1
|
Nieves M, Duarte G, Saldaña J, Melian ME, Munguía B. In vitro analysis of the activities of commercial anthelmintics in the presence of inhibitors of xenobiotic detoxification pathways in Haemonchus contortus exsheathed L3 stage. Parasitol Res 2025; 124:24. [PMID: 39976794 PMCID: PMC11842493 DOI: 10.1007/s00436-025-08468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Haemonchus contortus is a pathogenic nematode that infects small ruminants. Chemotherapy is the main treatment for these parasitic infections, but the rapid rise of drug resistance calls for the development of new anthelmintics. To support this, optimizing screening assays is vital for identifying new drugs. The exsheathed L3 (xL3) stage of H. contortus is often used in in vitro evaluations; however, it has been observed that it is less sensitive than the adult stage, possibly due to enhanced detoxification pathways. To explore this hypothesis, inhibitors of xenobiotic detoxification pathways were tested on the activity (IC50) of four anthelmintics-monepantel (MOP), levamisole (LEV), ivermectin (IVM), and albendazole sulfoxide (ABZ SO)-in xL3 using an automated motility assay. The inhibitors used were piperonyl butoxide (PBO) for phase I metabolism, 5-nitrouracil (5-NU) for phase II metabolism, and zosuquidar (ZOS) inhibiting efflux transport proteins. PBO increased MOP IC50, likely due to reduced formation of the active metabolite monepantel sulfone. IC50 of MOP with 5-NU and IVM with PBO were both diminished, suggesting differences in metabolism between xL3 and the existing reports for the adult stage. Coincubation of LEV and IVM with ZOS also reduced IC50, confirming previous studies. ABZ SO was unaffected by the inhibitors. The use of inhibitors of xenobiotic detoxification pathways led to significant changes in the in vitro activity of the anthelmintics evaluated in H. contortus xL3 stage. Further studies, as ex vivo parasite diffusion assays in the xL3 stage, should be conducted to directly assess the impact on detoxification pathways.
Collapse
Affiliation(s)
- Magdalena Nieves
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de La República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Gerardo Duarte
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Jenny Saldaña
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - María Elisa Melian
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Beatriz Munguía
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Khairuzzaman M, Hasan MM, Ali MT, Mamun AA, Akter S, Nasrin P, Islam MK, Nahar AU, Sarker DK, Hamdi OAA, Uddin SJ, Seidel V, Shilpi JA. Anthelmintic screening of Bangladeshi medicinal plants and related phytochemicals using in vitro and in silico methods: An ethnobotanical perspective. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118132. [PMID: 38565411 DOI: 10.1016/j.jep.2024.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt β-tubulin function in helminths. METHODS The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the β-tubulin protein target (PDB ID: 1SA0). RESULTS The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.
Collapse
Affiliation(s)
- M Khairuzzaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Mehedi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Mohammad Tuhin Ali
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sheuly Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh; Bangladesh Reference Institute for Chemical Measurements, Dr Kudrat-e-Khuda Road, Dhanmondi, Dhaka, Bangladesh
| | - Papia Nasrin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Finland
| | - Akhlak Un Nahar
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Omer Abdalla Ahmed Hamdi
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
3
|
Reyes-Guerrero DE, Higuera-Piedrahita RI, Maza-Lopez J, Mendoza-de-Gives P, Camas-Pereyra R, López-Arellano ME. Analysis of P-gp genes relative expression associated to ivermectin resistance in Haemonchus contortus larval stages from in vitro cultures (L 3 and xL 3) and from gerbils ( Meriones unguiculatus) (L 4) as models of study. J Helminthol 2024; 98:e19. [PMID: 38356358 DOI: 10.1017/s0022149x24000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The aim of the study was to compare the relative gene expression of Haemonchus contortus P-glycoprotein genes (Hco-pgp) between fourth (L4), infective (L3), and transitory infective (xL3) larval stages as laboratory models to study ivermectin (IVM) resistance. The H. contortus resistant to IVM (IVMr) and susceptible to IVM (IVMs) strains were used to develop xL3in vitro culture and to infect Meriones unguiculatus (gerbils) to collect L4 stages. Morphometric differences were evaluated from 25 individuals of H. contortus from each strain. Relative gene expression from xL3 and L4 was determined between comparison of IVMr stages and from IVMr vs IVMs stages. Seven Hco-pgp genes (1, 2, 3, 4, 9, 10, and 16) were analysed by RT-qPCR using L3 stage as control group, per strain, and GAPDH and β-tubulin as constitutive genes. Morphological changes were confirmed between xL3 and L4 developing oral shape, oesophagus, and intestinal tube. In addition, the body length and width showed statistical differences (p < 0.05). The Hco-pgp1, 2, 3, and 4 genes (p < 0.05) were upregulated from 7.1- to 463.82-fold changes between IVMr stages, and Hco-pgp9 (13.12-fold) and Hco-pgp10 (13.56-fold) genes showed differences between L4 and xL3, respectively. The comparative study between IVMr vs IVMs strains associated to xL3 and L4 displayed significant upregulation for most of the Hco-pgp genes among 4.89-188.71 fold-change. In conclusion, these results suggest the use of H. contortus xL3 and L4 as suitable laboratory models to study IVMr associated with Hco-pgp genes to contribute to the understanding of anthelmintic resistance.
