (Ig)Ms in autoimmune thyroid diseases is uncertain. OBJECTIVE We looked for IgMs to thyroglobulin (Tg) in patients with subacute thyroiditis (SAT), which is characterized by high serum Tg levels, the possible de novo appearance of IgGs to Tg (TgAb-IgGs), and no autoimmune sequelae. MAIN OUTCOME MEASURES TgAb-IgMs and TgAb-IgGs were detected by binding to Tg using the enzyme-linked immunosorbent assay (ELISA). The upper reference limit of TgAb-IgMs and TgAb-IgGs was established in 40 normal subjects. We looked for TgAb-IgMs in 16 patients with SAT, 11 with Hashimoto's thyroiditis (HT), and 8 with Graves' disease (GD) who were all positive for TgAb-IgGs. IgM binding to bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), and glucagon in ELISA was measured. Inhibition of TgAb-IgMs binding to coated Tg was evaluated by preincubating serum samples or IgG-depleted samples with soluble Tg. RESULTS TgAb-IgMs were positive in 10/16 patients with SAT, 2/11 with HT, and 1/8 with GD. TgAb-IgMs were higher in SAT (0.95; 0.42-1.13) (median; 25th-75th percentiles) than in HT (0.47; 0.45-0.51) and GD patients (0.35; 0.33-0.40) (P < .005 for both). IgM binding of SAT sera to BSA, KLH, and glucagon was significantly lower than Tg. Preincubation with soluble Tg reduced the binding of IgMs to coated Tg by 18.2% for serum samples and by 35.0% and 42.1% for 2 IgG-depleted samples. TgAb-IgM levels were inversely, although nonsignificantly, correlated with Tg concentrations. CONCLUSIONS Tg leak associated with thyroid injury induces the production of specific TgAb-IgMs, which, in turn, increases the clearance of Tg and might prevent the establishment of a persistent thyroid autoimmune response.
Collapse
Affiliation(s)
- Debora Ricci
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy
| | - Alessandro Brancatella
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy
| | - Michele Marinò
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy
| | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri, University of Pavia, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri, University of Pavia, Italy
| | - Paolo Vitti
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy
| | - Francesco Latrofa
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy
| |
Collapse
|
19
|
Qin J, Zhao N, Wang S, Liu S, Liu Y, Cui X, Wang S, Xiang Y, Fan C, Li Y, Shan Z, Teng W. Roles of Endogenous IL-10 and IL-10-Competent and CD5+ B Cells in Autoimmune Thyroiditis in NOD.H-2h4 Mice. Endocrinology 2020; 161:5802318. [PMID: 32152630 DOI: 10.1210/endocr/bqaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-10 is a highly important anti-inflammatory cytokine in the immune system. CD1dhi and CD5+ B cells are both traditionally defined IL-10-secreting B cells. In recent years, a B cell group with combined markers of CD1dhi and CD5+ has been widely studied as it has been reported to suppress autoimmunity in mouse models of autoimmune diseases through IL-10 mechanisms. From the perspective of origination, CD1dhi and CD5+ B cells are developed from different B cell lineages. Whether the regulatory capacity of these 2 B cell groups is consistent with their ability to secrete IL-10 has not been determined. In this study, we generated IL-10 knockout NOD.H-2h4 mice to investigate the function of endogenous IL-10 in autoimmune thyroiditis and conducted adoptive transfer experiments to explore the respective roles of CD5+ and CD1dhi B cells. In our results, the IL-10-/- NOD.H-2h4 mice developed thyroiditis, similar to wild-type NOD.H-2h4 mice. The CD5+ B cells were more capable of secreting IL-10 than CD1dhi B cells in flow cytometric analysis, but the CD1dhi B cells showed more suppressive effects on thyroiditis development and autoantibody production, as well as Th17 cell response. In conclusion, endogenous IL-10 does not play an important role in autoimmune thyroiditis. CD1dhi B cells may play regulatory roles through mechanisms other than secreting IL-10.
