1
|
Mitsuhashi W. Studies on insect virus-producing proteins as potential synergists for microbial insecticides: status and prospects. Virus Genes 2025:10.1007/s11262-025-02162-2. [PMID: 40310542 DOI: 10.1007/s11262-025-02162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
The use of microbial insecticides in crop fields has been very limited, especially in developed countries, compared with that of synthetic (chemical) insecticides, even though the former are friendly to vertebrates (including humans and livestock), most beneficial insects, plants, and the environment. This lower use rate is attributable mainly to their more expensive commercial production and lower effectiveness compared to synthetic insecticides. The combined use of microbial insecticides and synergistic agents would strengthen the potency of these insecticides and decrease the amounts of the microbial insecticides used. This, in turn, would lead to lower costs and wider adoption. Therefore, it is important to develop an efficient method of the combined use. Natural synergists are generally less harmful to vertebrates and the environment than synthetic synergists. Here, I review recent studies on two major natural synergists derived from insect viruses: the proteins enhancin and fusolin. Enhancin originates from baculoviruses that infect insects, while fusolin is found in the insect virus group entomopoxviruses and in baculoviruses; the fusolin in baculoviruses is also referred to as GP37. In addition, I discuss prospects for the development of technologies for the use of the proteins in the fields, including the improvement of gene expression systems and genetically modified plants, and the engineering of the two proteins.
Collapse
Affiliation(s)
- Wataru Mitsuhashi
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Subbotina AO, Martemyanov VV, Belousova IA. Atypical pathogenesis of DsCPV-1 in candidate for mass production Manduca sexta (Lepidoptera: Sphingidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf047. [PMID: 40181772 DOI: 10.1093/jee/toaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Recently obtained cypovirus strain DsCPV-1 shows potential as a biological insecticide, with its alternative host Manduca sexta (L.) being a promising producer. We confirmed DsCPV-1 replication in M. sexta by quantitative PCR, validating DsCPV-1's suitability as a biological producer. At the terminal infection stage, we revealed many nonoccluded DsCPV-1 virions by transmission electron microscopy, indicating virus replication with reduced or without polyhedron formation in this alternative host.
Collapse
Affiliation(s)
- Anna O Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Irina A Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Rumiantseva AS, Ageev AA, Ignatieva AN, Yakimova ME, Kharlamova DD, Martemyanov VV, Tokarev YS. Microsporidia-cypovirus interactions during simultaneous infection of the tree defoliator Dendrolimus sibiricus (Lepidoptera: Lasiocampidae). J Invertebr Pathol 2024; 207:108199. [PMID: 39277164 DOI: 10.1016/j.jip.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The Siberian moth, Dendrolimus sibiricus is a dangerous forest defoliator, the number one pest of boreal forests in Asia. Search for effective and ecologically friendly control measures drives attention to microbial pathogens. Viruses and microsporidia are obligate intracellular parasites widespread in insect populations causing either chronic or acute infections. Interactions of these pathogens vary from antagonistic to synergistic. The goal of the work was to test a recently discovered cytoplasmatic polyhedrosis virus (cypovirus) strain DsCPV-1 isolated from D.sibiricus, combined with a microsporidium, against D. sibiricus, by feeding the inoculum (viral polyhedral and microsporidian spores). Three different microsporidian parasites of lepidopterans were tested against D. sibiricus as monoinfection: Nosema bombycis from silkworm, N. pyrausta from corn borer, and Tubulinosema loxostegi from beet webworm. Nosema bombycis was the most virulent, with a median lethal time of 7 days in the first and second instars treated with 100,000 and 1 million spores/larva, respectively. Nosema bombycis (dose 100,000 spores/larva) was chosen to test it as mixed infection in combination with an extremely low dose of DsCPV-1 (1 polyhedron/larva) against two races of D. sibiricus second instar larvae (the fir-feeding race and the larch-feeding race). The mixed infection demonstrated the most prominent negative effect on larval lethal time and weight for the both tested races. Mixed infections showed a synergistic effect for the fir-feeding larvae but additive effect only for the larch feeding larvae. Both pathogens co-developed successfully in the larvae with equal ratio of producing inoculum. The combination of these entomopathogens is therefore promising for forest protection against the Siberian moth and could be the way to significantly decrease the amount of pathogens applied in field.
Collapse
Affiliation(s)
- Arina S Rumiantseva
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia
| | - Aleksander A Ageev
- Center of Forest Pyrology, All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krupskoy 42, Krasnoyarsk 660062, Russia
| | - Anastasia N Ignatieva
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia
| | - Maria E Yakimova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze 11, Novosibirsk 630091, Russia; Department of Information Biology, Novosibirsk State University, Pirogova Str.1, Novosibirsk 630090, Russia
| | - Daria D Kharlamova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze 11, Novosibirsk 630091, Russia
| | | | - Yuri S Tokarev
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia.
| |
Collapse
|
4
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
López MG, López CA, Gravisaco MJ, Alfonso V, Taboga O. Comparison between different conditions for the incorporation of foreign proteins into Autographa californica multiple polyhedrovirus polyhedra for biotechnological purposes. Arch Virol 2024; 169:108. [PMID: 38658418 DOI: 10.1007/s00705-024-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 04/26/2024]
Abstract
The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.
Collapse
Affiliation(s)
- María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - Cinthia Ayelén López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Integration of Cypoviruses into polyhedrin matrix. NANOSCALE ADVANCES 2023; 5:4140-4148. [PMID: 37560430 PMCID: PMC10408579 DOI: 10.1039/d3na00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Unlike in other viruses, in Cypoviruses the genome is doubly protected since their icosahedral capsids are embedded into a perfect polyhedrin crystal. Current experimental methods cannot resolve the resulting interface structure and we propose a symmetry-based approach to predict it. We reveal a remarkable match between the surfaces of Cypovirus and the outer polyhedrin matrix. The match arises due to the preservation of the common tetragonal symmetry, allowing perfect contacts of polyhedrin trimers with VP1 and VP5 capsid proteins. We highlight a crucial role of the VP5 proteins in embedding the Cypovirus into the polyhedrin matrix and discuss the relationship between the nucleoside triphosphatase activity of the proteins and their role in the superstructure formation. Additionally, we propose an electrostatic mechanism that drives the viral superstructure disassembly occurring in the alkaline environment of the insect intestines. Our study may underpin novel strategies for engineering proteinaceous nanocontainers in diverse biotechnological and chemical applications.
Collapse
Affiliation(s)
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute of the University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| |
Collapse
|
7
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|