Collapse
Affiliation(s)
- D E Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - R I Higuera-Piedrahita
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán-Teoloyucan Km 2.5, Col. San Sebastián Xhala. Cuautitlán, Estado de México, México
| | - J Maza-Lopez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - P Mendoza-de-Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| | - R Camas-Pereyra
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| | - M E López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| |
Collapse
|
4
|
Palkumbura PGAS, Mahakapuge TAN, Wijesundera RRMKK, Wijewardana V, Kangethe RT, Rajapakse RPVJ. Mucosal Immunity of Major Gastrointestinal Nematode Infections in Small Ruminants Can Be Harnessed to Develop New Prevention Strategies. Int J Mol Sci 2024; 25:1409. [PMID: 38338687 PMCID: PMC10855138 DOI: 10.3390/ijms25031409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Gastrointestinal parasitic nematode (GIN) infections are the cause of severe losses to farmers in countries where small ruminants such as sheep and goat are the mainstay of livestock holdings. There is a need to develop effective and easy-to-administer anti-parasite vaccines in areas where anthelmintic resistance is rapidly rising due to the inefficient use of drugs currently available. In this review, we describe the most prevalent and economically significant group of GIN infections that infect small ruminants and the immune responses that occur in the host during infection with an emphasis on mucosal immunity. Furthermore, we outline the different prevention strategies that exist with a focus on whole and purified native parasite antigens as vaccine candidates and their possible oral-nasal administration as a part of an integrated parasite control toolbox in areas where drug resistance is on the rise.
Collapse
Affiliation(s)
- P. G. Ashani S. Palkumbura
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Thilini A. N. Mahakapuge
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Kandy 20400, Sri Lanka
| | - R. R. M. K. Kavindra Wijesundera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444 Seibersdorf, Austria
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444 Seibersdorf, Austria
| | - R. P. V. Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Kandy 20400, Sri Lanka
| |
Collapse
|
5
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Pavičić A, Zajíčková M, Šadibolová M, Svobodová G, Matoušková P, Szotáková B, Langhansová L, Maršík P, Skálová L. Anthelmintic activity of European fern extracts against Haemonchus contortus. Vet Res 2023; 54:59. [PMID: 37443113 DOI: 10.1186/s13567-023-01192-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Most drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants. Eggs and adults of H. contortus drug-susceptible strain ISE and drug-resistant strain WR were isolated from experimentally infected sheep. The efficacy of fern extracts was assayed using egg hatch test and adults viability test based on ATP-level measurement. Among the ferns tested, only Dryopteris aemula extract (0.2 mg/mL) inhibited eggs hatching by 25% in comparison to control. Athyrium distentifolium, Dryopteris aemula and Dryopteris cambrensis were effective against H. contortus adults. In concentration 0.1 mg/mL, A. distentifolium, D. aemula, D. cambrensis significantly decreased the viability of females from ISE and WR strains to 36.2%, 51.9%, 32.9% and to 35.3%, 27.0%, 23.3%, respectively in comparison to untreated controls. None of the extracts exhibited toxicity in precise cut slices from ovine liver. Polyphenol's analysis identified quercetin, kaempferol, luteolin, 3-hydroxybenzoic acid, caffeic acid, coumaric acid and protocatechuic acid as the major components of these anthelmintically active ferns.
Collapse
Affiliation(s)
- Antonio Pavičić
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Petr Maršík
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Zhang C, Lum KY, Taki AC, Gasser RB, Byrne JJ, Montaner LJ, Tietjen I, Avery VM, Davis RA. Using a Bioactive Eremophila-Derived Serrulatane Scaffold to Generate a Unique Carbamate Library for Anti-infective Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:557-565. [PMID: 36799121 DOI: 10.1021/acs.jnatprod.2c01041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 μM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 μM. Compound 7, which inhibited 59.0% of HIV production at 100 μg/mL, was the carbamate analogue that displayed the best antiviral activity.