Collapse
Affiliation(s)
- Jing Qin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Liu
- Department of Emergency, The NO.202 Hospital of People's Liberation Army, Shenyang, Liaoning, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejiao Cui
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shiwei Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Xiang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
21
|
Hyperglycemia and Salivary Gland Dysfunction in the Non-obese Diabetic Mouse: Caveats for Preclinical Studies in Sjögren's Syndrome. Sci Rep 2019; 9:17969. [PMID: 31784615 PMCID: PMC6884560 DOI: 10.1038/s41598-019-54410-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The Non-obese Diabetic (NOD) mouse model for type I diabetes also develops some features of Sjögren’s syndrome (SS). Since the source of the mice and the environment exert a strong influence on diabetes, this study investigated SS development in NOD mice obtained from two vendors. Female NOD mice from The Jackson Laboratory (JAX) and Taconic Biosciences were monitored for blood glucose and pilocarpine-induced salivation. The gut microbiome was analyzed by 16S rRNA sequencing of stool DNA. At euthanasia, serum cytokines and sialoadenitis severity were evaluated. The onset of diabetes was significantly accelerated in JAX mice compared to Taconic mice. Although the gut microbiome between the two groups was distinct, both groups developed sialoadenitis. There was no correlation between the severity of sialoadenitis and reduced saliva production. Instead, salivary gland dysfunction was associated with hyperglycemia and elevation of serum IL1β, IL16, and CXCL13. Our data suggest that inflammatory pathways linked with hyperglycemia are confounding factors for salivary gland dysfunction in female NOD mice, and might not be representative of the mechanisms operative in SS patients. Considering that NOD mice have been used to test numerous experimental therapies for SS, caution needs to be exerted before advancing these therapeutics for human trials.
Collapse
|
22
|
McLachlan SM, Aliesky HA, Rapoport B. A Mouse Thyrotropin Receptor A-Subunit Transgene Expressed in Thyroiditis-Prone Mice May Provide Insight into Why Graves' Disease Only Occurs in Humans. Thyroid 2019; 29:1138-1146. [PMID: 31184281 PMCID: PMC6707033 DOI: 10.1089/thy.2019.0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Graves' disease, caused by autoantibodies that activate the thyrotropin (TSH) receptor (TSHR), has only been reported in humans. Thyroiditis-prone NOD.H2h4 mice develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO) but not to the TSHR. Evidence supports the importance of the shed TSHR A-subunit in the initiation and/or amplification of the autoimmune response to the holoreceptor. Cells expressing the gene for the isolated A-subunit secrete A-subunit protein, a surrogate for holoreceptor A-subunit shedding. NOD.H2h4 mice with the human TSHR A-subunit targeted to the thyroid (a "self" antigen in such transgenic (Tgic) animals), unlike their wild-type (wt) siblings, spontaneously develop pathogenic TSHR antibodies to the human-TSH holoreceptor. These autoantibodies do not recognize the endogenous mouse-TSH holoreceptor and do not cause hyperthyroidism. Methods: We have now generated NOD.H2h4 mice with the mouse-TSHR A-subunit transgene targeted to the thyroid. Tgic mice and wt littermates were compared for intrathyroidal expression of the mouse A-subunit. Sera from six-month-old mice were tested for the presence of autoantibodies to Tg and TPO as well as for pathogenic TSHR antibodies (TSH binding inhibition, bioassay for thyroid stimulating antibodies) and nonpathogenic TSHR antibodies (ELISA). Results: Expression of the mouse TSHR A-subunit transgene in the thyroid was confirmed by real-time polymerase chain reaction in the Tgics and had no effect on the spontaneous development of autoantibodies to Tg or TPO. However, unlike the same NOD.H2h4 strain with the human-TSHR A-subunit target to the thyroid, mice expressing intrathyroidal mouse-TSHR A subunit failed to develop either pathogenic or nonpathogenic TSHR antibodies. The mouse TSHR A-subunit differs from the human TSHR A-subunit in terms of its amino acid sequence and has one less glycosylation site than the human TSHR A-subunit. Conclusions: Multiple genetic and environmental factors contribute to the pathogenesis of Graves' disease. The present study suggests that the TSHR A-subunit structure (possibly including posttranslational modification such as glycosylation) may explain, in part, why Graves' disease only develops in humans.