Collapse
Affiliation(s)
- Chen Zhang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
8
|
Niciura SCM, Minho AP, McIntyre J, Benavides MV, Okino CH, Esteves SN, Chagas ACDS, Amarante AFTD. In vitro culture of parasitic stages of Haemonchus contortus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e010122. [PMID: 36651422 DOI: 10.1590/s1984-29612023005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023]
Abstract
Haemonchus contortus is a constraint to sheep production. Seeking to reduce the use of hosts and produce parasitic stages in large-scale, a 42-day in vitro culture protocol of H. contortus third-stage larvae was optimized using Dulbecco's modified Eagle's medium (DMEM). In cell-free culture, larvae were maintained at 39.6°C, in acidic media (pH 6.1) for 3 or 6 days with Δ4-dafachronic acid followed by DMEM pH 7.4 supplemented or not with Fildes' reagent. In DMEM pH 7.4 at 37°C, supplementation with Caco-2 cells was compared to Fildes. On Day 14, fourth-stage larvae (L4) development rates in acidic media supplemented (86.8-88.4%) or not (74.4-77.8%) with Fildes and in Caco-2 cell co-culture (92.6%) were similar, and superior to DMEM pH 7.4 with Fildes (0.0%). On Day 21, Caco-2 cell co-culture resulted in higher larvae differentiation (25.0%) and lower degeneration (13.9%) compared to acidic media (1.5-8.1% and 48.6-69.9%, respectively). This is the first report of prolonged in vitro culture of H. contortus larvae using commercial media in co-culture with Caco-2 cells. Although no progression to the adult stage, Caco-2 cell co-culture resulted in morphological differentiation of H. contortus L4 and larval viability for up to 28 days.
Collapse
|
9
|
Hou B, Hai Y, Buyin B, Hasi S. Research progress and limitation analysis of RNA interference in Haemonchus contortus in China. Front Vet Sci 2023; 10:1079676. [PMID: 36908509 PMCID: PMC9998686 DOI: 10.3389/fvets.2023.1079676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Haemonchus contortus is a highly pathogenic and economically important parasitic nematode that affects small ruminants worldwide. While omics studies hold great promise, there are fewer research tools available for analyzing subsequent gene function studies. RNA interference (RNAi) technology offers a solution to this problem, as it especially allows for the knockout or shutting off of the expression of specific genes. As a result, RNAi technology has been widely used to explore gene function and disease treatment research. In this study, we reviewed the latest advancements in RNAi research on Haemonchus contortus in China, with the aim of providing a reference for the identification of key genes involved in growth and development, anthelmintic resistance, diagnostic markers, and diagnostic drug targets for the treatment of Haemonchus contortus.
Collapse
Affiliation(s)
- Bin Hou
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ying Hai
- Wushen Animal Disease Prevention and Control Center, Ordos, China
| | - Buhe Buyin
- Wushen Animal Disease Prevention and Control Center, Ordos, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Sebai E, Abidi A, Benyedem H, Dhibi M, Hammemi I, Akkari H. Phytochemical profile and anthelmintic effects of Laurus nobilis essential oil against the ovine nematode Haemonchus contortus and the murine helminth model Heligmosomoides polygyrus. Vet Parasitol 2022; 312:109835. [PMID: 36306627 DOI: 10.1016/j.vetpar.2022.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Small ruminant production in tropical and temperate countries faced substantial anthelmintic resistance due to the intensive use of commercial anthelmintic drugs. Therefore, alternative treatments including natural bioactive compounds with anthelmintic potential have been investigated looking for its successfully use in the parasite control. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of L. nobilis EO against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. Chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis have shown the presence of monterpens 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with inhibition value of 1.72 mg/mL and 87.5% of immobility of adult worms after 8 h of exposure to 4 mg/mL of L. nobilis EO. Regarding, the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg bw completely eliminated the egg output of H. polygyrus after 7 days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained results, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.
Collapse
Affiliation(s)
- Essia Sebai
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Manar II Tunis, Tunisia.
| | - Amel Abidi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Manar II Tunis, Tunisia
| | - Hayet Benyedem
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Ines Hammemi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Hafidh Akkari
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| |
Collapse
|
11
|
Anthelmintic effect of a water soluble Moringa oleifera lectin in rodents experimentally infected with Haemonchus contortus. Parasitol Int 2022; 92:102656. [PMID: 36007704 DOI: 10.1016/j.parint.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Allied to the problem of gastrointestinal parasites, especially Haemochus contortus, the use of lectins of plant origin has contributed to the research of alternative anthelmintics. The nematicidal effect of a water soluble Moringa oleifera lectin (WSMoL) was investigated in an experimental model with H. contortus infected Wistar rodents. Three concentrations were tested orally: 5 mg/kg, 2.5 mg/kg and 1 mg/kg. The reduction in the number of larvae recovered in the experimental groups was analyzed, as well as biochemical, hematological and histological parameters. Treatments with 5, 2.5 and 1 mg/kg of WSMoL reduced the number of larvae recovered of animals by 74.7%, 72.8% and 66%, respectively. Untreated infected animals had anemia, moderate mononuclear multifocal hepatitis, vascular congestion in the liver and kidneys, white pulp hyperplasia in the spleen, and presence of eosinophils in the intestine. Infected animals treated with 5 mg/kg of WSMoL showed liver with moderate bleeding, kidney with vascular congestion, spleen with white pulp hyperplasia and intestine with moderate presence of mononuclear cells. An increase in the serum level of glutamic pyruvic transaminase and a reduction in the level of hemoglobin (p < 0.001) were also observed in this group when compared to the uninfected group. However, the administered concentrations of 2.5 and 1 mg/kg of WSMoL were both satisfactory in terms of reducing the number of recovered larvae and not promoting negative changes in the biochemical, hematological and histological parameters evaluated. These results indicate an in vivo nematicidal effect of WSMoL on the H. contortus parasite.
Collapse
|
12
|
Novel compound shows in vivo anthelmintic activity in gerbils and sheep infected by Haemonchus contortus. Sci Rep 2022; 12:13004. [PMID: 35906366 PMCID: PMC9338094 DOI: 10.1038/s41598-022-17112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants.
Collapse
|
13
|
Munguía B, Saldaña J, Nieves M, Melian ME, Ferrer M, Teixeira R, Porcal W, Manta E, Domínguez L. Sensitivity of Haemonchus contortus to anthelmintics using different in vitro screening assays: a comparative study. Parasit Vectors 2022; 15:129. [PMID: 35413885 PMCID: PMC9006605 DOI: 10.1186/s13071-022-05253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminthiasis and resistance to commercial anthelmintic compounds are major causes of economic losses for livestock producers, resulting in an urgent need for new drugs and reliable in vitro screening tests capable of detecting potentially active products. Considering this, a series of novel benzimidazole derivatives (5-methylbenzimidazole 1,2-disubstituted, 5-carboxybenzimidazole, 5-methylbenzimidazole 2-one) was screened on exsheathed L3 (xL3) and on the adult stage of Haemonchus contortus (Kirby anthelmintic-susceptible McMaster isolate). METHODS This work presents the set-up of an automated motility assay on the xL3 stage of H. contortus using an infrared tracking device (WMicrotracker One) together with a larval development test (xL3 to L4) and a motility assay on the adult stage of H. contortus. A comparative study of the sensitivity of these in vitro assays using commercial anthelmintics with different mechanisms of action was carried out, also evaluating anthelmintic activity of a series of novel benzimidazole derivatives. RESULTS The automated xL3 assay had the great advantage of being able to analyze many compounds simultaneously, but it showed the limitation of having lower sensitivity, requiring higher concentrations of the commercial anthelmintics tested compared to those needed for the adult motility or development assays. Although none of the novel 1,2,5-tri-substituted benzimidazole derivatives could significantly decrease the motility of xL3s, one of them (1e) significantly affected the development of xL3s to L4, and five new compounds (1b, 1d, 1e, 2a and 2c) reduced the motility of H. contortus adult stage. CONCLUSIONS The analysis of the results strongly suggests that the in vitro xL3 to L4 development test, particularly for the L4 stage, could be closer to the pharmacological sensitivity of the adult stage of H. contortus (target of interest) for commercial anthelmintic selected, with different mechanisms of action, and for the series of benzimidazole derivatives assayed. Therefore, an automated motility assay on L4 using the infrared tracking device is being set up. Further studies will be conducted to evaluate the in vivo anthelmintic activity of the most active novel benzimidazole derivatives.
Collapse
Affiliation(s)
- Beatriz Munguía
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Jenny Saldaña
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Magdalena Nieves
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - María Elisa Melian
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Manuela Ferrer
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Ramiro Teixeira
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Laboratorio de Química Farmacéutica, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Laura Domínguez
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
14
|
Zajíčková M, Prchal L, Vokřál I, Nguyen LT, Kurz T, Gasser R, Bednářová K, Mičundová M, Lungerich B, Michel O, Skálová L. Assessing the Anthelmintic Candidates BLK127 and HBK4 for Their Efficacy on Haemonchus contortus Adults and Eggs, and Their Hepatotoxicity and Biotransformation. Pharmaceutics 2022; 14:pharmaceutics14040754. [PMID: 35456588 PMCID: PMC9024958 DOI: 10.3390/pharmaceutics14040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
As a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H. contortus larvae. The present study was designed to assess the activity of these compounds against H. contortus eggs and adults, hepatotoxicity in rats and sheep, as well as biotransformation in H. contortus adults and the ovine liver. Both compounds exhibited no inhibitory effect on the hatching of eggs. The benzyloxy amide BLK127 significantly decreased the viability of adults in sensitive and resistant strains of H. contortus and showed no hepatotoxic effect, even at the highest concentration tested (100 µM). In contrast, HBK4 had no impact on the viability of H. contortus adults and exhibited significant hepatotoxicity. Based on these findings, HBK4 was excluded from further studies, while BLK127 seems to be a potential candidate for a new anthelmintic. Consequently, biotransformation of BLK127 was tested in H. contortus adults and the ovine liver. In H. contortus, several metabolites formed via hydroxylation, hydrolysis and glycosidation were identified, but the extent of biotransformation was low, and the total quantity of the metabolites formed did not differ significantly between the sensitive and resistant strains. In contrast, ovine liver cells metabolized BLK127 more extensively with a glycine conjugate of 4-(pentyloxy)benzoic acid as the main BLK127 metabolite.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Lukáš Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic;