Collapse
Affiliation(s)
- Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
- UCLA School of Medicine, University of California, Los Angeles, California
- Address correspondence to: Sandra M. McLachlan, PhD, Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, B-131, Los Angeles, CA 90048
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
- UCLA School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
23
|
Li F, Wu Y, Chen L, Hu L, Zhu F, He Q. High iodine induces DNA damage in autoimmune thyroiditis partially by inhibiting the DNA repair protein MTH1. Cell Immunol 2019; 344:103948. [PMID: 31311621 DOI: 10.1016/j.cellimm.2019.103948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023]
Abstract
This study aims to investigate the level of DNA damage in high iodine (HI)-induced autoimmune thyroiditis (AIT), and to explore the role of DNA repair protein MutT homolog-1 (MTH1) in this process. The levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 were measured using qRT-PCR and ELISA. The apoptosis was evaluated using TUNEL staining. The pathological changes of thyroid tissues were evaluated using hematoxylin and eosin (HE) staining. The DNA damage was assessed by determining the expression of 8-hydroxy-2'deoxyguanosine (8-OHdG; an indicator of oxidative DNA damage) and performing the Comet assay. Our results showed that both the HI-treated NOD.H-2h4 mice (experimental AIT mice) and the HI-treated mouse thyroid follicular epithelial cells showed enhanced inflammation, apoptosis, and DNA damage level, accompanied by decreased MTH1 expression. Importantly, overexpression of MTH1 effectively abrogated the HI-induced enhancement of inflammation, apoptosis, and DNA damage in mouse thyroid follicular epithelial cells. In conclusion, HI treatment induces DNA damage in AIT, at least in part, by inhibiting the DNA repair protein MTH1.
Collapse
Affiliation(s)
- Fuqiang Li
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yijun Wu
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Liang Chen
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Liang Hu
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feng Zhu
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiwen He
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
24
|
Di Dalmazi G, Chalan P, Caturegli P. MYMD-1, a Novel Immunometabolic Regulator, Ameliorates Autoimmune Thyroiditis via Suppression of Th1 Responses and TNF-α Release. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1350-1362. [PMID: 30674573 DOI: 10.4049/jimmunol.1801238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
MYMD-1 is a synthetic derivative of tobacco alkaloids, compounds that possess immunoregulatory properties and have been linked to the epidemiological observation that smoking reduces the odds of developing thyroid Abs and hypothyroidism. To assess the effect and mechanism(s) of the action of MYMD-1, we chose the NOD.H-2h4 mouse model of spontaneous thyroiditis. We began in vitro using T cells isolated from NOD.H-2h4 spleens and found that MYMD-1 suppressed TNF-α production by CD4+ T cells in a dose-dependent manner. We then treated 58 NOD.H-2h4 mice for 12 wk with either unsupplemented water that contained (10 mice) or did not contain (16 mice) MYMD-1 (185 mg/l) or water supplemented with sodium iodide (500 mg/l) that contained (16 mice) or did not contain (16 mice) MYMD-1. Mice were bled at baseline and then every 2 wk until sacrifice. MYMD-1 decreased the incidence and severity (p < 0.001) of thyroiditis, as assessed by histopathology. Similarly, the number of CD3+ T cells and CD19+ B cells infiltrating the thyroid was dampened by MYMD-1, as assessed by flow cytometry. Interestingly, the subset of thyroidal CD3+CD4+Tbet+RORγT- effector Th1 cells and the systemic levels of TNF-α were decreased by MYMD-1. Serum thyroglobulin Abs decreased in the MYMD-1 group. Thyroid hormones did not differ among the four groups, whereas thyroid-stimulating hormone increased upon iodine supplementation but remained normal in MYMD-1-treated mice. Overall, the study suggests that MYMD-1 ameliorates thyroiditis acting on specific lymphoid subsets. Further studies, including other models of autoimmunity, will confirm the potential clinical use of MYMD-1 as a novel immunometabolic regulator.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Division of Endocrinology, Department of Medicine and Aging Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; and