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Robin Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Klára Bednářová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Magdalena Mičundová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Oliver Michel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
- Correspondence:
| |
Collapse
|
15
|
Herath HMPD, Taki AC, Rostami A, Jabbar A, Keiser J, Geary TG, Gasser RB. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol Adv 2022; 57:107937. [PMID: 35271946 DOI: 10.1016/j.biotechadv.2022.107937] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
Abstract
Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec H9X3V9, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
Zhang C, Lum KY, Taki AC, Gasser RB, Byrne JJ, Wang T, Blaskovich MAT, Register ET, Montaner LJ, Tietjen I, Davis RA. Design, synthesis and screening of a drug discovery library based on an Eremophila-derived serrulatane scaffold. PHYTOCHEMISTRY 2021; 190:112887. [PMID: 34339980 DOI: 10.1016/j.phytochem.2021.112887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Chemical studies of the aerial parts of the Australian desert plant Eremophila microtheca afforded the targeted and known diterpenoid scaffolds, 3,7,8-trihydroxyserrulat-14-en-19-oic acid and 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid. The most abundant serrulatane scaffold was converted to the poly-methyl derivatives, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester and 3,7,8-trimethoxyserrulat-14-en-19-oic acid methyl ester using simple and rapid methylation conditions consisting of DMSO, NaOH and MeI at room temperature. Subsequently a 12-membered amide library was synthesised by reacting the methylated scaffolds with a diverse series of commercial primary amines. The chemical structures of the 12 undescribed semi-synthetic analogues were fully characterised following 1D/2D NMR, MS, UV, ECD and [α]D data analyses. All compounds were evaluated for their anthelmintic, anti-microbial and anti-viral activities. While none of the compounds significantly inhibited motility or development of the exsheathed third-stage larvae (xL3s) of a pathogenic ruminant parasite, Haemonchus contortus, the tri-methylated analogue induced a skinny phenotype in fourth-stage larvae (L4s) after seven days of treatment (IC50 = 14 μM). Anti-bacterial and anti-fungal activities were not observed at concentrations up to 20 μM. Activity against HIV latency reversal was tested in inducible, chronically-infected cells, with the tri-methylated analogue being the most active (EC50 = 38 μM).
Collapse
Affiliation(s)
- Chen Zhang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
17
|
Multipurpose peptides: The venoms of Amazonian stinging ants contain anthelmintic ponericins with diverse predatory and defensive activities. Biochem Pharmacol 2021; 192:114693. [PMID: 34302796 PMCID: PMC10167921 DOI: 10.1016/j.bcp.2021.114693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
In the face of increasing drug resistance, the development of new anthelmintics is critical for controlling nematodes that parasitise livestock. Although hymenopteran venom toxins have attracted attention for applications in agriculture and medicine, few studies have explored their potential as anthelmintics. Here we assessed hymenopteran venoms as a possible source of new anthelmintic compounds by screening a panel of ten hymenopteran venoms against Haemonchus contortus, a major pathogenic nematode of ruminants. Using bioassay-guided fractionation coupled with liquid chromatography-tandem mass spectrometry, we identified four novel anthelmintic peptides (ponericins) from the venom of the neotropical ant Neoponera commutata and the previously described ponericin M-PONTX-Na1b from Neoponera apicalis venom. These peptides inhibit H. contortus development with IC50 values of 2.8-5.6 μM. Circular dichroism spectropolarimetry indicated that the ponericins are unstructured in aqueous solution but adopt α-helical conformations in lipid mimetic environments. We show that the ponericins induce non-specific membrane perturbation, which confers broad-spectrum antimicrobial, insecticidal, cytotoxic, hemolytic, and algogenic activities, with activity across all assays typically correlated. We also show for the first time that ponericins induce spontaneous pain behaviour when injected in mice. We propose that the broad-spectrum activity of the ponericins enables them to play both a predatory and defensive role in neoponeran ants, consistent with their high abundance in venom. This study reveals a broader functionality for ponericins than previously assumed, and highlights both the opportunities and challenges in pursuing ant venom peptides as potential therapeutics.
Collapse
|
18
|
Taki AC, Byrne JJ, Wang T, Sleebs BE, Nguyen N, Hall RS, Korhonen PK, Chang BC, Jackson P, Jabbar A, Gasser RB. High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus. Pharmaceuticals (Basel) 2021; 14:ph14070616. [PMID: 34206910 PMCID: PMC8308562 DOI: 10.3390/ph14070616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Paul Jackson
- Johnson & Johnson, Global Public Health, Janssen Research and Development, San Diego, CA 92121, USA;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Correspondence:
| |
Collapse
|
19
|
Chemical characterization and in vitro anthelmintic activity of Citrus bergamia Risso and Citrus X paradisii Macfad essential oil against Haemonchus contortus Kirby isolate. Acta Trop 2021; 217:105869. [PMID: 33631121 DOI: 10.1016/j.actatropica.2021.105869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Haemonchus contortus, a blood-sucking parasite of small ruminants, produces very important economic losses in the productive sector. This abomasum parasite has become resistant to most commercial drugs worldwide, and alternatives to fight this problem are urgently needed. Essential oils (EO) are a complex mixture of volatile secondary metabolites, composed mainly by terpenoids and phenolic compounds, from plants that have several pharmacological properties, including anthelmintic activity. Particularly, citrus peel is a source of cold-pressed EO, where limonene is its major component, and can be used as an additional food component for ruminants. The aim of the present work was to determine the in vitro anthelmintic activity of EO from Citrus bergamia (EOB), C. x paradisii (EOG) and limonene against the benzimidazole-susceptible Kirby isolate of H. contortus, using the egg hatch test (EHT) and the exsheathed third stage larval motility test (XLMT) using a WMicroTracker equipment. Albendazole (ABZ) and monepantel (MON) were used as positive controls. The 50% inhibitory concentrations (IC50) in XLMT were 8.77 and 13.88 µg/ml for EOB and EOG respectively, after an incubation of 72 h. An interesting observation on XLMT resulted when the positive controls were tested on the same plate, but in different well of the EOB. The volatile components of the EO significantly influenced (P < 0.05) the percentage of larval motility, reducing values from 66.9 to 19.6% for ABZ, and from 72.8 to 33.7% for MON, when comparing the activity of positive controls in a control plate without EO. The in vitro anthelmintic activity of EOB and EOG shows that they could be interesting candidates for nematode control. It is still necessary additional studies against the adult stage of H. contortus in efficacy trials in infected animals to validate their anthelmintic activity.
Collapse
|
20
|
Yang X, Khan S, Zhao X, Zhang J, Nisar A, Feng X. Suppression of hyaluronidase reduces invasion and establishment of Haemonchus contortus larvae in sheep. Vet Res 2020; 51:106. [PMID: 32854758 PMCID: PMC7534805 DOI: 10.1186/s13567-020-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
Haemonchus contortus is a hematophagous endoparasite of small ruminants, which is responsible for huge economic losses in livestock sector. Hyaluronidase produced by infective larvae of H. contortus can degrade hyaluronic acid present in the host’s abomasal tissue. Thus, it facilitates larval tissue invasion and early establishment. We herein explored this ability of hyaluronidase in H. contortus, and tested whether hyaluronidase is utilized as a virulence factor by H. contortus while establishing the infection. We first successfully blocked the hyaluronidase gene in L3 larvae by RNA interference (RNAi), which was subsequently confirmed by qPCR, enzymatic activity, and immunohistochemistry assays. Using these larvae we then conducted in vivo and in vitro assays on sheep to assess the effects of hyaluronidase suppression on larval invasion and establishment of infection. The in vivo assay showed a significant drop in worm burden in siRNA treated group in comparison to control group. During in vitro assay we applied an ovine ex vivo model where siRNA treated group of larvae showed significantly reduced invasion of the abomasal tissue explants as compared to control group. These findings indicate that hyaluronidase plays a key role in host’s tissue invasion and larval establishment, and it is used as a virulence factor by H. contortus while establishing the infection. As an invasive virulence molecule, its functional research is thus conducive to the prevention of haemonchosis.
Collapse
Affiliation(s)
- Xiangshu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Xiaochao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Jiayan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ayesha Nisar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
21
|
Ma G, Gasser RB, Wang T, Korhonen PK, Young ND. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. INFECTION GENETICS AND EVOLUTION 2020; 85:104500. [PMID: 32795511 DOI: 10.1016/j.meegid.2020.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid sequencing, mass spectrometry and computational biology have facilitated the identification, annotation and analysis of genes, transcripts, proteins and metabolites in model nematodes (Caenorhabditis elegans and Pristionchus pacificus) and socioeconomically important parasitic nematodes (Clades I, III, IV and V). Significant progress has been made in genomics and transcriptomics as well as in the proteomics and lipidomics of Haemonchus contortus (the barber's pole worm) - one of the most pathogenic representatives of the order Strongylida. Here, we review salient aspects of genomics, transcriptomics, proteomics, lipidomics, glycomics and functional genomics, and discuss the rise of integrative 'omics of this economically important parasite. Although our knowledge of the molecular biology, genetics and biochemistry of H. contortus and related species has progressed significantly, much remains to be explored, particularly in areas such as drug resistance, unique/unknown genes, host-parasite interactions, parasitism and the pathogenesis of disease, by integrating the use of multiple 'omics methods. This approach should lead to a better understanding of H. contortus and its relatives at a 'systems biology' level, and should assist in developing new interventions against these parasites.