| | - Paulina Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
25
|
McLachlan SM, Aliesky HA, Rapoport B. To reflect human autoimmune thyroiditis, thyroid peroxidase (not thyroglobulin) antibodies should be measured in female (not sex-independent) NOD.H2 h4 mice. Clin Exp Immunol 2019; 196:52-58. [PMID: 30566234 DOI: 10.1111/cei.13249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
NOD.H2h4 mice are the most commonly used model for human autoimmune thyroiditis. Because thyroid autoimmunity develops slowly (over months), NOD.H2h4 mice are usually exposed to excess dietary iodide to accelerate and amplify the process. However, unlike the female bias in human thyroid autoimmunity, autoantibodies to thyroglobulin (TgAb) are reported to be similar in male and female NOD.H2h4 . We sought evidence for sexual dimorphism in other parameters in this strain maintained on regular or iodized water. Without iodide, TgAb levels are higher in males than in females, the reverse of human disease. In humans, autoantibodies to thyroid peroxidase (TPOAb) are a better marker of disease than TgAb. In NOD.H2h4 mice TPOAb develop more slowly than TgAb, being detectable at 6 months of age versus 4 months for the latter. Remarkably, unlike TgAb, TPOAb levels are higher in female than male NOD.H2h4 mice on both regular and iodized water. As previously observed, serum T4 levels are similar in both sexes. However, thyroid-stimulating hormone (TSH) levels are significantly higher in males than females with or without iodide exposure. TSH levels correlate with TgAb levels in male NOD.H2h4 mice, suggesting a possible role for TSH in TgAb development. However, there is no correlation between TSH and TPOAb levels, the latter more important than TgAb in human disease. In conclusion, if the goal of an animal model is to closely reflect human disease, TPOAb rather than TgAb should be measured in older female NOD.H2h4 mice, an approach requiring patience and the use of mouse TPO protein.
Collapse
Affiliation(s)
- S M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, CA, USA
| | - H A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, CA, USA
| | - B Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
26
|
Puñet-Ortiz J, Sáez Moya M, Cuenca M, Caleiras E, Lazaro A, Engel P. Ly9 (CD229) Antibody Targeting Depletes Marginal Zone and Germinal Center B Cells in Lymphoid Tissues and Reduces Salivary Gland Inflammation in a Mouse Model of Sjögren's Syndrome. Front Immunol 2018; 9:2661. [PMID: 30519241 PMCID: PMC6251324 DOI: 10.3389/fimmu.2018.02661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023] Open
Abstract
Sjögren's Syndrome (SjS) is a common chronic autoimmune disease characterized by the B cell hyperactivation, lymphocyte infiltration, and tissue damage of exocrine glands. It can also present life-threatening extraglandular manifestations, such as pulmonary and hepatic involvement, renal inflammation and marginal zone (MZ) B cell lymphoma. Several biologic agents have been tested in SjS but none has shown significant efficacy. Here, we report the effects of Ly9 (CD229) antibody targeting, a cell surface molecule that belongs to the SLAM family of immunomodulatory receptors, using NOD.H-2h4 mice as a model of SjS-like disease. Female mice were treated with anti-Ly9 antibody or isotype control at week 24, when all mice present SjS related autoantibodies, salivary gland infiltrates, and marginal zone (MZ) B cell pool enlargement. Antibody injection depleted key lymphocyte subsets involved in SjS pathology such as MZ, B1, and germinal center B cells in spleen and draining lymph nodes without inducing a general immunosuppression. Importantly, mice receiving anti-Ly9 mAb showed a reduced lymphocyte infiltrate within salivary glands. This reduction may be, in part, explained by the down-regulation of L-selectin and alfa4/beta7 integrin induced by the anti-Ly9 antibody. Furthermore, levels of anti-nuclear autoantibodies were reduced after anti-Ly9 treatment. These data indicate that Ly9 is a potential therapeutic target for the treatment of SjS.