Collapse
Affiliation(s)
- Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Lum KY, Taki AC, Gasser RB, Tietjen I, Ekins MG, White JM, Addison RS, Hayes S, St John J, Davis RA. Comatulins A-E, Taurine-Conjugated Anthraquinones from the Australian Crinoid Comatula rotalaria. JOURNAL OF NATURAL PRODUCTS 2020; 83:1971-1979. [PMID: 32478519 DOI: 10.1021/acs.jnatprod.0c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical investigations of two specimens of the Australian crinoid Comatula rotalaria afforded five new taurine-conjugated anthraquinones, comatulins A-E (1-5), together with 11 known marine natural products (6-16). The chemical structures of all the compounds were elucidated by detailed spectroscopic and spectrometric data analysis. The first X-ray crystal structure of a crinoid-derived acyl anthraquinone, rhodocomatulin 5,7-dimethyl ether (8), is reported here. Compounds 1, 2, 6-13, and two additional naphthopyrone derivatives, 17 and 18, were evaluated for their ability to inhibit HIV-1 replication in vitro; none of the compounds were active at 100 μM. Furthermore, compounds 1, 2, 6-10, 14, 15, 17, and 18 were screened for nematocidal activity against exsheathed third-stage larvae of Hemonchus contortus, a highly pathogenic parasite nematode of ruminants. Compound 17, known as 6-methoxycomaparvin 5,8-dimethyl ether, showed an inhibitory effect on larval motility (IC50 = 30 μM) and development (IC50 = 31 μM) and induced the eviscerated (Evi) phenotype.
Collapse
Affiliation(s)
- Kah Yean Lum
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Merrick G Ekins
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Biodiversity and Geosciences, Queensland Museum, South Brisbane BC, QLD 4101, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
23
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
24
|
Jiao Y, Preston S, Hofmann A, Taki A, Baell J, Chang BCH, Jabbar A, Gasser RB. A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here? ADVANCES IN PARASITOLOGY 2020; 108:1-45. [PMID: 32291083 DOI: 10.1016/bs.apar.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 'hit' compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for 'lead' development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aya Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Zajíčková M, Nguyen LT, Skálová L, Raisová Stuchlíková L, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today 2019; 25:430-437. [PMID: 31883953 DOI: 10.1016/j.drudis.2019.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
The control of gastrointestinal nematodes (GINs), the most abundant and serious parasites of livestock, has become difficult because of the limited number of available drugs and fast development of drug resistance. Thus, considerable efforts have been devoted to developing new anthelmintics that are efficient against nematodes, especially resistant species. Here, we summarize the most recent results using various approaches: target-based or high-throughput screening (HTS) of compound libraries; the synthesis of new derivatives or new combinations of current anthelmintics; the repurposing of drugs currently approved for other indications; and lastly, the identification of active plant products. We also evaluate the advantages and disadvantages of each of these approaches.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
26
|
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Taki AC, Addison RS, Hayes S, Beattie KD, McGee SL, Martin SD, Ekins MG, Hooper JNA, Chang BCH, Hofmann A, Davis RA, Gasser RB. Identification of Fromiamycalin and Halaminol A from Australian Marine Sponge Extracts with Anthelmintic Activity against Haemonchus contortus. Mar Drugs 2019; 17:md17110598. [PMID: 31652835 PMCID: PMC6891614 DOI: 10.3390/md17110598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/29/2023] Open
Abstract
There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource of novel chemical entities. This study investigated 2000 extracts from marine invertebrates, collected from Australian waters, for anthelmintic activity. Using a well-established in vitro bioassay, these extracts were screened for nematocidal activity against Haemonchus contortus — a socioeconomically important parasitic nematode of livestock animals. Extracts (designated Mu-1, Ha-1 and Ha-2) from two marine sponges (Monanchora unguiculata and Haliclona sp.) each significantly affected larvae of H. contortus. Individual extracts displayed a dose-dependent inhibition of both the motility of exsheathed third-stage larvae (xL3s) and the development of xL3s to fourth-stage larvae (L4s). Active fractions in each of the three extracts were identified using bioassay-guided fractionation. From the active fractions from Monanchora unguiculata, a known pentacyclic guanidine alkaloid, fromiamycalin (1), was purified. This alkaloid was shown to be a moderately potent inhibitor of L4 development (half-maximum inhibitory concentration (IC50) = 26.6 ± 0.74 µM) and L4 motility (IC50 = 39.4 ± 4.83 µM), although it had a relatively low potency at inhibiting of xL3 motility (IC50 ≥ 100 µM). Investigation of the active fractions from the two Haliclona collections led to identification of a mixture of amino alcohol lipids, and, subsequently, a known natural product halaminol A (5). Anthelmintic profiling showed that 5 had limited potency at inhibiting larval development and motility. These data indicate that fromiamycalin, other related pentacyclic guanidine alkaloids and/or halaminols could have potential as anthelmintics following future medicinal chemistry efforts.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Faculty of Health and Life Sciences, Federation University, Ballarat, Victoria 3350, Australia.