Collapse
Affiliation(s)
- Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Manuel Sáez Moya
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Marta Cuenca
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Adriana Lazaro
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
27
|
Schlüter A, Eckstein AK, Brenzel A, Horstmann M, Lang S, Berchner-Pfannschmidt U, Banga JP, Diaz-Cano S. Noninflammatory Diffuse Follicular Hypertrophy/Hyperplasia of Graves Disease: Morphometric Evaluation in an Experimental Mouse Model. Eur Thyroid J 2018; 7:111-119. [PMID: 30023342 PMCID: PMC6047491 DOI: 10.1159/000488079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Experimental models of Graves hyperthyroid disease accompanied by Graves orbitopathy (GO) can be efficiently induced in susceptible inbred strains of mice by immunization by electroporation of heterologous human TSH receptor (TSHR) A-subunit plasmid. The interrelated pathological findings in the thyroid glands of Graves disease (GD) that explain the core changes classically include diffuse follicular hyperplasia and multifocal mild lymphocytic infiltrate. However, the relative contributions of different thyroid tissue components (colloid, follicular cells, and stroma) have not been previously evaluated. In this study, we characterize the thyroid gland of an experimental mouse model of autoimmune GD. Our objective was to define the relative contribution of the different thyroid tissue components to the pathology of glands in the experimental model. METHODS Mice were immunized with human TSHR A-subunit plasmid. Antibodies induced to human TSHR were pathogenic in vivo due to their cross-reactivity to mouse TSHR. RESULTS Autoimmune thyroid disease in the model was characterized by histopathology of hyperplastic glands with large follicular cells. Further examination of thyroid glands of immunized animals revealed a significantly increased follicular area and follicle/stroma ratio, morphometrically correlated with a noninflammatory follicular hyperplasia/hypertrophy. The increased follicle/stroma ratio was the most relevant morphometrically variable summarizing the pathological changes for screening purposes. CONCLUSION GD thyroid glands are enlarged and characterized by a noninflammatory diffuse follicular cell hyperplasia/hypertrophy and a significant increase in the follicles with an increased follicle/stroma ratio. Overall, this mouse model is a faithful model of an early hyperthyroid status of GD (diffuse glandular involvement and follicular expansion).
Collapse
Affiliation(s)
- Anke Schlüter
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, Essen, Germany
- Department of Oto-Rhino-Laryngology – Head and Neck Surgery, University Hospital Essen, Essen, Germany
- *Dr. med. Anke Schlüter, MD, Department of Oto-Rhino-Laryngology – Head and Neck Surgery, University Hospital Essen, Hufelandstrasse 55, DE-45147 Essen (Germany), E-Mail
| | - Anja K. Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, Essen, Germany
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Alexandra Brenzel
- Imaging Center Essen (IMCES), Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Oto-Rhino-Laryngology – Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | | | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Salvador Diaz-Cano
- Department of Histopathology, King's College Hospital NHS, London, United Kingdom
- **Dr. Salvador Diaz-Cano, MD, PhD, FRCPath, Department of Histopathology, King's College Hospital, Denmark Hill, London SE5 9RS (UK), E-Mail
| |
Collapse
|
28
|
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and University of California , Los Angeles School of Medicine, Los Angeles, California
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and University of California , Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
29
|
Zhao N, Zou H, Qin J, Fan C, Liu Y, Wang S, Shan Z, Teng W, Li Y. MicroRNA-326 contributes to autoimmune thyroiditis by targeting the Ets-1 protein. Endocrine 2018; 59:120-129. [PMID: 29181619 DOI: 10.1007/s12020-017-1465-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE MicroRNA-326 (miR-326), as a member of the microRNA (miRNA) family, which includes endogenous single-stranded, conserved, noncoding small RNAs, has been reported to play important roles in autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus. However, few studies of the role of miR-326 in autoimmune thyroiditis (AIT) have been published. Here, we explored the roles of miR-326 and the involved pathway in iodine-induced AIT. METHODS NOD.H-2h4 mice, which are a model of human AIT, were randomly divided into a normal water control group and a high-iodine group. Mice in the high-iodine group were administered 0.05% NaI (~1000 times the normal daily iodine intake), and mice in the control group received sterile water. Furthermore, we evaluated small interfering RNA (siRNA) interference in spleen mononuclear cell experiments in vitro. RESULTS In this study, we found that Th17 cells were significantly increased with a high expression of miR-326 in an iodine-induced thyroiditis NOD.H-2h4 mouse model. In addition, the expression of Ets-1 protein, a negative regulator of Th17 differentiation, was significantly decreased. Intriguingly, our analysis showed that Ets-1 protein expression was negatively correlated with miR-326 levels in AIT mice (r = -0.814, p < 0.01). Our study indicated that miR-326 inhibited Ets-1 protein expression and promoted the differentiation of Th17 cells during the onset and development of AIT. The addition of a miR-326 inhibitor reversed Th17 cell production and Ets-1 protein expression, supporting this hypothesis. CONCLUSIONS The results of our study suggest that miR-326 may target the Ets-1 protein to contribute to iodide-induced thyroiditis, providing a new theoretical basis for the use of miRNA targeting therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Hongjin Zou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Jing Qin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
30
|
Voynova E, Mahmoud T, Woods LT, Weisman GA, Ettinger R, Braley-Mullen H. Requirement for CD40/CD40L Interactions for Development of Autoimmunity Differs Depending on Specific Checkpoint and Costimulatory Pathways. Immunohorizons 2018; 2:54-66. [PMID: 30607385 PMCID: PMC6309431 DOI: 10.4049/immunohorizons.1700069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD40/CD40L interactions play a critical role in immunity and autoimmunity. In this study, we sought to understand the requirement for CD40 signaling in the programmed cell death-1 (PD-1) checkpoint and CD28 costimulatory pathways important for maintenance of peripheral tolerance. Blocking either pathway can result in loss of self-tolerance and development of autoimmunity. We found that primary Sjögren's syndrome (pSS) and autoimmune thyroid diseases (ATDs) that develop spontaneously in CD28-deficient IFN-γ-/- NOD.H-2h4 (CD28-/-) mice required CD40 signaling. Specifically, blockade of CD40L with the anti-CD40L mAb, MR1, inhibited autoantibody production and inflammation in thyroid and salivary gland target tissues. Unexpectedly, however, ATD and pSS in PD-1-deficient IFN-γ-/- NOD.H-2h4 (PD-1-/-) mice developed independently of CD40/CD40L interactions. Treatment with MR1 had no effect and even exacerbated disease development in pSS and ATD, respectively. Most interesting, anti-thyroglobulin and pSS-associated autoantibodies were increased following anti-CD40L treatment, even though MR1 effectively inhibited the spontaneous splenic germinal centers that form in PD-1-deficient mice. Importantly, blockade of the PD-1 pathway by administration of anti-PD-1 mAb in CD28-/- mice recapitulated the PD-1-/- phenotype, significantly impacting the ability of MR1 to suppress ATD and pSS in these mice. These results indicate that there can be different pathways and requirements to autoimmune pathogenesis depending on the availability of specific checkpoint and costimulatory receptors, and an intact PD-1 pathway is apparently required for inhibition of autoimmunity by anti-CD40L.