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Karren D Beattie
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sean L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Sheree D Martin
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | | | | | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
27
|
Doyle SR, Illingworth CJR, Laing R, Bartley DJ, Redman E, Martinelli A, Holroyd N, Morrison AA, Rezansoff A, Tracey A, Devaney E, Berriman M, Sargison N, Cotton JA, Gilleard JS. Population genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug resistance in the pathogenic nematode, Haemonchus contortus. BMC Genomics 2019; 20:218. [PMID: 30876405 PMCID: PMC6420744 DOI: 10.1186/s12864-019-5592-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infections with helminths cause an enormous disease burden in billions of animals and plants worldwide. Large scale use of anthelmintics has driven the evolution of resistance in a number of species that infect livestock and companion animals, and there are growing concerns regarding the reduced efficacy in some human-infective helminths. Understanding the mechanisms by which resistance evolves is the focus of increasing interest; robust genetic analysis of helminths is challenging, and although many candidate genes have been proposed, the genetic basis of resistance remains poorly resolved. RESULTS Here, we present a genome-wide analysis of two genetic crosses between ivermectin resistant and sensitive isolates of the parasitic nematode Haemonchus contortus, an economically important gastrointestinal parasite of small ruminants and a model for anthelmintic research. Whole genome sequencing of parental populations, and key stages throughout the crosses, identified extensive genomic diversity that differentiates populations, but after backcrossing and selection, a single genomic quantitative trait locus (QTL) localised on chromosome V was revealed to be associated with ivermectin resistance. This QTL was common between the two geographically and genetically divergent resistant populations and did not include any leading candidate genes, suggestive of a previously uncharacterised mechanism and/or driver of resistance. Despite limited resolution due to low recombination in this region, population genetic analyses and novel evolutionary models supported strong selection at this QTL, driven by at least partial dominance of the resistant allele, and that large resistance-associated haplotype blocks were enriched in response to selection. CONCLUSIONS We have described the genetic architecture and mode of ivermectin selection, revealing a major genomic locus associated with ivermectin resistance, the most conclusive evidence to date in any parasitic nematode. This study highlights a novel genome-wide approach to the analysis of a genetic cross in non-model organisms with extreme genetic diversity, and the importance of a high-quality reference genome in interpreting the signals of selection so identified.
Collapse
Affiliation(s)
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
- Department of Applied Maths and Theoretical Physics, Wilberforce Road, Cambridge, CB3 0WA UK
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH UK
| | - David J. Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
- Present Address: Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Present Address: Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - Alison A. Morrison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ UK
| | - Andrew Rezansoff
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH UK
| | | | - Neil Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Edinburgh, EH25 9RG UK
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| |
Collapse
|
28
|
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Addison RS, Hayes S, Rali T, Wang T, Koehler AV, Chang BCH, Hofmann A, Davis RA, Gasser RB. Selected α-pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:72-79. [PMID: 30739078 PMCID: PMC6369141 DOI: 10.1016/j.ijpddr.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022]
Abstract
Due to the widespread occurrence and spread of anthelmintic resistance, there is a need to develop new drugs against resistant parasitic nematodes of livestock animals. The Nobel Prize-winning discovery and development of the anti-parasitic drugs avermectin and artemisinin has renewed the interest in exploring natural products as anthelmintics. In the present study, we screened 7500 plant extracts for in vitro-activity against the barber's pole worm, Haemonchus contortus, a highly significant pathogen of ruminants. The anthelmintic extracts from two plants, Cryptocarya novoguineensis and Piper methysticum, were fractionated by high-performance liquid chromatography (HPLC). Subsequently, compounds were purified from fractions with significant biological activity. Four α-pyrones, namely goniothalamin (GNT), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (YGN), were purified from fractions from the two plants, GNT from C. novoguineensis, and DHK, DMY and YGN (= kavalactones) from P. methysticum. The three kavalactones induced a lethal, eviscerated (Evi) phenotype in treated exsheathed third-stage larvae (xL3s), and DMY and YGN had moderate potencies (IC50 values of 31.7 ± 0.23 μM and 23.7 ± 2.05 μM, respectively) at inhibiting the development of xL3s to fourth-stage larvae (L4s). Although GNT had limited potency (IC50 of 200–300 μM) at inhibiting L4 development, it was the only compound that reduced L4 motility (IC50 of 6.25–12.50 μM). The compounds purified from each plant affected H. contortus in an irreversible manner. These findings suggest that structure-activity relationship studies of α-pyrones should be pursued to assess their potential as anthelmintics. 7500 plant extracts were screened against Haemonchus for anthelmintic activity. Three of these extracts were potent inhibitors of larval motility and/or development. Pure α-pyrones isolated from active fractions exhibited significant nematocidal activity.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Science and Technology, Federation University, Ballarat, Victoria 3350, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Topul Rali
- School of Natural & Physical Sciences, The University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|