Collapse
Affiliation(s)
- Elisaveta Voynova
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Tamer Mahmoud
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Lucas T. Woods
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Gary A. Weisman
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Rachel Ettinger
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Helen Braley-Mullen
- Department of Medicine and Microbiology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
31
|
Guo Q, Wu D, Fan C, Peng S, Guan H, Shan Z, Teng W. Iodine excess did not affect the global DNA methylation status and DNA methyltransferase expression in T and B lymphocytes from NOD.H-2 h4 and Kunming mice. Int Immunopharmacol 2017; 55:151-157. [PMID: 29253821 DOI: 10.1016/j.intimp.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Dysregulated DNA methylation in lymphocytes has been linked to various autoimmune disorders. Excessive iodine intake leads to lymphocyte dysfunction and contributes to autoimmune thyroiditis (AIT) flares in humans and animals. However, whether excessive iodine modifies the DNA methylation status in lymphocytes is unknown. Twenty NOD.H-2h4 mice and 20 Kunming mice were randomly divided into high iodine and control groups. We scored lymphatic infiltration in the thyroid by hematoxylin and eosin (H&E) staining and assayed serum thyroglobulin antibody (TgAb) levels by an indirect enzyme-linked immunosorbent assay. CD3+ T cells and CD19+ B cells were separated by flow cytometry. Global DNA methylation levels were examined by absorptiometry. Methylation of long interspersed nucleotide element-1 (LINE-1) repeats was detected with bisulfite sequencing PCR. Expression of DNA methyltransferase (DNMT) 1, DNMT3a and DNMT3b mRNA and protein were determined by real-time PCR and Western blot, respectively. We observed evident thyroiditis in the high‑iodine-treated NOD.H-2h4 mice, while mice in the other three groups did not develop thyroiditis. No differences were found in the global methylation levels and methylation status of LINE-1 repeats in T and B lymphocytes from high‑iodine-treated NOD.H-2h4 mice and Kunming mice compared with those from normal‑iodine-supplemented controls. We did not find obvious changes in DNMT mRNA and protein expression levels in T and B lymphocytes among the studied groups. In conclusion, we showed for the first time that excess iodine did not affect the global methylation status or DNMT expression in T and B lymphocytes in NOD.H-2h4 and Kunming mice.
Collapse
Affiliation(s)
- Qingling Guo
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Dan Wu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China; Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenyang Medical College (Shenyang 242 Hospital), Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Mahmoud TI, Wang J, Karnell JL, Wang Q, Wang S, Naiman B, Gross P, Brohawn PZ, Morehouse C, Aoyama J, Wasserfall C, Carter L, Atkinson MA, Serreze DV, Braley-Mullen H, Mustelin T, Kolbeck R, Herbst R, Ettinger R. Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Sci Transl Med 2017; 8:361ra137. [PMID: 27798262 DOI: 10.1126/scitranslmed.aag0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren's pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks of age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed that early anti-CD40L greatly repressed B cell function while having a broader effect on multiple biological pathways, including interleukin-12 and interferon signaling. A single prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and nonobese diabetic mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest that early peripheral immune dysregulation gives rise to autoimmune manifestations later in life, and for diseases predated by autoantibodies, early prophylactic intervention with biologics may prove efficacious.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jingya Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jodi L Karnell
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Brian Naiman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Phillip Gross
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Philip Z Brohawn
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Chris Morehouse
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jordan Aoyama
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Clive Wasserfall
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Laura Carter
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tomas Mustelin
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
33
|
Zeng M, Szymczak M, Ahuja M, Zheng C, Yin H, Swaim W, Chiorini JA, Bridges RJ, Muallem S. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice. Gastroenterology 2017; 153. [PMID: 28634110 PMCID: PMC5623154 DOI: 10.1053/j.gastro.2017.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Sjögren's syndrome and autoimmune pancreatitis are disorders with decreased function of salivary, lacrimal glands, and the exocrine pancreas. Nonobese diabetic/ShiLTJ mice and mice transduced with the cytokine BMP6 develop Sjögren's syndrome and chronic pancreatitis and MRL/Mp mice are models of autoimmune pancreatitis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a ductal Cl- channel essential for ductal fluid and HCO3- secretion. We used these models to ask the following questions: is CFTR expression altered in these diseases, does correction of CFTR correct gland function, and most notably, does correcting ductal function correct acinar function? METHODS We treated the mice models with the CFTR corrector C18 and the potentiator VX770. Glandular, ductal, and acinar cells damage, infiltration, immune cells and function were measured in vivo and in isolated duct/acini. RESULTS In the disease models, CFTR expression is markedly reduced. The salivary glands and pancreas are inflamed with increased fibrosis and tissue damage. Treatment with VX770 and, in particular, C18 restored salivation, rescued CFTR expression and localization, and nearly eliminated the inflammation and tissue damage. Transgenic overexpression of CFTR exclusively in the duct had similar effects. Most notably, the markedly reduced acinar cell Ca2+ signaling, Orai1, inositol triphosphate receptors, Aquaporin 5 expression, and fluid secretion were restored by rescuing ductal CFTR. CONCLUSIONS Our findings reveal that correcting ductal function is sufficient to rescue acinar cell function and suggests that CFTR correctors are strong candidates for the treatment of Sjögren's syndrome and pancreatitis.
Collapse
Affiliation(s)
- Mei Zeng
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD,North Sichuan Medical College, Fujiang Road, Nanchong, 637000, Sichuan, China
| | - Mitchell Szymczak
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Malini Ahuja
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Hongen Yin
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - William Swaim
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Shmuel Muallem
- Molecular Physiology and Therapeutics Branch, National Institutes of Health, National Institute of Dental and Craniofacial Research, Bethesda, Maryland.
| |
Collapse
|
34
|
Kayes TD, Weisman GA, Camden JM, Woods LT, Bredehoeft C, Downey EF, Cole J, Braley-Mullen H. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland. THE JOURNAL OF IMMUNOLOGY 2016; 197:2119-30. [PMID: 27521344 DOI: 10.4049/jimmunol.1600133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems.
Collapse
Affiliation(s)
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Cole Bredehoeft
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Edward F Downey
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - James Cole
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Helen Braley-Mullen
- Department of Medicine, University of Missouri, Columbia, MO 65212; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
35
|
Reactive oxygen species in organ-specific autoimmunity. AUTOIMMUNITY HIGHLIGHTS 2016; 7:11. [PMID: 27491295 PMCID: PMC4974204 DOI: 10.1007/s13317-016-0083-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been extensively studied in the induction of inflammation and tissue damage, especially as it relates to aging. In more recent years, ROS have been implicated in the pathogenesis of autoimmune diseases. Here, ROS accumulation leads to apoptosis and autoantigen structural changes that result in novel specificities. ROS have been implicated not only in the initiation of the autoimmune response but also in its amplification and spreading to novel epitopes, through the unmasking of cryptic determinants. This review will examine the contribution of ROS to the pathogenesis of four organ specific autoimmune diseases (Hashimoto thyroiditis, inflammatory bowel disease, multiple sclerosis, and vitiligo), and compare it to that of a better characterized systemic autoimmune disease (rheumatoid arthritis). It will also discuss tobacco smoking as an environmental factor endowed with both pro-oxidant and anti-oxidant properties, thus capable of differentially modulating the autoimmune response.
Collapse
|
36
|
Sharma R, Di Dalmazi G, Caturegli P. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase. Thyroid 2016; 26:1117-24. [PMID: 27296629 PMCID: PMC4976247 DOI: 10.1089/thy.2016.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. METHODS NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. RESULTS CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. CONCLUSIONS This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Giulia Di Dalmazi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, G. d'Annunzio University of Chieti, Cheti, Italy
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Ciornei RT, Hong SH, Fang Y, Zhu Z, Braley-Mullen H. Mechanisms and kinetics of proliferation and fibrosis development in a mouse model of thyrocyte hyperplasia. Cell Immunol 2016; 304-305:16-26. [PMID: 27173733 DOI: 10.1016/j.cellimm.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants.
Collapse
Affiliation(s)
- Radu Tudor Ciornei
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - So-Hee Hong
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Yujiang Fang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States; Department of Microbiology, Immunology and Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Ziwen Zhu
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Helen Braley-Mullen
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
38
|
Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol 2016; 34:265-97. [PMID: 26907214 DOI: 10.1146/annurev-immunol-041015-055420] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; .,Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
39
|
Kolypetri P, King J, Larijani M, Carayanniotis G. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 2015; 34:542-56. [PMID: 26287317 DOI: 10.3109/08830185.2015.1065828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.
Collapse
Affiliation(s)
- Panayota Kolypetri
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Justin King
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Mani Larijani
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - George Carayanniotis
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada.,b Division of Endocrinology, Faculty of Medicine , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|